
Proposal for C23

WG14 n2743

Title: Volatile C++ Compatibility

Author, affiliation: Robert C. Seacord, NCC Group

Date: 2021-5-18

Proposal category: Feature

Target audience: Implementers

Abstract: Maintain C++ compatibility by deprecating certain volatile accesses

Prior art: C++

Volatile C++ Compatibility
Reply-to: Robert C. Seacord (rcseacord@gmail.com)

Document No: n2743

Reference Document: P1152R4 (http://wg21.link/P1152R4)

Date: 2021-5-18

P1152R4 deprecates some uses of volatile and was adopted by WG21 and incorporated into C++20.

This paper proposes maintaining compatibility with C++ by declaring equivalent features in the C

language to be obsolescent features. Each proposed change is severable.

Change Log

2021-5-18:

 Initial version

1. PROBLEM DESCRIPTION

1.1 Simple Assignment

Section 6.5.16 Assignment operators, paragraph 3 of the C Standards states:

An assignment expression has the value of the left operand after the assignment, 121) but is
not an lvalue.

121) The implementation is permitted to read the object to determine the value but is not
required to, even when the object has volatile-qualified type.

This means that the following C code contains implementation-defined behavior:
int a, c;

volatile int b;

a = (b = c);

To eliminate this implementation-defined behavior, the user could write:

b = c

a = b

indicating that b must be read, or

b = c

a = c

indicating that b must not be read.

1.2. volatile parameters and returns

Marking parameters as volatile makes sense to denote external modification through signals or

setjmp / longjmp. In that sense it’s similar to const-qualified parameters: it has clear semantics

within the function’s implementation. However, it leaks function implementation information to the

caller. It also has no semantics when it comes to calling convention because it is explicitly ignored

(and must therefore have the same semantics as a non-volatile declaration). It’s much simpler to

have the desirable behavior by copying a non-volatile parameter to an automatic stack variable

http://wg21.link/P1152R4

marked volatile. A compiler could, if stack passing is required by the ABI, make no copy at all in

this case.

volatile return values are pure nonsense. Is register return disallowed? What does it mean for

return value optimization? A caller is better off declaring a volatile automatic stack variable and

assigning the function return to it, and the caller will be none the wiser.

1.2. Compound Assignment

Supplying an lvalue of volatile-qualified type as an operand to compound assignment can mislead an

experienced programmer into believing that the operation itself becomes compounded and only

touches the memory once. Read-modify-write operations imply touching the volatile object more

than once per byte because that’s fundamentally how hardware works. These RMW operations are

therefore misleading and should be spelled out as separate read ; modify ; write operations.

UART1−>UCSR0B |= (1<<UCSZ01); // compound operation (obsolescent)

UART1−>UCSR0B = UART1−>UCSR0B | (1<<UCSZ01); // revised

1.2. pre- / post-increment & decrement

Pre- and post-increment (++) and decrement (--) of an lvalue of volatile-qualified type is

fundamentally a read-modify-write operation that accesses the lvalue more than once per byte.

1.2. volatile atomic

volatile can tear, provides no ordering guarantees (with respect to non-volatile memory

operations, and when it comes to CPU reordering), touches bytes exactly once, and inhibits

optimizations. atomic cannot tear, has a full memory model, can require a loop to succeed, and can

be optimized. volatile atomic should offer the union of these properties, but currently fails to do

so:

 A non-lock-free atomic can be volatile, in which case it can tear when the issued instructions

are considered.

 Read-modify-write operations are implemented as either loops which retry, locked

instructions (which still perform a load and a store), as transactional memory operations, or

as memory controller operations. Only the last of these can truly be said to touch each byte

exactly once, and these hardware implementations are far from the norm.

Compiling the following code using x86-64 Clang 12.0.0 with –Os:

volatile _Atomic int small;

volatile _Atomic struct {

 int arr[16];

} big, BIG;

void inc() {

 small += 42;

}

void cpy() {

 big = BIG;

}

Produces the following instructions for the inc function:

inc: # @inc

 lock add dword ptr [rip + small], 42

And the following instructions for the cpy function:

cpy: # @cpy

 push rbx

 sub rsp, 64

 mov rbx, rsp

 mov edi, 64

 mov esi, offset BIG

 mov rdx, rbx

 mov ecx, 5

 call __atomic_load

 mov edi, 64

 mov esi, offset big

 mov rdx, rbx

 mov ecx, 5

 call __atomic_store

 add rsp, 64

 pop rbx

 ret

Volatile atomic operations need to be performed as a single-copy atomic because shared memory

across processes will not share the lock, resulting in a regular unprotected memcpy.

volatile _Atomic makes no sense at that size for hardware, nor does it work for signal

handling, because a recursive lock can deadlock. setjmp / longjmp doesn’t require _Atomic,

just volatile. Consequently, there are no valid use cases for non-lock-free volatile _Atomic.

Functions that accept volatile atomic types are only guaranteed to succeed when the operations

on the type are always lock free (that is, the atomic lock-free macros expand to an integer constant

expression with value 2).

2. SUGGESTED CHANGES

The suggested changes in this section are against N2596 working draft — December 11, 2020.

6.5.16.1 Simple assignment
Add the following paragraph after paragraph 2:

Simple assignments where the left operand is an lvalue of volatile-qualified type is an obsolescent

feature unless the expression is not evaluated or is a void expression (6.3.2.2).

6.5.16.2 Compound assignment
Change paragraph 4 as follows:

A compound assignment of the form E1 op= E2 is equivalent to the simple assignment expression

E1 = E1 op (E2), except that the lvalue E1 is evaluated only once. Accessing E1 through the use of

an lvalue of volatile-qualified type is an obsolescent feature. and wWith respect to an

indeterminately-sequenced function call, the operation of a compound assignment is a single

evaluation. If E1 has an atomic type, compound assignment is a read-modify-write operation with

memory_order_seq_cst memory order semantics.

6.7.6.3 Function declarators
Add the following paragraph after paragraph 12:

A return type or parameter declared to have volatile-qualified type is an obsolescent feature.

6.5.2.4 Postfix increment and decrement operators

Add the following paragraph after paragraph 3:

An operand that is an lvalue of a volatile-qualified type is an obsolescent feature.

6.5.3.1 Prefix increment and decrement operators

Add the following paragraph after paragraph 3:

An operand that is an lvalue of a volatile-qualified type is an obsolescent feature.

6.11 Future language directions

Add the following subsection:

6.11.8 Volatile Access

Simple assignments where the left operand is an lvalue of volatile-qualified type is an obsolescent

feature unless the expression value is discarded or not evaluated.

For compound assignment of the form E1 op= E2, accessing E1 through an lvalue of volatile-qualified

type is an obsolescent feature.

A parameter with volatile-qualified type is an obsolescent feature.

A volatile-qualified return type is an obsolescent feature.

An operand to the postfix increment and decrement operators that is an lvalue of a volatile-qualified

type is an obsolescent feature.

An operand to the prefix increment and decrement operators that is an lvalue of a volatile-qualified

type is an obsolescent feature.

7.17.1 Introduction

Add the following after paragraph 6:

An argument A that is not always lock-free and is an lvalue of a volatile-qualified type is an

obsolescent feature.

7.31.10 Atomics <stdatomic.h>

Add the following after paragraph 2:

An argument of atomic type that is not always lock-free and is an lvalue of a volatile-qualified type is

an obsolescent feature.

4.0 Acknowledgements

I would like to recognize the following people for their help with this work: JF Bastien and Aaron

Ballman.

5.0 References

[P1152R0] JF Bastien. Deprecating volatile. 1 October 2018. URL: https://wg21.link/p1152r0

[P1152R1] JF Bastien. Deprecating volatile. 20 January 2019. URL: https://wg21.link/p1152r1

[P1152R2] JF Bastien. Deprecating volatile. 9 March 2019. URL: https://wg21.link/p1152r2P2327R0

[P1152R4] JF Bastien. Deprecating volatile. 19 July 2019. URL: http://wg21.link/P1152R4

[P1831R1] JF Bastien. Deprecating volatile: library. `12 February 2020. URL:

http://wg21.link/P1831R1

[P2327R0] De-deprecating volatile compound operations

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2327r0.pdf

https://wg21.link/p1152r0
https://wg21.link/p1152r1
https://wg21.link/p1152r2P2327R0
http://wg21.link/P1152R4
http://wg21.link/P1831R1
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2327r0.pdf

