
Proposal for C23
WG14 2851

Title: The `constexpr` specifier
Author, affiliation: Alex Gilding, Perforce
Date: 2021-10-08
Proposal category: New features
Target audience: Compiler/tooling developers, library developers,
application developers

Abstract
C++ has supported compile-time evaluation of first-class functions for over ten years, while C is
still limited to using second-class language features in compile-time contexts. This puts C at a
significant disadvantage in terms of being able to share the same features between runtime and
compile-time, and in being able to assert truths about the program at compile time rather than
waiting to assert in a runtime debug build.

constexpr provides the ability for a C program to call a restricted set of functions at compile

time while leaving them first-class language citizens.

The constexpr specifier
Reply-to: Alex Gilding (agilding@perforce.com)
Document No: N2851
Revises Document No: N/A
Date: 2021-10-08

Summary of Changes

N2851

• original proposal

Introduction
C requires that objects with static storage duration are only initialized with constant expressions.
The rules for which kinds of expression may appear as constant expressions are quite restrictive and
mostly limit users to using macro names for abstraction of values or operations. Users are also
limited to testing their assertions about value behaviour at runtime because static_assert is

similarly limited in the kinds of expressions it can evaluate at compile-time.

We propose to add a new (old) specifier to C, constexpr, as introduced to C++ in C++11. We

propose to add this specifier separately to objects and functions, and to intentionally keep the
functionality minimal to avoid undue burden on lightweight implementations.

Rationale
Because C limits initialization of objects with static storage duration to constant expressions, it can
be difficult to create clean abstractions for complicated value generation. Users are forced to use
macros, which do not allow for the creation of temporary values and require a different coding
style. Such macros - especially if they would use temporaries, but have to use repetition instead
because of the constraints of constant expressions - may also be unsuitable for use at runtime
because they cannot guarantee clear evaluation of side effects. Macros for use in initializers cannot
have their address taken or be used by linkage and are truly second-class language citizens. A user is
obliged to repeat themselves and provide both a macro and a function (probably just deferring
operation to the macro internally, but still unclear and verbose) if they wish for the same callable
entity to be used in both a static context and a runtime context.

The same restriction applies to static_assert: a user cannot prove properties about any

expression involving a function call at compile-time, instead having to defer to runtime assertions.
If a constant function could be called at compile-time, a release-mode build would be able to bake
more testing of values and value-generation directly into the build step rather than relying on a
separate debug configuration and test runs of the full program.

C does provide enumerations which are marginally more useful than macros for defining constant
values, but their uses are limited and they do not abstract very much; in practice they are only
superior in the sense that they have a concrete type and survive preprocessing. Enumerations are not
really intended to be used in this way.

In C++, both objects and functions may be declared as constexpr, allowing them to be used in

all constant-expression contexts. This makes function calls available for static initialization and for
static assertion-based testing.

In the case when a constexpr function is not visible, it may also provide useful information to an

optimizer by communicating that its return is not affected by the rest of the program state, which
allows multiple calls with identical arguments to be folded into single calls even without a visible
definition. (In practice this is less interesting as the definition will be visible most of the time.)

The subset of headers which are able to be common between C and C++ is also increased by adding
this feature and strictly subsetting it from the C++ feature. Large objects can be initialized and their
values and generators asserted against at compile time by both languages rather than forcing a user
to switch to C++ solely in order to get compile-time assertions.

Proposal
We propose adding the new keyword constexpr to the language and making it available:

• as a storage-class specifier for objects
• as a function specifier.

We also propose relaxing the constant-expression rules to allow access to aggregate members when
the object being accessed is declared as a constexpr object and (in the case of arrays) the

element index is an integer constant expression.

A scalar object declared with the constexpr storage class specifier is a constant. It must be fully

and explicitly initialized according to the static initialization rules. It still has linkage appropriate to
its declaration and it exist at runtime to have its address taken; it simply cannot be modified at
runtime in any way, i.e. the compiler can use its knowledge of the object's fixed value in any other
constant expression.

There are no restrictions on the type of an object that can be declared with constexpr storage

duration (because all C object types are completely trivial, in C++ terms). It does not make sense to
use any of the currently provided Standard qualifiers on a constexpr object but it is not

necessary to impose this as a constraint either (since it cannot be modified: const is implicit,

_Atomic is unnecessary, and volatile does not hurt because the object still exists to reload at

runtime, but won't do anything either). Other qualifiers may be introduced at a later time that might
hold more meaning for these objects.

A function declared with the constexpr function specifier is subject to stricter restrictions, taken

from the quite restrictive set of (relevant) rules used by C++11. The function body may only
contain:

• null statements (plain semicolons)
• static_assert declarations

• typedef declarations

...in addition to exactly one return statement which evaluates a constant-expression according to
these modified rules. The function must return a value (or it is useless).

A constexpr function is implicitly also an inline function, allowing it to be defined in a

header.

A constexpr function, called with arguments that are all themselves constant expressions, is a

constant expression. A constexpr function may also be called with non-constant arguments and

in that case behaves like any other function call. The address of a constexpr function may be

taken and used as any other function pointer; this does not preserve the constexpr specifier.

We currently propose to tighten the C++11 restrictions and prevent a constexpr function from

calling itself recursively, for implementation-focused reasons.

We do not propose changing the meaning of the const keyword in any way (this differs between C

and C++) - an object declared at file scope with const and without static continues to have

external linkage; an object declared with static storage duration and const but not constexpr is

not considered any kind of constant-expression, barring any implementations that are already taking
advantage of the permission given in 6.6 paragraph 10 to add more kinds of supported constant
expressions.

The difference between the behaviour of const in C and in C++ is unfortunate but is now

cemented in existing practice and well-understood. We would oppose changing that now.

We do not propose changing the meaning of the implied inline specifier on a constexpr

function to match C++'s inline. A C constexpr function that wants to provide an externally

linkable definition should use extern inline the same as current C inline functions do.

No modifications are currently proposed for Section 7 as the Standard Library was not developed
with the constexpr concept in mind. The specifier can be added on an individual basis to

functions once the feature is available language-wide.

Alternatives
C currently has only one class of in-language entity that can be defined with a value and then used
in a constant context, which is an enumeration. This is limited to providing a C-level name for a
single integer value, but is extremely limited and is a second-class feature closer to macro constants
than to C objects. These cannot be addressed and also cannot be used to help much in the
abstraction of function-like expressions.

GCC provides two non-standard attributes, const and pure, that are similar to this proposal.

These attributes mostly communicate intent to calling code rather than impose restrictions on the
function body itself. They are only applied to functions and do not substantially change the way C
features can be used in expressions. const is closer to constexpr as it prevents the function

from reading mutable state (pure merely says the function will not modify external state).

n2539 "Unsequenced functions" by Alepin and Gustedt brought a number of proposed
[[attributes]] that could annotate functions as having one of five levels of "unsequence",

from full referential transparency (const) through to simply not leaking resources (noloeak).

The stricter levels were a direct attempt to standardize the GNU attributes.

Unfortunately an attribute-based solution does not provide the user-facing functionality of being
able to simply use more complicated expressions within initializers and static assertions, because a

standard C attribute must leave the program correct when it is removed. If the constexpr nature

of a function depends on an attribute, ignoring the attribute would change whether a program is
valid at all. Therefore these attributes are mostly in aid of a slightly different goal of communicating
more intent to the compiler about which external calls can be reordered or optimized away; they do
not change the code a user can directly write.

Some enhancements in the above proposal are also worth separate discussion:

• the C++11 rules do not allow local variables to be declared within a constexpr function.

This is an overly-strict restriction if such definitions were always const themselves (but

not constexpr, so a local automatic could not contribute to the initialization of a local

static). Allowing local variables would greatly improve the clarity of complicated
expressions that might currently involve a lot of repetition. Under the C++11 rules,
temporary values can only be established by recursively calling another constexpr

function and passing them as arguments.

• under the currently-proposed rules a pointer to a constexpr function cannot be passed as

an argument to another constexpr function and used at compile-time. This may be useful

but is not within the proposed rules.

• allowing recursion means that evaluating a poorly-written function may fail at compile time
due to an infinite loop or compiler resource exhaustion. If we disallow recursion, all
constexpr calls would become fully inlinable. This is a strengthening of the C++11

ruleset.

Impact
The first question is of implementation burden. Barring recursive calls (or the possible extension to
allow calls by pointer), a constexpr function call would be fully inlinable down to a fixed size

expression tree which could then be evaluated the same way that an implementation currently
evaluates a constant-expression with no function calls. Simple replacement of parameters by the
argument values (as currently happens with macros used to abstract constant expressions) would be
semantically correct. We consider this to be a modest implementation requirement.

Allowing recursion would introduce more complicated interpreter-like behaviour on the part of the
compiler's constant evaluator, requiring a stack or an interleaved evaluator/term-rewriter. We
believe this is an unreasonable burden on small implementations and therefore would vote to restrict
the use of recursion beyond what is allowed by C++11.

Therefore, the rationale for prohibiting recursive calls is that without them, the expression tree for
any constant expression can simply be fully inlined and expanded before evaluation begins, leaving
a tree that can then be evaluated by current C constant evaluators with comparatively small changes.
Allowing recursion would make this impossible and require at least some decision-making about
control flow after parts of the tree had already started to be evaluated, bringing the evaluator closer
to becoming a full-fledged interpreter. We consider this too demanding a request to impose on
smaller compiler teams.

As above, the existing incompatibility of const between C and C++ is preserved because the

proposal does not intend to break or change any existing C code. Code that intends to express

identical constant semantics for values in both C and C++ should start using constexpr objects

instead.

As above, the existing differences between inline in C and C++ should be preserved for

consistency across all inline functions defined in a C program.

This change improves C's header compatibility with C++ by allowing the same headers to make use
of better compile-time initialization features. This increases the subset of C++ headers which can be
used from C and does not impose any new runtime cost on any C program.

An almost-unrelated but extremely useful impact emerges from the change to make aggregate
element access a constant expression: this would make it possible to statically assert that a string is
a string literal (or semantically equivalent to one, at any rate), by checking the final char equals

'\0' in a constant-expression context. This is useful in a number of other situations such as

printf successors.

Proposed wording
Changes are proposed against the wording in C2x draft n2596. Bolded text is new text.

Modify 6.6 "Constant expressions":

Paragraph 3, relax the constraint against function calls:

Constant expressions shall not contain assignment, increment, decrement, or comma
operators, except when they are contained within a subexpression that is not evaluated.
A function-call operator appearing in a constant expression shall only be a direct
call to the identifier of a function declared with the constexpr function specifier.

Add a new paragraph after paragraph 3 explaining that aggregate elements can be constants:

An expression accessing an element of a structure or union type is a constant if the
structure or union object was declared with the constexpr storage-class
specifier. An expression accessing an element of an array using the subscript
operator is a constant if the array was declared with the constexpr storage-class
specifier and the subscript index is an integer constant expression.

Paragraph 6, include function calls returning integer values:

An integer constant expression 127) shall have integer type and shall only have
operands that are integer constants, enumeration constants, character constants,
sizeof expressions whose results are integer constants, _Alignof expressions, calls
to constexpr functions that return a value with integer type, and floating
constants that are the immediate operands of casts. Cast operators in an integer constant
expression shall only convert arithmetic types to integer types, except as part of an
operand to the sizeof or _Alignof operator.

Paragraph 7, add a line:

an integer constant expression , or

• a structure or union object defined with the constexpr storage-class
specifier, or returned from a call to a constexpr function; or a member of
such a structure.

Paragraph 8, include function calls:

An arithmetic constant expression shall have arithmetic type and shall only have
operands that are integer constants, floating constants, enumeration constants, character
constants, sizeof expressions whose results are integer constants, _Alignof
expressions**, and calls to constexpr functions that return a value with arithmetic
type.**

Paragraphs 6 and 8 do not need additional text to mention aggregate elements.

Paragraph 9, add a new sentence:

but the value of an object shall not be accessed by use of these operators. An address
constant may be returned from a constexpr function and remain an address
constant.

Modify 6.7.1 "Storage-class specifiers":

Paragraph 1, add the constexpr specifier:

storage-class-specifier:
typedef
extern
static
_Thread_local
auto
register
constexpr

Add to paragraph 2:

At most, one storage-class specifier may be given in the declaration specifiers in a
declaration, except that _Thread_local or constexpr may appear with static
or extern.

Add a new paragraph after paragraph 5:

The constexpr specifier is treated as a function specifier when applied to a
function declaration.

Add a new paragraph after paragraph 8:

An object declared with the constexpr storage-class specifier has its value
permanently fixed at compile-time. Its value can therefore be used as a constant
expression (6.6). const-qualification of the object's type is implied. An object with
automatic storage duration declared with the constexpr storage-class specifier
still has a unique address.

Add a forward reference:

type definitions (6.7.8), function specifiers (6.7.4).

Modify 6.7.4 "Function specifiers":

Paragraph 1, add the constexpr specifier:

function-specifier:
inline
_Noreturn
constexpr

Add three new paragraphs after paragraph 3:

A function declared with the constexpr function specifier shall return a value.

A function declared with the constexpr function specifier shall contain only:

• null statements
• static assertions
• typedef declarations
• a single return statement which evaluates a constant-expression (treating

the parameters of the function as constant expressions for the purposes of
the return).

A function declared with the constexpr function specifier shall not call itself,
either directly or indirectly.

Add two new paragraphs after paragraph 7:

A function declared with a constexpr function specifier is a constexpr function.
A call to a constexpr function identifier with arguments that are all constant
expressions is itself a constant expression, and may be used in contexts such as
static assertions or initialization of obects with static storage duration after it has
been defined.

A constexpr function does not modify or observe any state outside of its own
arguments and return value.

A constexpr function is implicitly also an inline function.

Add a NOTE:

NOTE: a constexpr function may also be called with non-constant values or have
its address taken, in which case it behaves like any other function.

References
• C23 n2596
• C++11 n3337
• n2539 Unsequenced functions
• GNU attribute const

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2596.pdf
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2539.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf

	Abstract
	The constexpr specifier
	Summary of Changes
	N2851

	Introduction
	Rationale
	Proposal
	Alternatives
	Impact
	Proposed wording
	References

