
N2787
Title: Wide Function Pointer Types for Pairing Code and Data
Author:  Martin Uecker and Jens Gustedt
Prior Art: Borland C++, D

Introduction:

Many existing C APIs require the use of void pointers that are passed as additional 
argument to callback functions and are therefor not type safe. Other languages 
often have native types which can be used to pass nested functions/lambda to 
callbacks. That there is no native C function type that pairs code and data makes 
interoperating with such languages difficult. Trying to use regular function pointers 
for callbacks with data requires run-time code generation (e.g. nested functions in 
GCC or XL C, and closures in libffi [1]) but this is complex, inefficient, and 
problematic from a security point of view. We therefor propose to add a wide 
function pointer type to C as an important missing basic building block for building 
type-safe APIs and for language interoperability.
                                                                                                                    

Prior Art                               

There exist many similar concepts in various languages. The version  is the __closure 
pointers in Borland C++ [2]

int (__closure *cb)(int x);

Another similar solution is also used in Apple’s blocks extension:
                           
int (^cb)(int x);

A similar construct is std::function<> template in C++, but this is  a template type 
with additional features related to ownership and small-object optimization that do 
not seem to be implementable in C. A related feature for interfacing with other 
languages is GCC’s __builtin_call_with_static_chain() function. It  allows calling 
functions implemented in other languages that make use of a static chain from C 
code.

Many APIs in the industry already foresee the passing of additional information to 
function and lambda calls from other programming languages (e.g Pascal, Ada or 
Go) through a reserved hardware register. For example, for the System V AMD64 
ABI this is the r10 register. From all 51 architectures for which support can be found
in the GCC source tree all seem to support passing a static chain pointer. 48 use a 
register to pass the static chain pointer and three may use memory or choose a 
register or memory depending on the specific circumstances. The intent of this 
paper is to provide a standardized interface to such functionality.



Proposal

We propose to add a wide function type similar to Borland C++ that pairs code and 
data (context). Pointers to such functions could then be used to call closures or 
callable objects from other languages. Such a pointer type could also be adopted 
by existing C extensions (blocks, nested functions) and be used in future C 
language extensions (e.g. lambdas) ensuring interoperability of APIs. A minimal 
proposal that would allow use of such pointers created in code from other 
languages could only add pointers to wide functions. To make this proposal useful 
also for programs written in C and to also capture some more functionality which 
now requires implementation-specfic assembler (as in libffi) or builtins (as in 
__builtin_call_with_static_chain), we also allow wide function definitions at file 
scope and add a simple API to manipulate the context of pointers to wide functions.

Alternatives

Of course, users can implement their own structure type that combine code and 
data. But this has several downsides: 1. It can not be used with the standard ABI 
that uses a static chain register on most platforms. 2. It does not inter-operate with 
other languages while a new built-in type could be compatible with some existing 
ABIs. 3. Such a structure type would need to be defined for each function type 
separately. 4. Different libraries using such types would not be interoperabl.  5. 
Such type would not have implicit conversions that make it simple to integrate with 
existing code.

One could ask why implementations could not integrate the context pointer into 
existing function pointer types as the C standard does not require pointers to 
functions to have the same size as pointers to objects, or why the C pointer type 
could not point to a function descriptor that does include the context. In principle, 
this is possible and some platforms do exactly this. Unfortunately, for most 
platforms this would be an ABI breaking change. It also has run-time overhead 
which would then affect all function pointers.

Implementation

How such pointers are implemented would be left entirely to the implementation.
However, a sample implementation of a wide function pointer would use an internal 
representation as a pair of a code pointer and a context pointer:

struct wide_ptr_t {
  void (*code)();
  void *context; 
};



We use here the type void(*)() as generic function pointer in the internal 
representation, but the type exposed in the C language for the pointed-to function 
has full type information about the return type and the arguments. The proposed 
library extension would provide functions to read and set the context pointer.

When the function is called the context pointer is passed in an ABI-specific way to 
the machine code pointed to by code. Typically, the context pointer is loaded into 
the static chain register which is already reserved by the ABI on most architectures 
as it is used by other languages such as Pascal or Ada (when using C this has to 
be done today using compiler extensions such as _builtin_call_with_static_chain). A
regular function pointer can then be widened to a wide pointer simply by adding a 
NULL context pointer because loading this into the static chain register before 
calling a regular pointer would do no harm.                                                                 

The feature is a powerful tool for interoperability as it can be adapted to call 
arbitrary callable entities in other languages from C regardless of the calling 
convention. The context pointer would point to the callable entity and the code 
pointer would point to some (compile-time) stub that knows how to call the entity 
with the right parameters.     
          
Proposed Semantics

It is suggested to implement the new approach by introducing a qualifier that 
applies to functions, i.e. introduce a new wide-qualified function type. The general 
rules for such wide functions are the  same as for regular functions. But introducing 
a new type for this allows us to introduce the extended functionality without 
changing the ABI of existing function pointer types. The use of a qualifier on 
functions is similar to how a qualifier on an object type would affect how an object is
accessed during lvalue conversion and assignment. Similarly, a qualifier on a 
function would affect how a function is accessed, i.e. how it is called. We also need 
to specify the behavior for conversions: a regular function pointer can implicitly be 
converted to a wide function pointer (because this is a qualifier this works with 
existing language rules) and calling such a converted pointer should be allowed. 
Back conversion only yields a valid pointer if the wide function pointer was 
previously obtained by converting a regular function pointer, otherwise the behavior 
is undefined because the context has been lost. Two wide function pointers 
compare equal if and only if both code and context pointers compare equal in line 
with the idea that the context is part of the identity of a wide function.

                   



Proposed Syntax

It is proposed to add a new keyword _Wide as a qualifier. Possible other names for 
the qualifier which could be considered are _Closure, _Callback, _Delegate.

Although this is currently useless, a qualifier can already be added to a function 
using a typedef:

typedef int foo_t(void);
const foo_const_t* ptr;
_Wide foo_wide_t *ptr                            

For convenience, we could extend the syntax for qualifiers to allow a qualifier to be 
added inside brackets (inspired by Borland C++ _Closure keyword):

int (_Wide *ptr)(void);
                                                                                             
For consistency, we suggest  to then also allow this for other qualifiers, e.g.
                                                                                                
int (const *x)[3];

Alternatively, we could allow adding qualifiers to a function on the right (as 
C++ already allows for member functions).
             
int (*ptr)(void) _Wide;

(The library part in the proposed wording assume the first syntax extension as 
proposed in Change 2a. If Change 2b is adopted instead, the examples need to be 
editorially changed accordingly).

References

[1] https://sourceware.org/libffi/
[2] http://docwiki.embarcadero.com/RADStudio/Sydney/en/Closure
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Proposed Wording

Change 1 (adding the _Wide qualifer)

6.2.5 Types

(editorial note: insert after 29)

30 A _Wide qualifier specifies a wide function type. XXX)

(editorial note: footnote) XXX)  Wide function types require implementation-specific 
calling conventions for setting up the context.                                            

6.3.2.3 Pointers

8 A pointer to a function of one type may be converted to a pointer to a function of 
another type and back again; if the type pointed to by the intermediate pointer 
has all qualifiers of the original pointer, the result back converted pointer shall
compare equal to the original pointer, otherwise the behavior is undefined.  If a 
converted pointer is used to call a function whose type is not compatible with
the referenced type, the behavior is undefined..

6.5.2.2 Function calls                                                                                                   

9 If the function is defined with a type that is not compatible with the type (of the 
expression) pointed to by the expression that denotes the called function, the 
behavior is undefined, except that an expression with a wide-qualified type can 
be used to call a function with the the corresponding unqualified type.

6.7.3 Type qualifiers

1 Syntax

type-qualifier:
const
restrict
volatile
_Atomic
_Wide

Constraints

(editorial note: insert after 4)

5 The type modified by the _Wide qualifier shall be a function type.



Semantics

6 The properties associated with qualified types are meaningful only for 
expressions that are lvalues or that designate functions. 143)

(editorial note: insert after old 10)

12 A wide function is identified by a function definition and a context of type pointer 
to void. An identifier of a wide function definition at file-scope which is used outside 
the scope of the definition refers to a wide function where the context equals a null 
pointer. If the identifier is used inside the scope of the definition itself, it refers to the
wide function which is currently called. YYY)

(editorial note: footnote) YYY) Thus, wide functions where the context pointer does not 
compare equal are different functions. A recursive call to a wide function calls the 
same wide function, i.e. the wide function with the same function definition and 
context.

17 Example 4 The following example illustrates how an old C API can be used 
underneath a new interface using a pointer to a wide function.
                                               
typedef void callback(void *data, int x);
extern void some_api_old(callback *x, void *data);

static void stub(void *data, int x)
{
  wide callback **cbp = data;
  (*cbp)(x);
}

void some_api_new(wide callback *cb)
{                
  some_api_old(stub, &cb);
}                        



Change 2a (extended qualifier syntax - generic)

6.7.6 Declarators

Syntax
1

direct-declarator:
identifier attribute-specifier-sequenceopt

( type-qualifier-listopt declarator )
array-declarator attribute-specifier-sequenceopt

function-declarator attribute-specifier-sequenceopt

6 If, in the declaration " T D1 ", D1 has the form
( D )
then ident has the type specified by the declaration " T D ".  If D includes qualifiers, 
then type specified for ident is the corresponding qualified type. Thus, a declarator 
in parentheses is identical to the unparenthesized declarator, but the binding of 
complicated declarators may be altered by parentheses.

Change 2b (extended qualifier syntax – functions)

function-declarator:
direct-declarator ( parameter-type-list opt )  type-qualifier-listopt                      

Change 3 a+b (lambdas)

This change is conditional on the acceptance of lambdas in C23.

6.3 Conversions
6.3.2.4 Lambda values

A lambda value explicitly or implicitly converts to a pointer to wide function that has 
a compatible return type and a parameter list with the same order of compatible 
types. The pointer that is the result of such a conversion shall not be used with the 
wide_set_context generic function, see XXX.2.YYY) If the operand of the 
conversion is a function literal, the pointer is valid for the rest of the execution; if it is
an lvalue of closure type, the pointer is valid until the end of the lifetime of the 
underlying closure object; 

(for change 3a:)
otherwise the pointer is valid until the end of the full expression in which the 
conversion occurs.

(for change 3b:)



otherwise the pointer is valid until the end of the enclosing block, if any, or for the 
whole execution if the evaluation is performed in file scope.        

YYY) Two pointers to wide function that are the result of different evaluations and 
conversion of the same closure expression may or may not compare equal., 
depending for example if the translator is able to prove that the values of captures 
are the same for any evaluation of the closure.               

Example

int foo(x, y) 
{
  int (wide* f)(int) = [y](int x) { return x + y; };
  int r = f(x + 3);
  return r;
} // lifetime of lambda ends

6.5.3.2 Address and indirection operators

3 … If the operand of an address operator is a lambda value, the lambda value is 
converted to a wide function pointer of the appropriate type, see 6.3.2.4.

Change 4 (library)

XXX Wide functions <stdwide.h>

1 The header <stdwide.h> declares two generic functions and the macro

  wide

that expands to _Wide.       

2 In the following descriptions of the generic functions declared in the <stdwide.h> 
header  T refers to an unqualified function type. 
                                               
3 It is unspecified whether any generic function declared in <stdwide.h> is a macro 
or an identifier declared with external linkage. If a macro definition is suppressed in 
order to access an actual function, or a program defines an external identifier with 
the name of a generic function, the behavior is undefined.



XXX.1 The wide_get_context generic function

Synopsis

#include <stdwide.h>
void* wide_get_context(wide T *ptr);

Description

The wide_get_context generic function returns the context of the wide function 
pointed to by ptr. If ptr is a null pointer, a null pointer is returned. If a pointer to an 
unqualified function is converted to a pointer to a wide function and then passed to 
wide_get_context, a null pointer is returned.

Returns

The wide_get_context generic function returns the context pointer or a null 
pointer.XXX)

(editorial note: footnote) XXX) If the wide_get_context generic function is called 
inside the scope of a wide function definition with its identifier as argument, a 
pointer to its current context is obtained (cf. 6.7.3).

Example

struct bar { int y; };
int (wide foo)(int x)
{
  struct bar *context = wide_get_context(foo);
  return x + context->y;
}

XXX.2 The wide_set_context generic function

Synopsis

#include <stdwide.h>
wide T* wide_set_context(wide T *ptr, void *context);



Description

The wide_set_context generic function returns a pointer to a wide function 

based on the wide function pointed to by ptr with the context changed to the value 
provided in the second argument.ZZZ) If a pointer to an unqualified function is 
converted to a pointer to a wide function and then passed to wide_set_context, 

the behavior is undefined. If ptr is a null pointer, a null pointer is returned.

ZZZ) The returned pointer is unique as long as the value passed to context is 
unique. If the wide_set_context generic function is called twice such that the 
arguments refer to the same wide function and the same object, the two return 
values compare equal.

Returns

The wide_set_context generic function returns a pointer to a wide function or a 
null pointer.
                
Example 1 The following example illustrates the use of a C function interface which
takes a pointer to void as context using a new C API that makes use of a wide 
function type.
                                               

typedef void callback(void *data, int x);
extern void some_api_new(wide callback cb);

struct stub_data {
  callback *cb;
  void *data;
};

static void (wide stub)(int x)
{
  struct stub_data* context = wide_get_context(stub);
  context->cb(context->data, x);
}

extern void some_api_old(callback *cb, void *data)
{                      
  struct stub_data context = { cb, data };
  some_api_new(wide_set_context(stub, &context)); 
}                 
   



                                                                                                                                     
Example 2

typedef unsigned long (wide counter_callback)(void);

static unsigned long (wide counter_eval)(void)
{
  unsigned long *count = wide_get_context(counter_eval);
  return ++(*count);
}

counter_callback* counter_create(void)
{
  unsigned long *count = calloc(1, sizeof *count);        
  if (!count)
    return NULL;
  return wide_set_context(counter_eval, count);
}

void counter_delete(counter_callback *c)
{
  free(wide_get_context(c));
}

int main()
{
  counter_callback *my_counter = counter_create();
  if (!my_counter)
    abort();
  printf(“%ld\n”, my_counter());
  printf(“%ld\n”, my_counter());
  counter_delete(my_counter);
  return 0;
}


