
Proposal for C23

WG14 N 2810

Title: calloc overflow handling

Author, affiliation: Robert C. Seacord, NCC Group

Date: 2021-10-4

Proposal category: Defect

Target audience: Implementers

Abstract: Explicitly define behavior on overflow in calloc

Prior art: C

calloc overflow handling
Reply-to: Robert C. Seacord (rcseacord@gmail.com)

Document No: N 2810

Reference Document: N 2800

Date: 2021-10-4

The reference document N 2800 was discussed at the August/September 2021 meeting [N2803]. A

straw poll was conducted if the committee would support something along the lines of the second

wording in N2800? The result was 18-0-3; a clear sentiment to go in that direction. This paper

pursues this direction, addressing the identified problems.

Change Log

2021-8-30:

 Initial version (N 2800)

2021-9-11:

 Eliminated first wording alternative

 Insert “mathematical product”

Introduction and Rationale

The current wording in the working draft (N2596 7.22.3.2.2) describes calloc as follows: "The

calloc function allocates space for an array of nmemb objects, each of whose size is size. The

space is initialized to all bits zero.” In particular, regardless of whether or not the C expression

nmemb * size overflows, calloc is not permitted to return a non-null pointer to fewer bytes than

the mathematical product of nmemb and size (i.e., assuming infinitely ranged integers). According

to Subclause 7.22.3.2 p2 “The calloc function allocates space for an array of nmemb objects, each

of whose size is size” and according to Subclause 7.22.3 p1 “If the space cannot be allocated, a null

pointer is returned.” Implementations where overflow returned non-null values are non-conforming

in the current draft standard.

Security

RUS-CERT [RUS-CERT 2002, Weimer 2002] documented the defect in calloc implementations and

similar routines:

Integer overflow can occur during the computation of the memory region size by

calloc and similar functions. As a result, the function returns a buffer which is too

small, possibly resulting in a subsequent buffer overflow.

While most implementations were repaired, the standard was not updated to clarify the existing

requirement.

The problem subsequently reoccurred [MSRC 2021]. The same vulnerability exists in standard

memory allocation functions spanning widely used real-time operating systems (RTOS), embedded

software development kits (SDKs), and C standard library (libc) implementations. These findings have

been shared with vendors through responsible disclosure led by the Microsoft Security Response

Center (MSRC) and the Department of Homeland Security (DHS), enabling these vendors to

investigate and patch the vulnerabilities.

For a full list of affected products and CVEs, please visit the DHS website: ICSA-21-119-04 Multiple

RTOS (https://us-cert.cisa.gov/ics/advisories/icsa-21-119-04).

The primary purpose of this proposal is to clarify the existing behavior of calloc in the event that

nmemb * size overflows, to help prevent future implementation defects resulting in security

vulnerabilities.

Huge Objects

This paper makes it explicit that the calloc function cannot be used to allocate huge objects

(objects for which the size cannot be represented as a size_t). No such implementations have

been identified.

Four families of implementations that are being actively developed have been identified and are

conforming that have pointers wider than size_t:

- AS/400 and follow-ups

- some versions of Elbrus

- SDC for some targets

- gcc for the M32C target

For all of them the reason seems to be that they are storing additional information in the pointers,

such as segments or even type information, not that the processor would be able to address objects

that are larger than SIZE_MAX.

The first two have 128 bit pointers and don't seem to have uintptr_t defined. Maybe this is an

indirect consequence of our problematic definition of intmax_t which might be hindering those

platforms to provide 128 bit integer types.

The Small Device C Compiler (SDCC) supports some targets where uintptr_t is wider than

size_t. For example, the MCS-51 (a microcontrollers architecture) there are 3 disjoint intrinsic

named address spaces: __idata, __xdata and __code (there are more intrinsic named address

spaces, but each is a subset of one of these three). The first has 8-bit addresses, the latter each have

16-bit addresses. The 16-bit size_t is sufficient for the size of any object. The larger uintptr_t

uses the upper bits to decide which of the three spaces the pointer points into. Both void * and

uintptr_t are wider than size_t. So although uintptr_t is wider than size_t on this

implementation, its width is unrelated to the size of objects that can be allocated and consequently

does not prevent the definition of calloc to wraparound.

__builtin_object_size as implemented by gcc and llvm assumes SIZE_MAX as a failure,

which implies that actual allocations in practice are always < SIZE_MAX. If such an implementation

did exist, the allocation and management of such objects is outside the scope of the C Standard

library functions. For example, the sizeof operator returns a result whose type is size_t (7.19,

p2). As such, it would not be possible to use the sizeof operator to determine the size of such a

huge object.

There are other platforms with unconventional sizes, but they are not actively being developed.

Proposed Wording

The wording proposed is a diff from WG14 N2596. Green text is new text, while red text is deleted

text.

https://us-cert.cisa.gov/ics/advisories/icsa-21-119-04

The calloc function returns either a null pointer or a pointer to the allocated space or a null

pointer if the space cannot be allocated or if the mathematical product of nmemb * size is not

representable as a value of type size_t.

4.0 Acknowledgements

I would like to recognize the following people for their help with this work: Jens Gustedt, David

Goldblatt, Mark Santaniello, Florian Weimer, Erik Steringer, Philipp Klaus Krause, and Aaron Ballman.

5.0 References

[RUS-CERT 2002] RUS-CERT Advisory. Flaw in calloc and similar routines 2002-08:02. URL:

https://web.archive.org/web/20081225201357/http://cert.uni-stuttgart.de/advisories/calloc.php

[Weimer 2002] Florian Weimer. RUS-CERT Advisory 2002-08:02: Flaw in calloc and similar routines.

Mon, 05 Aug 2002. URL: https://www.opennet.ru/base/cert/1028651886_905.txt.html

[MSRC 2021] MSRC Team. “BadAlloc” – Memory allocation vulnerabilities could affect wide range of

IoT and OT devices in industrial, medical, and enterprise networks. April 29, 2021. URL: https://msrc-

blog.microsoft.com/2021/04/29/badalloc-memory-allocation-vulnerabilities-could-affect-wide-

range-of-iot-and-ot-devices-in-industrial-medical-and-enterprise-networks/

[N2803] Draft Minutes for 27 and 30 – 31 August, 1 – 3 September, 2021. http://www.open-

std.org/jtc1/sc22/wg14/www/docs/n2803.pdf

https://web.archive.org/web/20081225201357/http:/cert.uni-stuttgart.de/advisories/calloc.php
https://www.opennet.ru/base/cert/1028651886_905.txt.html
https://msrc-blog.microsoft.com/2021/04/29/badalloc-memory-allocation-vulnerabilities-could-affect-wide-range-of-iot-and-ot-devices-in-industrial-medical-and-enterprise-networks/
https://msrc-blog.microsoft.com/2021/04/29/badalloc-memory-allocation-vulnerabilities-could-affect-wide-range-of-iot-and-ot-devices-in-industrial-medical-and-enterprise-networks/
https://msrc-blog.microsoft.com/2021/04/29/badalloc-memory-allocation-vulnerabilities-could-affect-wide-range-of-iot-and-ot-devices-in-industrial-medical-and-enterprise-networks/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2803.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2803.pdf

