
JTC1/SC22/WG14 - N2779
Title: Consistency of Parameters Declared as Arrays
Author: Martin Uecker, University of Göttingen
Date: 2021-07-11
Prior Art: GCC

As discussed in N2074 and N2660, it would be helpful if function declarations that have parameters
declared as arrays are required to be consistent. Some compilers and tools already diagnose such
inconsistencies. A closer analysis of this question reveals that there are two orthogonal problems:

1. Parameters declared as arrays are not required to be compatible because they are adjusted to
pointers (6.7.3p6).

void foo(double x[3]); // decl 1
void foo(double x[4]); // decl 2

void foo(double *x); // decl 1 with adjusted parameter type
void foo(double *x); // decl 2 with adjusted parameter type

2. In a function declarator that is not part of a function definition, the size expression of array types
which are not integer constant expressions are replaced by * and the array is then declared as a
variably-length array of unspecified size.

size_t m;
void f(size_t n, double x[n], double y[m], double (*z)[n]); // decl 3
void f(size_t n, double x[*], double y[*], double (*z)[*]); // after replacement

Note that this affects all parameters with VM types and not just VLAs. This is more difficult to fix,
because the expression is only evaluated after the function is invoked, and the normal mechanism
that makes it UB if size expressions do not evaluate to the same value at runtime is ineffective..

Both problems are orthogonal, with the first problem affecting all parameters that are arrays and the
second problem affecting all parameters that have VM types. The following example is affected by
both problems at the same time:

void foo(size_t n, double x[n]);

In this paper, we address only the first problem (and also ignore static). We propose to make the
unadjusted type stay part of the function type and adjust only the types of the parameters
themselves, i.e. inside the function body and for assignment of the argument to the parameter when
performing the function call. We then propose to modify the rules for type compatibility and
composite types for function parameters in the following way:

1. An array type is compatible to a pointer type when it is compatible after adjustment.
2. The composite type when one type is a pointer type and the other an array is the array type.

The following declarations declare functions with compatible type, while the preceding declarations
1 and 2 declare mutually incompatible function types. As usual, the composite type is the type with
the most information:

int bar(double x[]);
int bar(double x[3]);
int bar(double *x);
int bar(double x[3]); // declaration with composite type

Proposed wording (relative to N2596)

6.5.2.2 Function calls

Constraints

 2 If the expression that denotes the called function has a type that includes a prototype, the number
of arguments shall agree with the number of parameters. Each argument shall have a type such that
its value may be assigned to an object with the unqualified version of the adjusted type of its
corresponding parameter.

6.2.7 Compatible type and composite type

3 A composite type can be constructed from two types that are compatible; it is a type that is
compatible with both of the two types and satisfies the following conditions:

--- If both types are function types with parameter type lists, the type of each parameter in the
composite parameter type list is the composite type of the corresponding parameters according to
the rules described in 6.7.6.3. If a parameter of array or function type is compatible after
adjustment to a pointer type, the composite type is the array or function type, respectively.

6.7.6.3 Function declarators

6 To determine the type of a parameter itself but not for determining the function type that
contains the declaration of the parameter in the parameter type list, a declaration of a
parameter as "array of type" shall beis adjusted to "qualified pointer to type", where the type
qualifiers (if any) are those specified within the [and] of the array type derivation.

7 To determine the type of the parameter itself but not for determining the function type that
includes the declaration of the parameter in the parameter type list, a declaration of a
parameter as "function returning type" shall beis adjusted to "pointer to function returning type", as
in 6.3.2.1

14 For two function types to be compatible, both shall specify compatible return types. Moreover,
the parameter type lists, if both are present, shall agree in the number of parameters and in use of
the ellipsis terminator; corresponding parameters shall have compatible types. If one type has a
parameter type list and the other type has none and is not part of a function definition, the parameter
list shall not have an ellipsis terminator. In the determination of type compatibility and of a
composite type, each parameter declared with function or array type is taken as having considered
to be compatible not only to a compatible function or array type, respectively, but also to the
corresponding adjusted type, and each parameter declared with qualified type is taken as having
the unqualified version of its declared type.

21 EXAMPLE 6 The following function prototype declarators are incompatible:

void g(int x[5]);
void g(int x[3]);

Acknowledgements: I want to thank Aaron Ballman and Robert Seacord for helpful comments.

