
ISO/IEC JTC 1/SC 22/WG14
WG 21, SG 22

2021-1-20

N2718 v5
P2311R1

Make false and true first-class language features
proposal for C23

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

In its London 2019 meeting, WG14 has found consensus to elevate false and true to proper keywords.

Changes in v2: WG14 was not sympathetic to force these keywords also to be macros, so we remove
the text corresponding to this idea. WG14 also was not in favor of the parts that proposed to introduce

recommended practice and to add future language directions, so these are also removed.
Changes in v3: It was then observed in a discussion on the reflector, that the possible use of these

predefined constants in the preprocessor needs some more precautions.

Changes in v4: Now that the type change has been integrated into C23, it remains to integrate the new
keywords properly into all translation phases.

Changes in v5:

— Make it clear that the constants count as integer constant expressions.

— Synchronize the handling in the preprocessor with C++.

— Explicitly mark the macro __bool_true_false_are_defined as obsolescent and keep it as last remaining
content in <stdbool.h>.

1. INTRODUCTION

The integration of Boolean constants false and true as proper language constructs, is
meant to provide a better feedback to programmers for the use of these constants by the
translantor or from debuggers. In particular, diagnostics will hopefully be provided when
they are used in arithmetic or used contrary to the intent, e.g as null pointer constants.

2. IMPACT

A possible impact of changing false and true to keywords could be the use of these con-
stants in preprocessing conditional expressions. Currently preprocessing arithmetic sees the
existing macros from <stdbool.h> as signed values, and thus the result of expressions is
merely consistent between the preprocessor and the rest of the language. When changing to
keywords we should ensure that false and true may still be used in the preprocessor with
the same semantics as before. This is done by enforcing the following:

— Other than for other keywords, true is automatically rewritten to pp-token 1 in prepro-
cessor arithmetic.

— This ensures that preprocessor arithmetic uses signed values for these constants, such that
results of such arithmetic remain the same between C17 and C2x.

3. REFERENCE IMPLEMENTATION

To add minimal support for the proposed changes, an implementation that does not yet
want to implement false and true as full-featured keywords would have to add definitions
that are equivalent to the following lines to their startup code:

#define false ((bool)+0)
#define true ((bool)+1)

Notice that these do not use the literals 0U or 1U because with that arithmetic with these
constants in the preprocessor would be performed as unsigned integers. This would have
the consequence that something like -true would result to UINTMAX_MAX in the preprocessor
and -1 otherwise.

© 2021 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License



N2718
P2311R1

:2 Jens Gustedt

4. CHANGES

Predefined constants need a little bit more effort for the integration, than the other keywords
in N2654, because up to now C did not have named constants on the level of the language.

4.1. Syntax

We propose to integrate these constants by means of a new syntax term predefined
constant. The text itself is then integrated as a clause with a subclause. This strategy
is chosen because we expect another named constant, namely nullptr, to be added to C23,
once the details for that have been sorted out.

Change 1. Add false and true into the alphabetic order of 6.4.1.

Change 2. Add a new syntax item predefined-constants to the end of 6.4.4 p1, Con-
stants.

Change 3. Add a new clause 6.4.4.5 and subclause as follows.

::::::::::::::::::::::::::::
6.4.4.5 Predefined constants

:::::::
Syntax

:
1
::::::::::::::::::
predefined-constant:

:::::::::::::::::::::
false

::::::::::::::::::::
true

::::::::::::
Description

:
2
:::::
Some

:::::::::
keywords

::::::::
represent

:::::::::
constants

:::
of

:
a
:::::::

specific
:::::
value

::::
and

:::::
type.

:::::::::::::::::::::::::::::::::::::::
6.4.4.5.1 The false and true constants

::::::::::::
Description

:
1
::::
The

:::::::::
keywords

::::::
false

::::
and

:::::
true

:::
are

:::::::
integer

::::::::
constant

:::::::::::
expressions

::
of

:::::
type

:::::
bool

::::
with

:::::
value

::
0
:::
for

::::::
false

::::
and

::
1
::::

for
:::::
true.

::::::
When

:::::
used

:::
as

::::::::
operands

:::
of

::::::::::
arithmetic

:::::::::
operators,

:::
the

:::::
effect

::
is
:::

as
::
if

:::
the

::::::
values

::::
are

::::::::
promoted

:::
to

::::
type

::::
int.

:::::::::::::::::::::
FOOTNOTE[Therefore,

:::::
when

:::::
used

:::
for

::::::::::
arithmetic

::
in

::::::::::
translation

::::::
phase

::
4,

::::::
false

:::
and

:::::
true

::::
are

::::::
signed

::::::
values

::::
and

:::
the

::::::
result

::
of

:::::
such

::::::::::
arithmetic

::::
will

::
be

::::::::::
consistent

::::
with

::::::
results

::
of

:::::
later

::::::::::
translation

::::::::
phases.]

Change 4. Add to the end of 6.6 p5:

:::::::::
Predefined

:::::::::
constants

::::
are

::::::::
constant

:::::::::::
expressions

::::
and

::::::
count

:::
in

::::
the

:::::::::
following

:::
as

::::::::
constants

::
of

:::::
their

:::::::::
respective

::::
type

::::
and

:::::
value

:::
and

:::
as

::::::::
constants

:::::
with

:::::
other

:::::::::
properties

::
as

:::::::
required

:::
in

:::::
their

:::::::::
respective

:::::::
clauses.

4.2. Interaction with legacy code

There is still some code in field that redefines these keywords. When compiler versions for
C23 come out, it would be important that there is no silent redefinition of types or values
depending on which headers are included and in which order. Therefore we think that it is
important to impose diagnostics whenever user code tries to undefine or redefine these new
keywords. But how to do this is clearly a question of policy, so as for N2654 we leave the
way to address these problems to the appreciation of WG14.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2654.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2654.pdf


Make false and true first-class language features
N2718
P2311R1

:3

Change 5 (optional). If the corresponding change for other new keywords from N2654
was adopted, add false and true to the list of tokens that should not be subject to #define
or #undef.

4.3. The bool type

Definitions of the bool type should now directly refer to the constants and make no fuzz
about zero or non-zero values anymore.

Change 6. In 6.2.5 (Types) make the following change to p2:

An object declared as type bool is large enough to store the values 0
:::::
false and

1
::::
true.

Change 7. In 6.3.1.2 (Boolean type) make the following change to p1:

When any scalar value is converted to bool, the result is 0
:::::
false if the value

compares equal to 0;(FNT) otherwise, the result is 1
::::
true.

The current state of conversion to the type bool makes several implicit references back and
forth between conversions and the equality operator.1 We think that the changes proposed
here, give an opportunity to improve that situation.

Change 8 (alternative). In 6.3.1.2 (Boolean type) make the following change to p1
and remove the corresponding footnote:

When any scalar value is converted to bool, the result is 0
:::::
false if the

value compares equal to 0
::
is

::
a

::::
zero

::::
(for

::::::::::
arithmetic

::::::
types)

:::
or

::::
null

:::::
(for

:::::::
pointer

:::::
types);(FNT) otherwise, the result is 1

::::
true.

4.4. Preprocessing

The tokens false and true need a specific exception during preprocessing, such that con-
structs such as the following do not have surprising results.

#if true
...
#endif

Change 9. In 6.10.1 p7, amend the follwing partial phrase:

... all remaining identifiers
::::
other

:::::
than

::::::
false

::
or

:::::
true (including those lexically

identical to keywords) are replaced with the pp-number 0, ...

Because in a transition phase these new keywords might still have macro definitions, we
also add them to the list for which the spelling after preprocessing is unspecified.

Change 10. In 6.4.1 p2’ (as of N2654) make the following changes:

1The process of converting a long to bool is e.g as follows: 1L =⇒ (1L == 0) =⇒ (1L == 0L) =⇒ false.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2654.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2654.pdf


N2718
P2311R1

:4 Jens Gustedt

The spelling of these keywords
:
, and their alternate forms

:
,
:::
and

:::
of

:::::
false

::::
and

:::::
true

inside expressions that are subject to the # and ## preprocessing operators is
unspecified.

4.5. Changes to library clauses

Clause 7.18 <stdbool.h>

This header now holds no reasonable contents and should be removed after a time of ad-
justment.

Change 11. Replace the content of clause 7.18 by

:::
The

::::::::::::
obsolescent

::::::::
header

:::::::::::::
<stdbool.h>

:::::::::
provides

:::::
the

::::::::::::
obsolescent

::::::::
macro

:::::::::::::::::::::::::::::
__bool_true_false_are_defined

::::::
which

:::::::
expands

::
to
::::

the
::::::
integer

::::::::
constant

:::
1.

Also update the corresponding entry for future library directions:

Change 12. Replace the content of clause 7.31.12 by

:::
The

:::::::
header

::::::::::::
<stdbool.h>

::::
and

::::
the

::::::
macro

::::::::::::::::::::::::::::::
__bool_true_false_are_defined

::::
are

::::::::::
obsolescent

::::::::
features.

Clause 7.26 <threads.h>

This header has several functions or macros that return bool values.

Change 13. In 7.17.5.1, 7.17.7.4 and 7.17.8.1 change the specification of return values
to the keywords false and true where appropriate.

5. QUESTIONS FOR WG14

Question 1. Does WG14 want to integrate changes 1 – 4, 6, 7, 9 – 13 as proposed in
N2718 into C23?

Question 2. Does WG14 want to integrate change 5 as proposed in N2718 for C23
similar to change 5 in N2654?

Question 3. Does WG14 want to use the alternative change 8 instead of change 7 as
proposed in N2718 for C23?

Acknowledgement

We thank JeanHeyd Meneide and Aaron Ballmann as well as the C/C++ liaison study
group for feedback and discussions.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2718.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2718.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2654.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2718.pdf

	Introduction
	Impact
	Reference implementation
	Changes
	Syntax
	Interaction with legacy code
	The [basicstyle=]bool type
	Preprocessing
	Changes to library clauses

	Questions for WG14

