
ISO/IEC JTC 1/SC 22/WG14
WG 21, SG 22

2021-5-15

N2739 v1
P2378R0

Properly define blocks as part of the grammar
clarification request and proposal for C23

Jens Gustedt1 and Martin Uecker2

1 INRIA and ICube, Université de Strasbourg, France
2 University Medical Center Göttingen, Germany

1. INTRODUCTION

Blocks are a fundamental concept in C for the definition of visibility scopes of identifiers
and for the lifetime of objects. Currently, there is no closed definition what a block is and
the different definitions that compose the term have to be collected in different places that
spread over several clauses. In particular, the fact that dependent statements of iteration
or selection statements form blocks of their own is easily overlooked and leads to misunder-
standings for example concerning the lifetime of compound literals.
We propose to change that situation by introducing terms primary block and secondary
block in the syntax and by referring to the other definitions of blocks, namely functions
definitions and lambda expressions (if added to C23), in a summary definition.
Additionally, when digging into this we noticed that there is a need for clarification about
the storage class of compound literals that are evaluated in the type expressions of function
parameters. It turned out that clang has them as static storage duration while gcc has them
as automatic. We ask WG14 to clarify this situation, but nevertheless for our proposal we
assume that the answer is to go for automatic storage duration because it fits better with
the overall semantics of compound literals.

2. AMBIGUITIES

The current text has an unfortunate ambiguity by not clarifying through the grammar
that function parameter declarations are contained in the same block as the function body.
Whereas for the parameters themselves it is made more or less clear that they somehow
live inside the body of the function, the situation is not clear for compound literals. Their
definition refers to a grammatical term “occurs outside the body of a function” and not to
the moment they are evaluated.
Consider the following contrived example:

1 int f(int*);
2 int g(int argc , char* argv[f((int [27]){ 0, })]) {
3 return 0;
4 }

Here a strict reading of the wording would imply that the compound literal occurs outside
of the function body. With that reading it would have static storage duration and a lifetime
that covers the whole execution.
Another interpretation would place the evaluation of the parameter declaration within the
function body and thus the result would be an object of automatic storage duration that is
bound to the corresponding function call.
Common implementations currently do not agree on these interpretations. Whereas clang
follows the first and creates a file scope static object without linkage, gcc follows the second
and has an automatic object accessible only during a call to g.
Although this is admittedly a marginal problem (such function definitions with compound
literals are not much heard of) we think that a clarification is in order. Tightening the

© 2021 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License



N2739
P2378R0

:2 Jens Gustedt and Martin Uecker

grammar for blocks would give a good opportunity to have a parameter and a compound
literal that was evaluated during its declaration with a similar life span.
When introducing lambdas into C this will become a little bit more important, because
such compound literals found in parameter declarations of lambdas otherwise would have
a storage duration that depends on the context in which the lambda expression is found.

3. IMPACT

The proposed changes are meant for clarification and should have not much impact on the
validity of user code, as long as it doesn’t use compound literals in parameter declarations.
(But if they do, they are not portable in the current situation, anyhow.)
For the conformance of implementations, we would push the ballance on the side where com-
pound literals in parameter declarations have automatic storage duration. If WG14 wants
such compound literals to have static storage duration, a reformulation of the proposed text
would be necessary.

4. PROPOSED CHANGES

The changes that are proposed here suppose that the lambda feature is integrated into C23.
If not, they can editorially be adapted to remove the reference to lambdas.

Change 1. Change 6.5.2.5 p6 as follows:

The value of the compound literal is that of an unnamed object initialized by the
initializer list. If the compound literal occurs

::
is

::::::::
evaluated outside the body of a

function
:
a
:::::
block, the object has static storage duration; otherwise, it has automatic

storage duration associated with the enclosing block.

The following two are the principal changes proposed to the grammar.

Change 2. Replace the content of clause 6.8 p1 by

::::::::::
statement:

:::::::::::::::::::::::::::::::::::
labeled-statement

:::::::::::::::::::::::::::::::::::::::
expression-statement

::::::::::::::::::::::::::::::::::::::::::::::
attribute-specifier-sequenceopt:::::::::::::

primary-block

::::::::::::::::::::::::::::::::::::::::::::::
attribute-specifier-sequenceopt::::::::::::::

jump-statement

:::::::::::::
primary-block:

::::::::::::::::::::::::::::::::::::::
compound-statement

:::::::::::::::::::::::::::::::::::::
selection-statement

:::::::::::::::::::::::::::::::::::::
iteration-statement

:::::::::::::::
secondary-block:

:::::::::::::::::::::::::::::
statement

Change 3. Add a two new sentences to the start of 6.8 p3

:
A
::::::

block
::
is
::

a
::::::::

primary
::::::

block,
::
a
:::::::::
secondary

::::::
block,

:::
or

:::
the

::::::
block

:::::::::
associated

:::::
with

::
a

:::::::
function

:::::::::
definition

:::
or

:
a
:::::::

lambda
::::::::::
expression

:::::::::
Whenever

:
a
::::::

block
::
B

::::::::
appears

::
in

::::
the

::::::
syntax

::::::::::
production

::
as

:::::
part

::
of

::::
the

:::::::::
definition

::
of

:::
an

:::::::::
enclosing

:::::
block

:::
A,

::::::
scopes

:::
of

:::::::::
identifiers

::::
and

::::::::
lifetimes

:::
of

:::::::
objects

::::
that

::::
are

:::::::::
associated

::::
with

::
B

:::
do

::::
not

::::::
extend

::
to

::::
the

:::::
parts

::
of

::
A

::::
that

::::
are

:::::::
outside

::
of

:::
B.

Then, we also need to change the grammar of the three different forms of primary blocks.



Properly define blocks as part of the grammar
N2739
P2378R0

:3

Change 4. In 6.8.2 (Compound statement) change p2 as follows:

A compound statement
:::
that

:::
is

::
a

::::::::
function

::::
body

::::::::
together

:::::
with

:::
the

:::::::
capture

:::::
list,

:
if
:::::

any,
:::
the

::::::::::
parameter

::::
type

::::
list

::::
and

::::
the

:::::::
optional

:::::::::
attribute

::::::::
specifier

::::::::
sequence

:::
of

:::
the

:::::::
function

::::::::::
declarator

:::::
forms

::::
the

::::
block

::::::::::
associated

::::
with

:::
the

::::::::
function

:::::::::
definition

:::
or

::::::
lambda

::::::::::
expression

::
in

::::::
which

::
it
::::::::
appears.

::::::::::
Otherwise,

::
it is a block

:::
that

:::
is

::::::::
different

::::
from

::::
any

:::::
other

:::::
block.

Change 5. In 6.8.4 p1 (Selection statements) replace the syntax term statement by

:::::::::::::
secondary-block.

Change 6. Remove 6.8.4 p4.

A selection statement is a block whose scope is a strict subset of the scope of
its enclosing block. Each associated substatement is also a block whose scope is
a strict subset of the scope of the selection statement.

Change 7. In 6.8.5 p1 (Iteration statements) replace the syntax term statement by

:::::::::::::
secondary-block.

Change 8. Remove 6.8.4 p5.

An iteration statement is a block whose scope is a strict subset of the scope of
its enclosing block. The loop body is also a block whose scope is a strict subset of
the scope of the iteration statement.

And finally, we make the association of the parameter type list and the function body into
a single block explicit.

Change 9. Change 6.9.1 p9 (Function definitions) as follows

:::
The

::::::::::
parameter

:::::
type

::::
list

::::
and

::::
the

::::::::
optional

::::::::
attribute

::::::::
specifier

:::::::::
sequence

:::
of

::::
the

:::::::::
declarator

:::::::
together

:::::
with

:::
the

::::::::::
compound

:::::::::
statement

:::
of

:::
the

::::::::
function

:::::
body

::::::
forms

::
a

:::::
single

:::::::::::
block.FNT1) Each parameter

:::
and

:::::
each

:::::::::
compound

::::::
literal

:::::
that

::
is

:::::::::
evaluated

::
in

:
a
::::::::::
parameter

::::::::::
declaration

::
is

:::::::::
associated

::::
with

::::
this

:::::
block

:::
and has automatic storage

duration. its
:::
The identifier

::
of

::
a

:::::::::
parameter, is an lvalue.

and add the footnote

::::

FN1)
::::
The

::::::::
visibility

:::::
scope

::
of

::::::::::
parameters

::::::
starts

:::::::::::
immediately

:::::
after

::::
their

:::::::::::
declaration

:::
and

:::::::
extends

::
to

::::::::::
parameter

::::::::::
declarations

::::
and

:::::::
possible

:::::::::
attributes

::::
that

::::::
follow

:::
and

:::::
then

::
to

:::
the

::::::
entire

::::::::
function

:::::
body.

Change 10. Apply the analogous changes to the language syntax summary in An-
nex A.2.3 and A.2.4.

5. QUESTIONS FOR WG14

Question 1. Is a compound literal that occurs in the parameter list of a function defi-
nition associated with the block of the function?

Question 2. Shall the indicated changes be integrated into C23?


	Introduction
	Ambiguities
	Impact
	Proposed changes
	Questions for WG14

