
Proposal for C2x

WG14 N2799

Title: __has_include for C

Author, affiliation: Aaron Ballman, Intel

 Javier Múgica

Date: 2021-08-30

Proposal category: New features

Target audience: C library authors, application programmers

Abstract: Highly portable code that needs to adapt to different translation environments

may need to query whether specific headers exist or not.

__has_include for C
Reply-to: Aaron Ballman (aaron@aaronballman.com), Javier Múgica (javier@aerotri.es)

Document No: N2799

Date: 2021-08-30

Summary of Changes
N2799

• Added straw poll results

• Added changes to 6.4p4

• Renamed “has include expression” to “has_include expression” and “has attribute expression”

to “has_c_attribute expression” in prose

• Rewrote the example

N2673

• Initial proposal

Introduction and Rationale
This paper describes the __has_include feature, which allows the programmer to determine at

preprocessing time whether the specified header file exists. This feature was standardized in C++17 and is

a commonly implemented extension in C compilers (minimally, it is supported in Clang, GCC, MSVC,

EDG, and TCC (Tiny C Compiler)). The feature is intended for highly portable code such as libraries to

adapt to different translation environments.

Adopting this proposal also serves to keep the preprocessor synchronized between C and C++.

This proposal was originally seen as WG14 N2101 at the Markham 2017 meeting where it was added to

SD-3 for inclusion in C2x.

This proposal was seen as WG14 N2673 at the Aug 2021 where a straw poll was taken: Does WG14 want

to see something along the lines of N2673 in C23: 19/0/0 (consensus).

Proposed Wording
The wording proposed is a diff from WG14 N2596. Green text is new text, while red text is deleted text.

Modify 6.4p4:

If the input stream has been parsed into preprocessing tokens up to a given character, the next

preprocessing token is the longest sequence of characters that could constitute a preprocessing

token. There is one exception to this rule: header name preprocessing tokens are recognized only

within #include preprocessing directives, in __has_include expressions, and in

implementation-defined locations within #pragma directives. In such contexts, a sequence of

characters that could be either a header name or a string literal is recognized as the former.

Modify 6.10.1 to add a new Syntax section before Constraints:

Syntax

defined-macro-expression:

mailto:aaron@aaronballman.com
mailto:javier@aerotri.es

 defined identifier

 defined (identifier)

h-preprocessing-token:

 any preprocessing-token other than >

h-pp-tokens:

 h-preprocessing-token

 h-pp-tokens h-preprocessing-token

header-name-tokens:

 string-literal

 < h-pp-tokens >

has-include-expression:

 __has_include (header-name)

 __has_include (header-name-tokens)

has-c-attribute-expression:

 __has_c_attribute (pp-tokens)

Modify 6.10.1p1:

The expression that controls conditional inclusion shall be an integer constant expression except

that: identifiers (including those lexically identical to keywords) are interpreted as described

below180). and it may contain zero or more defined macro expressions and/or has_include

expressions and/or has_c_attribute expressions as unary operator expressions.

Modify 6.10.1p2:

It may contain unary operator expressions of the form

 defined identifier

or

 defined (identifier)

which evaluate A defined macro expression evaluates to 1 if the identifier is currently defined as

a macro name (that is, if it is predefined or if it has been the subject of a #define preprocessing

directive without an intervening #undef directive with the same subject identifier), 0 if it is not.

Insert new paragraphs after 6.10.1p2:

3 The second form of the has_include expression is considered only if the first form does not

match, in which case the preprocessing tokens are processed just as in normal text.

4 The header or source file identified by the parenthesized preprocessing token sequence in each

contained has_include expression is searched for as if that preprocessing token were the pp-

tokens in a #include directive, except that no further macro expansion is performed. Such a

directive shall satisfy the syntactic requirements of a #include directive. The has_include

expression evaluates to 1 if the search for the source file succeeds, and to 0 if the search fails.

Modify the existing 6.10.1p3:

The conditional inclusion expression may contain unary operator expressions of the form

 __has_c_attribute (pp-tokens)

which are Each has_c_attribute expression is replaced by a nonzero pp-number matching the

form of an integer constant if the implementation supports an attribute with the name specified by

interpreting the pp-tokens as an attribute token, and by 0 otherwise. The pp-tokens shall match

the form of an attribute token.

Modify the existing 6.10.1p5:

The #ifdef and #ifndef directives, and the defined conditional inclusion operator, shall treat

__has_include and __has_c_attribute as if it was they were the name of a defined macros.

The identifiers __has_include and __has_c_attribute shall not appear in any context not

mentioned in this subclause.

Modify the existing 6.10.1p7:

… After all replacements due to macro expansion and evaluations of the defined and

__has_c_attribute unary operators defined macro expressions, has_include expressions, and

has_c_attribute expressions have been performed, all remaining identifiers (including those

lexically identical to keywords) are replaced with the pp-number 0, and then each preprocessing

token is converted into a token. …

Add an example to 6.10.1p10 (before the __has_c_attribute example):

EXAMPLE This demonstrates a way to include a header file only if it is available.

#if __has_include(<optional.h>)

 #include <optional.h>

 #define have_optional 1

#elif __has_include(<experimental/optional.h>)

 #include <experimental/optional.h>

 #define have_optional 1

 #define have_experimental_optional 1

#endif

#ifndef have_optional

 #define have_optional 0

#endif

Acknowledgements
I would like to recognize the following people for their help with this work: Dave Banham, Melanie

Blower, David Keaton, Joseph Myers, and Robert Seacord.

References
[N2101]

__has_include for C. Nelson. http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2101.htm

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2101.htm

