
_Thread_local for better C++ interoperability with C

Document number: ISO/IEC JTC 1/SC 22/WG 14 N 2850
ISO/IEC JTC 1/SC 22/WG 22 P2478R0

Date: 2021-10-14
Audience subgroups: WG 14, WG 21 SG 22, EWGI
Revises: None
Reply-to: Hubert S.K. Tong <hubert.reinterpretcast@gmail.com>

Rajan Bhakta <rbhakta@us.ibm.com>

Motivation

C and C++ both provide facilities for “thread-local” variables. In C17, _Thread_local is a
keyword, used (as a storage-class specifier) to declare variables with thread storage
duration. The corresponding keyword in C++ is thread_local. However, superficial
similarities, including the availability of a thread_local macro in C17’s <thread.h>
somewhat mask a more fundamental difference between the two languages: that C++
supports dynamic initialization and also types requiring destruction. This difference has
practical effects, since a common implementation strategy requires additional complexity
in accessing C++ thread_local variables in various contexts compared to accessing C
_Thread_local variables. This paper identifies various possible directions for
acknowledging this difference for use in source code that is meant to be consumed by
both C and C++.

mailto:hubert.reinterpretcast@gmail.com
mailto:rbhakta@us.ibm.com


Summary of Changes

● Original proposal

Background and Introduction

In C++, variables with thread storage duration may have dynamic initialization or
non-trivial destruction. Such initialization may occur for non-block variables at thread
startup or be deferred up to the first non-initialization use. An implementation strategy
used by various compilers, including GCC and Clang, is to perform deferred initialization
for non-block variables with thread storage duration by inserting a function call where the
variable is used (depending on context). The function call causes any necessary
initialization to occur. The function call itself and the function definition introduces cost
in the form of runtime and code size overhead: a cost that can be avoided if the variable is
known to have neither dynamic initialization nor non-trivial destruction. C++20 adds the
constinit keyword as a method to inform the compiler that a variable should not have
dynamic initialization. There is no similar mechanism in C++20 to indicate that an
incomplete class type has non-trivial destruction.

Beyond a “mere” overhead cost, it is also worth noting that, in some environments,
variables defined _Thread_local in C do not provide all of the auxiliary symbols
necessary for its usage as a C++ thread_local variable; therefore, references to the
C-defined variable from C++ potentially result in link errors.

It is also the case that, in practice, accessing non-block variables of static storage duration
defined in C++ with dynamic initialization or non-trivial destruction from C code is not
really more dangerous than accessing the same from C++ code: major implementations
perform the initialization at program startup. The same cannot be said for trying to access
a similar variable with thread (instead of static) storage duration: the access from C has a
good chance of observing the variable prior to initialization.



Proposal for C2X

It is observed that WG 14 document N2654, “Revise spelling of keywords v5”, proposes
to replace _Thread_local with thread_local as the preferred form in the C standard. Given
the information presented in this paper, the C committee may want to hold back on taking
a direction which advocates increased usage of thread_local as opposed to _Thread_local.
This paper proposes to maintain the status quo of C17 where thread_local is a macro,
keeping _Thread_local, with the known differences from C++, the preferred form.

Future Directions

For C++, it is noted that unnecessary cost occurs in practice even with
constinit thread_local where incomplete class types are involved. There may be a desire
for a stronger constinit or to leverage P1247’s no_destroy attribute (or a non-attribute
version of the same) to solve this issue in a more general manner; however,
_Thread_local already exists in C, is implemented as an extension in C++ by Clang, and
can be used to convey the intended code generation semantics. As an additional data
point: at the time of this writing, neither of Clang’s [[clang::no_destroy]] nor
-fno-c++-static-destructors work for this purpose. GCC and Clang both offer __thread in
both C and C++ mode (with the intended code generation semantics). It is noted that
implementations currently do not diagnose cases where non-defining declarations of
variables with complete class types having manifest non-trivial initialization are declared
with __thread; however, diagnostics are emitted when definitions of such variables are
found to have dynamic initialization or if its type (i.e., ignoring no_destroy) has
non-trivial destruction.

For C, it may be worth exploring the addition of constinit as a keyword with enforcement
of the constraints associated with its use in C++. Users can then declare their variables
constinit consistently between C and C++. It is also possible to consider having constinit
be a macro in C that expands to no tokens; however, that C++ keyword is only
tangentially related to thread storage duration–making the choice of which header to
place the macro in more difficult. If C++ eventually adopts _Thread_local, then
deprecating the thread_local macro may also be appropriate.



Acknowledgements

The authors would like to thank Aaron Ballman, the chair of the Study Group for C and
C++ compatibility, for giving encouragement for the preparation of this paper and
providing assistance with scheduling its discussion.

Bibliography

Gustedt. ISO/IEC JTC 1/SC 22/WG 14 N 2654, “Revise spelling of keywords v5”.
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2654.pdf

Lopes, Bastien, and Pilkington. ISO/IEC JTC 1/SC 22/WG 22 P1247R0, “Disabling
static destructors: introducing no_destroy and always_destroy attributes”.

https://wg21.link/p1247r0

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2654.pdf
https://wg21.link/p1247r0

