
Proposal for C23
WG14 2855

Title: Tail-call elimination
Author, affiliation: Alex Gilding, Perforce
Date: 2021-10-08
Proposal category: New features
Target audience: Compiler/tooling developers, other-language developers

Abstract
C's function activation records implicitly form a stack, regardless of the underlying implementation
of function calls or the depth of calls which the platform can support.

Keeping all activation records suspended but alive until their callees have returned prevents
programs from transferring control directly when a function's work is already done. This is not a
huge obstacle for hand-written C code, but is a major barrier for languages that compile to C or for
interop with languages that do support this feature.

We propose adding the ability to explicitly, directly transfer control to another function without
returning, as an alternative to nested function calls.

Tail-call elimination
Reply-to: Alex Gilding (agilding@perforce.com)
Document No: N2855
Revises Document No: N/A
Date: 2021-10-08

Summary of Changes

N2855

• original proposal

Introduction
C was designed to support recursive function calls. To achieve this, function activation records are
arranged in a stack-like discipline, where the execution of any given block (and the lifetime of
every object defined within it) is suspended but not terminated by a function call from within that
block. The lifetime of the objects in the calling block may not end until the called block returns,
making the stack-like structure implicit regardless of implementation (C targets need not provide
any stack space for automatic variables in order to be conforming, but they must be able to return
control to at least one caller).

Sometimes, a block needs to be able to transfer control to another block and has no reason to
continue its own execution. In C, this presents only two options and neither is satisfactory:

• return information about the block to transfer control to, to the current function's caller, and
use some kind of explicit dispatch there to move arguments and re-invoke

• call the next block directly and simply put up with the wasted space as the current block's
lifetime is not allowed to end ahead of prescribed schedule.

If a block knows that it needs to transfer control out-of-function, and that it is safe to consider the
lifetime of its local objects finished, it should be able to request early termination and replacement
in a manner analogous to POSIX's exec at the process-level.

We propose a modification of the function return syntax to allow a function to return-by-replace and
explicitly demand its execution terminate early, ending the lifetime of all local objects, before the
invocation of a directly-called function.

In other languages this feature is known as tail-call elimination. If the last operation within a
function is a value-generating call (ignoring return as a separate operation), it is in tail position;

calls in the tail position are tail-calls and can often be eliminated by direct replacement. This is
called tail-call elimination and is a widespread concept outside C.

Rationale
The driving motivator for this feature is not hand-written user code. Rather, this feature would
substantially improve C's usability as a compiler target for a number of functional (and functional -

adjacent) programming languages that mandate support for tail-call elimination within their own
language specifications.

The most famous of these is probably Scheme, which used the concept to derive entire new control
flow and compilation models based around continuation-passing. Lua is another popular language
that mandates tail-call elimination, as do the ML family and their descendants.

Scheme and Lua in particular are quite easy to compile to C (albeit more difficult to optimize, partly
for unrelated reasons stemming from the dynamic type system), except for this one "killer" feature:
a Scheme function call cannot be directly represented as a C function call because the Scheme
compiler cannot trust C to eliminate invocation records that the Scheme specification says are no
longer needed to be live.

This significantly damages one of C's historic constituencies: compilers of other languages looking
for a really easy-to-generate, already-optimizing intermediate language.

A number of workarounds exist. The Chicken Scheme compiler uses direct C function calls, and
places every call in tail position, and detects C machine stack exhaustion and periodically clears the
stack by jumping back to the base (this can be implemented both in portable and in optimized
ways). This is mostly of interest as a GC strategy. Although calls are mostly native, there is still a
significant performance impact because the Scheme runtime needs to provide a lot of bookkeeping
in order to detect and implement the base-jump.

The Gambit Scheme compiler achieves significantly better performance at the cost of generating
completely unmanageable C-machine code, using a module-level compilation strategy (previously
also identified by Demoen and Maris), where a Scheme module ("translation unit") compiles as far
as possible into a single C function; Scheme function calls are represented by a non-native call
mechanism implemented as either a switch or a language extension like GNU's label pointers.

This reduces the cost of in-module function calls significantly, but creates extremely high cost to
call functions in other TUs and to switch between C and Scheme functions.

In addition to the performance cost of calls, the interop between Scheme and "native" C functions is
prohibitively complicated under these compilation models. Scheme, C, Lua, etc. all have their own
expectations about how and how often their language's equivalent of a "long jump" can be
performed: longjmp in C, which is rare/high-cost; coroutines in Lua which are a medium-impact

tool; and continuation-invocation in Scheme which is common and supposedly
zero-cost/transparent. Given the example of C as the host language for a Scheme program, it is
difficult for Scheme to jump out of a Scheme callback-to-a-C-callback because the continuation
needs to know about, and have some ability to clear, the intervening C invocation records. Other
scenarios are similarly complicated.

(The Gambit manual understates the problem slightly, as it glosses over the fact that a user should
not need to know what language their library of choice was written in and decide how to call it
based on that.)

Tail-call "optimization"

This feature is commonly known in the C world as tail-call or tail-recursion optimization.

In practice all major optimizing compilers can detect that a call is in tail position and meets the
criteria for elimination (no dependence on lifetime of objects, returns directly, etc.). GCC, Clang,

http://www.iro.umontreal.ca/~gambit/doc/gambit.html#continuations

Intel and MSVC are all capable of performing this rewrite. However they are biased in two ways
that do not meet the needs of the C-targeting constituency:

• they tend to focus on the technique as an optimization for recursive algorithms, allowing C
users to write a recursive function rather than being forced to use a loop. The focus on the
general case is less because non-recursive functions are not assumed to have as strong a
need for TCE; they are assumed to tend towards shallow and finite activation stacks.

• the technique is presented as an optmization selected by the compiler, not as a user
selectable call mechanism. It is analogous to inlining in that there is no good way to request
it explicitly; the compiler will do it if it detects that it can, and will leave the function
invocation alone if it does not meet the criteria for obvious/safe in-place replacement.

Whether the nested invocation is a recursive call or not is considered semantically irrelevant to the
other-language use case. We explicitly avoid referring to this feature as tail-recursion for that
reason.

Compilers of other languages targeting C, choose it because of its portability features and its
simplicity to generate. Relying on invisible C-compiler-side optimizations for essential parts of
their language's semantics is completely unreliable and defeats a large part of the reason for
choosing C (portability), while working around the lack of TCE with portable code defeats the two
other major reasons (simplicity and performance).

We therefore consider that it should be possible for code generated by compilers to explicitly make
a binding request for in-place replacement of an activation record.

We do not expect this feature to see significant use in user-written C code, though it is possible to
use correctly and safely. (A C function that does not pass pointers to local objects through to the tail
call will not introduce any new undefined behaviours.)

Proposal
Most existing work focuses on detection of the opportunity for tail-call elimination (Probst). This is
now well-understood by optimizing compiler developers, but not sufficient. In addition it is not
necessary for so much work to be put in by the C compiler if the request can be made explicitly: a
tail-call happens where the user says it does and the C compiler should trust the other-language
compiler not to introduce UB by passing dependencies to objects that have fallen out of scope, so it
doesn't need to prove the replacement is "safe" from a C-language perspective.

The other-language compiler should also trust the C compiler to honour its requests rather than have
to rely on obscure optimizations whose rules may be undocumented or shifting.

We instead propose a minor adjustment to C's syntax to communicate an explicit request for a tail -
call: return goto.

For a function call to be in tail position, it must be the immediate operand of a return statement:

int foo (int, int , int);

int bar1 (int a, int b, int c) {
 int x = foo (c, b, a); // not tail position
}

http://www.complang.tuwien.ac.at/schani/diplarb.ps

int bar2 (int a, int b, int c) {
 int x = 0;
 x = foo (c, b, a); // not tail position
 return x;
}

int bar3 (int a, int b, int c) {
 return foo (c, b, a); // tail position
}
int bar4 (int a, int b, int c) {
 return foo (foo (1, 2, 3), b, a); // outer foo is in tail position
}
int bar5 (int a, int b, int c) {
 return 1 + foo (c, b, a); // NOT tail position
} // bar5 still needs to perform an add after foo
int bar6 (int a, int b, int c) {
 return (foo (c, b, a)); // tail position, grudgingly
}

This implicitly already requires the type of the called function to be convertible to (but not
compatible with) the return type of the caller.

We therefore propose that return statements whose operand consists of a proper tail call can be

enhanced with the goto keyword, communicating intent to jump control "across" rather than to

nest:

int bar3_g (int a, int b, int c) {
 return goto foo (c, b, a); // explicit tail call
}

We introduce one new constraint that the return type of the called function be identical rather than
just implicitly convertible:

float qux (int, int, int);

int bar3_wrong (int a, int b, int c) {
 return goto qux (c, b, a); // NOT a valid tail call
} // because the float->int work remains to be done

We do not introduce any new constraints on the number or type of the callee's parameters. These do
not need to be an exact match because the work of evaluating and storing them is done before the
lifetime of the caller ends.

We do not introduce any new constraints w.r.t passing pointers to local objects to the callee. This is
not considered a new UB; this is functionally identical to passing a pointer to a local object out by
return or assignment to global. We choose to trust the other-language compiler and save the C
compiler from having to make this analysis.

We do not introduce any new constraint that the return goto statement be in any particular tail

position. It is in tail position by virtue of being a return statement; all existing rules about what

can syntactically "follow" a return statement still apply, without modification.

We introduce a constraint that the operand to return goto shall be a tail-call. A diagnostic must

be issued if the request to transfer control in-place cannot be met or does not make sense (e.g. if the
operand is not even a function call). This is more likely to be a user error (missed that trailing +

1...) than to be acceptable as a generic substitute for return.

We do not modify the object lifetime rules. An object's lifetime continues to be from entry into its
containing block, until execution of the block is terminated rather than suspended. We instead
modify the rule that when a function call is the operand to a return goto statement, it

terminates execution of the containing block and returns directly to that block's caller. Therefore
entering a tail-call is exactly the same as exiting the calling function.

Alternatives
As above, this is widely supported as an optimization, but it is subject to the as-if rule; any change
in the call that would result in it becoming unsuitable for TCO (as opposed to TCE) will silently
leave the caller's activation record alive until after the callee returns.

We do not believe it is appropriate for the semantics of code generated by an other-language
compiler to depend on an optimization detail of the generated C. The code must work correctly
even with optimization disabled. In addition optimization can be "disrupted" by any number of
unexpected factors, such as timeouts or compiler resource exhaustion - most optimizers do not
promise to find every optimization possible, only to try to do so with a reasonable amount of effort.
Language extensions can very easily disable the feature because they rely on unchanged lifetime
rules (e.g. ARC in Clang/Objective-C; __attribute__((cleanup)) in GNU C).

Existing C-targeting compilers generally use some form of trampolining or scheduling. They may
also use techniques such as subroutine-threaded code (not to be confused with multithreading). The
line between these techniques is not strict.

In all cases these require explicit management of a full call-return-reschedule on the C code side.
This is usually impossible to optimize away by the C compiler, but the entire operation is
fundamentally not needed by the underlying platform which can generally just blind-jump to any
machine instruction.

There are other extensions such as GNU's labels-as-values that can help smooth the
implementation, but fundamentally do not change the technique used or the fact that a large amount
of code needs to be inserted on the C side just to provide a control flow operation that logically
should require no code.

goto return may be clearer to read than return goto; we are not tied to the syntax.

However, we do not believe that goto function (); would be appropriate because it is too

visually similar to syntax that would be valid for the GNU labels-as-values extension (only missing
a *).

Impact
This proposal introduces new syntax but no new keywords, only a rearrangement of existing ones.
Therefore there is no namespace or reservation conflict implied by the new tail-call statement.

All existing techniques for compiling tail-calls from other languages should continue to work.
These will continue to provide a reliable base for targeting older compilers even if C23 compilers
start to provide a new high-performance path for new programs.

https://en.wikipedia.org/wiki/Tail_call#Through_trampolining

No existing tail-call optimization should be impacted by this feature addition. The technology is
already mature. It is possible that compiler developers feel less pressure to investigate improving
the optimization if the elimination feature is added instead.

We do not consider code that relies on the existing optimization, no matter how reliable, for correct
semantics, to be correct code in any case, because this would violate the "as-if" rule.

No new undefined behaviour is introduced by this proposal. Passing a pointer to a local object with
automatic storage duration is not logically different from returning such a pointer. We expect
existing analyses to apply, and existing rulesets to be updated. We would rather allow the request to
be binding and trust the primary client of the feature, which is other-language compilers that can
(hopefully) prove correctness of their own resource use, to use it safely and trust it to work. We do
not really expect human writers of C to get much mileage out of this.

Unlike many instances of the optimization, we do not propose to enforce any particular rules about
the number and type of parameters. Even if a tail-call has more parameters than the caller, the
amount of space required for any given argument invocation is fixed syntactically at compile time -
the argument buffer can grow but only to a known limit. A compiler should be able to determine the
upper bound, but also shouldn't need to. Fundamentally this is not different from the callee
requiring more space for its internal automatic variables. This does not introduce any new risks for
resource exhaustion above those that already exist in C's function calls.

Allowing native C functions and compiled-to-C functions to use the same calling convention will
dramatically improve C's interop capabilities.

We believe that this feature could easily be supported by C++ because the changes to object lifetime
(and correspondingly destruction) are unambiguous and match the new exit point from the calling
function. There is no risk that a correct C++ program might change its behaviour silently because
the goto keyword must be added manually in order to change the lifetimes, making any

consequences for object destruction visually clear.

C++ is in any case free to add additional constraints (e.g. trivial objects only).

It is possible that a target platform which does not support indirect jumps could have difficulty with
this feature (only for calls through function pointers). We are not aware of such a machine.

Proposed wording
Changes are proposed against the wording in C2x draft n2596. Bolded text is new text.

Modify 6.2.4 "Storage durations of objects" to clarify that some function calls do terminate
execution:

For such an object that does not have a variable length array type, its lifetime extends
from entry into the block with which it is associated until execution of that block ends
in any way. (Entering an enclosed block or calling a function suspends, but does not
end, execution of the current block footnote).)

footnote: unless the call explicitly terminates execution of the current block with
return goto.

Add a forward reference to (new section) 6.8.6.4.1 in 6.2.4:

Forward references: array declarators (6.7.6.2), compound literals (6.5.2.5), declarators
(6.7.6), function calls (6.5.2.2), tail calls (6.8.6.4.1), initialization (6.7.9), statements
(6.8), effective type (6.5).

Add a new footnote to 6.5.2.2 "Function calls" paragraph 10, immediately after 104:

with respect to the execution of the called function. 104) footnote)

footnote: if the called function is assuming direct control with the return goto
statement, then no further operations in the caller will be evaluated after it is
entered.

Modify 6.8.6 "Jump statements" paragraph 1:

jump-statement:
goto identifier ;
continue ;
break ;
return expression opt ;
return goto postfix-expression ;

Add a new section, 6.8.6.4.1 "The return goto statement":

6.8.6.4.1 The return goto statement

Constraints

A return goto statement shall only appear in a function whose return type is not
void.

The type of the expression shall be the same as the return type of the containing
function.

The expression shall be a function call, optionally enclosed in parentheses. No other
form of expression is permitted.

Semantics

A return goto statement is a special case of the return statement which
terminates execution of the current function and then passes direct control to the
function specified in the function call that constitutes its operand expression.

The value of that function call will be returned to the caller as in a simple return
statement. The return goto statement differs fro the return statement in that it
terminates execution of the current function immediately after evaluating all operands to
the function call expression, and before entering the called function itself. The called
function will return directly to the current function's caller.

Because the execution of the current function is terminated, the lifetime of all objects
local to the function with automatic storage duration ends, immediately before the
called function is entered.

NOTE: a return goto statement may appear anywhere a return statement with
an expression may appear.

NOTE: if the address of a local object with automatic storage duration is passed to the
called function, its lifetime will have ended before the called function begins executing
and the pointer cannot be used.

Recommended Practice

Once a calling function's execution has been terminated by the return goto
statement it should not continue to use resources.

EXAMPLE 1 This example violates the constraint that the expression must be a direct
call to a function returning the exact same type as the caller:

int foo (int, int);

int bar (int a, int b) {
 return goto foo (b, a) + 1; // WRONG: the +1 must be evaluated after
the result of foo()
}
float baz (int a, int b) {
 return goto foo (b, a) + 1; // WRONG: the result of foo() is
followed by an implicit conversion
}

EXAMPLE 2 In this example the address of a local object with automatic storage
duration is passed to a called function:

int foo (int * p); // uses p

int bar (int a) {
 return foo (&a); // OK, lifetime of a continues until foo()
completes
}
int baz (int b) {
 return goto (&b); // WRONG: using the address of an object whose
lifetime has ended
}
int * boo (int c) {
 return &c; // roughly analogous to the above
}

EXAMPLE 3 In this example, a function recurses endlessly but harmlessly because the
recursive call consumes no additional resources:

int foo (int a, int b) { // need space for locals...
 return goto foo (b, a); // ...but that ends here
}

The intent is that this class of function should not overflow the program stack.

EXAMPLE 4 In this example only one of the two calls to foo() is in the tail position:

int foo (int a, int b);

int bar (int a, int b) {

 return goto foo (// will be evaluated after this caller's lifetime
ends
 foo (a, b), // will be evaluated within this caller's lifetime
 a + b
);
}

No modifications to the Standard Library are proposed.

References
• C23 n2596
• exec()
• Feeley 97
• Chicken
• Baker 95
• Demoen, Maris 94
• Gambit Scheme
• Lua
• Probst, Proper tail recursion in C
• Intel TCO
• GCC TCO
• Clang TCO
• Subroutine threading
• Trampolining

https://en.wikipedia.org/wiki/Tail_call#Through_trampolining
https://en.wikipedia.org/wiki/Threaded_code#Subroutine_threading
http://llvm.org/docs/CodeGenerator.html#tail-call-optimization
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://software.intel.com/en-us/node/522809
http://www.complang.tuwien.ac.at/schani/diplarb.ps
https://www.lua.org/
https://gambitscheme.org/wiki/index.php?title=Main_Page
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.7344&rep=rep1&type=pdf
http://web.archive.org/web/20200223051632/http://home.pipeline.com/~hbaker1/CheneyMTA.html
https://www.call-cc.org/
http://www.iro.umontreal.ca/~feeley/papers/FeeleyMillerRozasWilsonDIRO1078.pdf
https://pubs.opengroup.org/onlinepubs/9699919799/functions/exec.html
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2596.pdf

	Abstract
	Tail-call elimination
	Summary of Changes
	N2855

	Introduction
	Rationale
	Tail-call "optimization"

	Proposal
	Alternatives
	Impact
	Proposed wording
	6.8.6.4.1 The return goto statement

	References

