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Agenda 

Discussing the following papers: 

WG21 P2290R0 (https://wg21.link/p2290R0) Delimited escapes sequences 

WG21 P2316R0 (https://wg21.link/p2316R0) Consistent character literal encoding 

WG21 P2295R4 (https://wg21.link/p2295R4) Support for UTF-8 as a portable source file encoding 

P2290R0 Delimited escapes sequences 

Corentin Jabot presenting 

Consistent with P2071 to get name using \n 

Not used by any C++ compiler that we are aware of. 

Don't know about C compilers. 

This paper was tentatively approved by evolution in C++ with the caveat that. 

The C committee is not affected by the feature so that C++ can adopt without concern. 

Would be a concern if C wanted it with different features or semantics. 

https://wg21.link/p2290R0
https://wg21.link/p2316R0
https://wg21.link/p2295R4


Which would make compatibility more difficult. 

SG-16 proposal 

Questions: 

Jens:  Basically, a good idea.  Not sure that C will have the bandwidth for C23.  Might be that the two 

other papers are higher priority. 

Aaron:  For background, working on background for a WG14 paper for this.  Even if WG14 doesn't want 

to adopt the feature but get some sort of status quo that we wouldn't want to get a different syntax to make 

sure the two languages don't go in orthogonal directions. 

Aaron:  No incompatibilities except with a compiler Philip is expert in.  He will check and respond. 

Phillip:  SDCC treats \o as o (AFAIK for any \X that is not defined by the standard, SDCC treats \X as 

X). I do not know if any users rely on that, but I don't think so (will still ask on the sdcc-user list). 

Clive:  Is the e coincidental with the closing brace? 

Corentin:  It's just part of the example. Missing closing brace would be a constraint violation 

Jens:  Only x and u would be constraint violations 

Aaron:  Was implemented in Clang yesterday so not much user experience 

Aaron:  Any polls?  Maybe just get the feel from C folks 

Jens:  Low priority 

Philip:  Allow a classical hex prefix inside the curly braces? 

Corentin:  Not sure what the motivation should be 

Philip:  Add a sentence on why no hex in the braces 

Aaron:  The primary motivation is to make sure the lexers do the same thing to keep lexing and 

preprocessing in step between C and C++ compilers.  Motivation for users  

Tom:  Having it different in C and C++ would be much of a deal because you still need to show older 

versions. 

Aaron:   Because this is constraint violation an implementation is free to provide it as an extension for 

backwards compatibility  

Ville:  Polling would be useful to get some sort of record. 

POLL: Are the WG14 members of SG22 in favor of Wg14 adopting the same syntax and semantics 

as WG21 P2290R1 for some future version of the C Standard? 

Committee For Against Abstain Notes 

WG14 5 0 2 Consensus 

 

P2316R0 Consistent character literal encoding 

Corentin Jabot presenting 

Status Quo is that constant expressions in the #if directive are different than expressions. 

Make the literal encoding in the preprocessor and in phase 5+ the same 

C should adopt this but if C say the encoding maybe different and C++ says they are not it 

doesn't create an incompatibility 

External preprocessing not a real concern could add a flag to specify the execution encoding to 

preprocessors 

Evolution approved unanimously  

Implementation  

Corentin:  Nothing here. 



Jens:  this kind of thing is kind of rare.  Only looked through open-source projects. Ask some 

questions.   

Corentin:  This C++ paper will have no effect on any existing compilers. 

Tom:  Standards have external preprocessors and don't get to control what the C Compiler 

sees.  The motivation is if the preprocessor uses one encoding and the compiler uses a different 

encoding. 

Aaron:  Does anyone know of C compilers that have separate preprocessors? 

Ville:  There is a compiler that has the option of running a separate preprocessor.  There is no 

code breakage concern. It is just sanctioning what compilers do today. 

Philip. SDCC uses a separate preprocessor.  Could try to find out if people do weird things for 

character sets. 

Aaron:  It would be interesting to see if this problem does cause a compatibility and taking 

source code that was working by chance and possibly break it.  

Philip:  Could break code that relies on implementation-defined behavior. 

Ville:  I suppose it's worth pointing out.  For most compilers, nothing needs to be done to 

implement this. 

Will:  Boost has a separate preprocessor implementation. 

Corentin:  If someone wanted to write a C version of this paper it would be a good idea. 

Aaron:  Probably not time for C23 but maybe afterwards. 

 

POLL: Are the WG14 members of SG22 in favor of something along the lines of P2316R0 

in C (no time frame specified)? 

 
Committee For Against Abstain Notes 

WG14 6 0 1 Consensus 

 

P2295R4 Support for UTF-8 as a portable source file encoding 

Corentin Jabot presenting 

Corentin:  Do not specify a preferred source file, so it's impossible to specify a portable source file. 

This paper says UTF-8 source files should be supported by all C++ compilers. 

Jens:  Version being projected is different than the one we have seen. 

Corentin:  It's possible that we're looking at a new revision.  We're looking at F5.  Just arrived at this 

wording on Wednesday of this week. 

Philip:  What force an implementation to support an additional flag? 

Corentin:  If it only supports UTF-8 it doesn't need to add an additional flag. 

Aaron:  How much source code is this going to break. 

Corentin:  Implementation could consider UTF-8 encoding.  If you just provide a flag. Not intended to 

break any code.   

Aaron: Standard doesn't get to specify flags.   

Tom: An implementation shall provide a means by which the encoding scheme of source files can be 

specified.  Doesn't say what means, so a variety of means will work.  One question is determining the 

intent of the file either by a BOM or some other source of analysis.  We wanted to make support for a 

format distinct from how to specify it. 

Corentin:  We chose the warning because we said before that the means was independent of the content.  

Tom:  We'll talk about that later.  Basically, the invocation must have a means to say what the default 

encoding is.  An implementation can use a BOM to determine the encoding. 



Ville:  Similar to last paper in that UTF-8 encodings work.  There is no portable way to write C and C++ 

code so the purpose of this is to say that there is one such encoding. 

Aaron:  The basic source character set was the portable encoding.   

Tom:  The basic source character set doesn't associate code point values with these characters. 

Corentin:  Doesn't say what encoding is. 

Tom:  Corentin has mentioned that VC source files are compiled with a UTF-8 switch which is true. In 

this proposal, the UTF-8 must be well formed including comments, literals, every part of the C file.  It is 

common today to accept malformed C, many compilers don't necessarily diagnose this. 

Corentin:  The reason it's important  

Tom:  The encoding of the source code is invisible to the compiler. 

Aaron:  Once we understand we are a branch that we don't understand. 

Jens:  Weird characters need to be accepted in the preprocessor. 

Aaron: #embed do characters need to be checked? 

Corentin: It doesn't have to be verified because it is an array of bytes and not text. 

Jens:  It ends up as a long sequence of numbers. 

Corentin:  This is only modified phase one and after that it is business as usual. 

Jens:  In favor of something like this.  It's overdue that we don't have a portable source code. 

Corentin:  Clang used UTF-8 and has been successful. 

POLL: Are SG22 members in favor of something along the lines of P2295 in both C and C++? 

Committee SF F N A SA Notes 

WG14 2 4 0 0 0 Consensus 

WG21 7 1 0 0 0 Consensus, author position was SF 

 

Aaron:  Probably no chance of this hitting C23? 

Corentin:  Probably a good chance that this makes C++23. 

Corentin:  Can be solved with flags. 

Aaron:  If C++ gets this and C doesn't could result in C++ libraries that can't import include files.  There 

is a requirement to diagnosed malformed UTF-8. 

Tom:  Compilers must warn, it doesn't have to be an error, and yes there are implications to warnings. 

Aaron:  The introduction of new diagnostics might paint us into a corner.   

Tom:  The compiler running a conforming mode must produce a diagnostic. 

Mark Zern:  Force you to virally compile in this new mode.   

Robert:  Wouldn't pragmas be better since this is per include file and not. 

Tom: Do this using a pragma.  The IBM compiler has this.  The solution probably won't use a pragma but 

a magic comment. 

Python does magic comments, HTML does magic comments in the source file. 

Corentin: Tom's paper would be a separate paper that wouldn't compete with this. 

 

Wrapup 

Aaron:  Next meeting should be August 6th 

Aaron: I’ll schedule the next meeting and get minutes for this meeting out shortly, thanks everyone for 

coming. 

End at 2:58 pm EST 

Chat logs: 



13:32:38 From philipp : SDCC treats \o as o (AFAIK for any \X that is not defined by the standard, 

SDCC treats \X as X). I do not know if any users rely on that, but I don't think so (will still ask on the 

sdcc-user list). 

13:33:41 From Aaron Ballman : Thank you, Philipp! 

13:55:22 From Will Wray : FYIs 

Boost has a separate preprocessor implementation 

https://github.com/boostorg/wave 

https://www.boost.org/doc/libs/1_76_0/libs/wave/ 

https://github.com/boostorg/wave
https://www.boost.org/doc/libs/1_76_0/libs/wave/

