
ISO/IEC JTC 1/SC 22/WG14
WG 21, SG 22

2021-3-28

N2696 v2
P2307R1

Lvalue closures
proposal for C23

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

For the lambda expressions that were introduced in N2694, we propose the addition of lvalue captures that
can read and modify objects of surrounding scopes,

Changes:

v2/R1. this document, integrating feedback from different sources

— Make the property of being an lvalue closure recursive.

— Enforce the register storage class if necessary.
— Clarify that all access to thread local or automatic storage of another thread is implementation-

defined.

— Note that the same rules apply for longjmp and lvalue captures as would for other local variables.

I. MOTIVATION

In N2693 it is argued that the features presented in this paper are useful in a more general
context, namely for the improvement of type-generic programming in C. We will not repeat
this argumentation here, but try to motivate the extension to lvalue captures for lambdas
as a stand-alone addition to C without full type-genericity.

There are certainly some situations were an lvalue capture can be useful, for example when
a functional unit collects statistical data in a sideline of its principal task. But our main
motivation to introduce the feature is portability. Current extensions to C, by gcc in par-
ticular, already use local functions or compound expressions that allow access to automatic
variables of a surrounding scope. For code bases that use these features and that want to
move to lambdas (to be better portable, for example) should be offered migration path to
do that easily. With this proposal a nested function that is not recursive and not converted
to a function pointer in the sequel

1 ...
2 double alpha(double x) {
3 ...
4 }
5 ...

can be relatively easily transformed to an initialization of a variable of lvalue closure type

1 ...
2 auto const α = [&](double x) {
3 ...
4 };
5 ...

Similarly, a gcc compound expression

({ block-item-list expression-statement })

© 2021 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2694.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2693.pdf

N2696
P2307R1

:2 Jens Gustedt

can easily be formulated as an adhoc call to an lvalue closure

[&](void){ block-item-list return expression-statement }()

namely, a closure expression with capture default &, no parameters and that is immediately
called in a function call with no arguments.

II. DESIGN CHOICES

We chose to follow C++ syntax as close a possible. There is one feature that we did not
include in this proposal, though, namely the possible syntax

& identifier = unary-expression

which in C++ terms would be an initialization of a reference variable with an lvalue, that is,
that would establish identifier as a named alias to an object representation that is referred
to by the unary expression.1

We are not aware of proposals that would add that reference type category to C, and we
think that the introduction of lvalue closures should not introduce it silently. If WG14
decides at some point to include such a type category in the future, the syntax for lambdas
can easily be amended.

We made one design choice about variables with register storage class that does not seem
unanymous. The address of such variables would still be inaccessible in lvalue closures, and
taking the address of such an lvalue closure would in some sense undermine the contract
that the user seeks for the variable.

Listing 1. Example for a breach of a register contract by using a wide function pointer feature.

1 void leakage(math_wfp fun); // different TU
2 void do_something(double y); // different TU
3
4 int main(void) {
5 register double x = 0;
6 // implements a simple data exchange with x
7 auto λ0 = [&x](double val){
8 auto prev = x;
9 x = val;

10 return prev;
11 };
12 // does this store the _Wide pointer fun in global memory?
13 leakage (&λ0);
14
15 x = 1;
16 // does this use the leaked _Wide pointer?
17 do_something (5.0);
18 // what value for x can we expect?
19 printf("now␣x␣is␣%g\n"",␣x);
20 }

1Unary expression is the lowest binding syntax construct in C that can result in an lvalue.

Lvalue closures
N2696
P2307R1

:3

This problem is not as significant for the simple lambdas we are proposing up to now, but
more relevant for implementations or future extensions that provide some form of extended
(wide) function pointers by which access to lambdas is possible from other translation units.

To prevent such a break of contract we propose a very simple remedy: all lambda objects
that directly or indirectly access a register variable have to be themselves declared with
register storage class, see the last sentence of 6.5.2.6 p5. Thereby the address of such
a lambda can never be taken; it cannot be copied by address and no address to it can be
passed on to a different translation unit.

III. SYNTAX AND TERMINOLOGY

For all proposed wording see Section VII.

Because C does not have the concept of references (in the sense of identifiers that act as
aliases for other objects), the terminology of a “reference capture” would not be adequate.
Therefore we use the term lvalue capture to indicate that these are captures that are seen
not as evaluated expressions but as lvalues. Other terms that are added in 6.5.2.6 p8,
are value closure and lvalue closure, because these have quite distinct properties and in
particular different possible extend of validity.

For the syntax, within the range of the proposed semantics, we follow C++ as close as
possible, see 6.5.2.6 p1.

— We add a new capture default, a & token, to indicate that by default captures are lvalue
captures.

— We add a new capture category, lvalue capture, with a syntax of

& identifier

— In the case that the first element in the capture list is a capture default, only one category
of captures (value or lvalue) is permitted for the rest of the capture list. Although it would
have been possible to write this property up in pure syntax, this would have been relatively
complicated and so we chose to formulate this as a syntax constraint, only, see 6.5.2.6
p3 last sentence. But if WG14 prefers to have this a pure syntax concept, this could be
moved in that direction.

Another important feature is to describe which outer variables are used as lvalue captures.
This may not only be variables that a lambda uses directly (either as an explicit lvalue
capture or by the default rule) but also lvalue captures that are used by another lambda
that is passed itself as a captures, 6.5.2.6 p12.

1 double context = 0.0;
2
3 auto comp = [& context](double const* a, double const* b){
4 int ret = 0;
5 // ... use context to determine an order
6 ret = ...
7 return ret;
8 }
9

10 auto search = [comp](size_t n, double A[n], double val) {
11 size_t pos = 0;
12 // ... use comp for a binary search

N2696
P2307R1

:4 Jens Gustedt

13 pos = ...
14 return pos;
15 }

Here, search itself only has a value capture comp, but the lambda comp that is captures has
an lvalue capture context and is an lvalue closure. Therefore context is considered as an
indirect lvalue capture of search which therefore is an lvalue closure.

Because lvalue captures can also be executed in a multi-threaded context or in contexts with
signals or long jumps, 6.5.2.6 p12 also precises which side effects are visible within a lambda
and after a possible modification of an lvalue capture. To avoid misunderstandings, we also
sharpen the implementation-defined properties if thread local (6.4.2 p4) or automatic (p5)
variables are accessible by other threads or not.

IV. SEMANTICS

The principal semantic of lvalue captures are described in a newly inserted para-
graph 6.2.5.6 p12. It has two parts. First, if gives a simple model for the access to the
underlying object, namely that the access to a lvalue capture is just seen as an access to
the variable itself. Then, it is clarified that the access to such objects follows the usual rules
for the visibility of side effects.

V. CONSTRAINTS AND REQUIREMENTS

As a general policy, we try to fix as much requirements as possible through constraints,
either with specific syntax or explicit constraints. Only if a requirement is not (or hardly)
detectable at translation time, or if we want to leave design space to implementations,
we formulate it as an imperative, indicating that the behavior then is undefined by the
C standard.

The most important requirement for lvalue captures is that they should not be used in a
function call where any of their lvalue captures is dead. This could just be done by making
such a call undefined (implicitly or explicitly), but lambda values that cannot be used in
function calls are a bit pointless, anyhow. So we prefer to formulate a constraint that forbids
the return of lambda values into contexts where any of their lvalue captures are dead.

This is done by inserting a sentence in 6.5.2.6 p5 that stipulates that a lambda value can
only be returned into a context where any of its lvalue captures is defined with the same
name that is referring to the same object.

With all of this we have the following properties of lvalue closures:

— Lvalue closures cannot occur in file scope, because there are no automatic variables to
which an lvalue capture could refer.

— Functions can never return lvalue closures, because none of their automatic variables are
defined in the calling context.

— Since closures have unspecified types without declaration syntax, lvalue closures (seen as
objects of lambda type) cannot be copied out of the scope in which they live.

— Lvalue closures can only escape a scope via a return statement of another lambda, which
is restricted by the constraint.

VI. QUESTIONS FOR WG14

(1) Does WG14 want the lvalue capture feature for C23 along the lines of N2696?

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2696.pdf

Lvalue closures
N2696
P2307R1

:5

(2) Does WG14 want to force lambda objects that have lvalue closures with register storage
class to also be of that storage class as specified in N2696?

(3) Does WG14 want to integrate the changes as specified in N2696 into C23?

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2696.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2696.pdf

N2696
P2307R1

:6 Jens Gustedt

References

Jens Gustedt. 2021a. Function literals and value closures. Technical Report N2694. ISO. available at http:
//www.open-std.org/jtc1/sc22/wg14/www/docs/n2694.pdf.

Jens Gustedt. 2021b. Improve type generic programming. Technical Report N2693. ISO. available at http:
//www.open-std.org/jtc1/sc22/wg14/www/docs/n2693.pdf.

Jens Gustedt. 2021c. Lvalue closures. Technical Report N2696. ISO. available at http://www.open-std.org/
jtc1/sc22/wg14/www/docs/n2696.pdf.

Jens Gustedt. 2021d. Type-generic lambdas. Technical Report N2695. ISO. available at http://www.
open-std.org/jtc1/sc22/wg14/www/docs/n2695.pdf.

Jens Gustedt. 2021e. Type inference for variable definitions and function return. Technical Report N2697.
ISO. available at http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2697.pdf.

VII. PROPOSED WORDING

The proposed text is given as diff against N2694.

— Additions to the text are marked as
::::::
shown.

— Deletions of text are marked as shown.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2694.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2694.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2693.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2693.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2696.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2696.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2695.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2695.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2697.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2694.pdf

CORE 202101 (E) § 6.2.3, working draft — March 28, 2021 lambda-C17.. N2696

7 If, within a translation unit, the same identifier appears with both internal and external linkage, the
behavior is undefined.

8 NOTE Internal and external linkage is used to access objects or functions that have a lifetime of the whole program execution.
It is therefore usually determined before the execution of a program starts. For variables with a lifetime that is not the whole
program execution and that are accessed from lambda expressions an additional mechanism called capture is available that
dynamically provides the access to the current instance of such a variable within the active function call that defines it.

Forward references: storage durations of objects (6.2.4), declarations (6.7), expressions (6.5), exter-
nal definitions (6.9), statements (6.8).

6.2.3 Name spaces of identifiers
1 If more than one declaration of a particular identifier is visible at any point in a translation unit, the

syntactic context disambiguates uses that refer to different entities. Thus, there are separate name
spaces for various categories of identifiers, as follows:

— label names (disambiguated by the syntax of the label declaration and use);

— the tags of structures, unions, and enumerations (disambiguated by following any35) of the
keywords struct, union, or enum);

— the members of structures or unions; each structure or union has a separate name space for its
members (disambiguated by the type of the expression used to access the member via the . or
-> operator);

— all other identifiers, called ordinary identifiers (declared in ordinary declarators or as enumera-
tion constants).

Forward references: enumeration specifiers (6.7.2.2), labeled statements (6.8.1), structure and union
specifiers (6.7.2.1), structure and union members (6.5.2.3), tags (6.7.2.3), the goto statement (6.8.6.1).

6.2.4 Storage durations of objects
1 An object has a storage duration that determines its lifetime. There are four storage durations: static,

thread, automatic, and allocated. Allocated storage is described in 7.22.3.

2 The lifetime of an object is the portion of program execution during which storage is guaranteed
to be reserved for it. An object exists, has a constant address,36) and retains its last-stored value
throughout its lifetime.37) If an object is referred to outside of its lifetime, the behavior is undefined.
The value of a pointer becomes indeterminate when the object it points to (or just past) reaches the
end of its lifetime.

3 An object whose identifier is declared without the storage-class specifier _Thread_local, and either
with external or internal linkage or with the storage-class specifier static, has static storage duration.
Its lifetime is the entire execution of the program and its stored value is initialized only once, prior
to program startup.

4 An object whose identifier is declared with the storage-class specifier _Thread_local has thread
storage duration. Its lifetime is the entire execution of the thread for which it is created, and its
stored value is initialized when the thread is started. There is a distinct object per thread, and use of
the declared name in an expression refers to the object associated with the thread evaluating the
expression. The result of attempting to indirectly access an object with thread storage duration from
a thread other than the one with which the object is associated is implementation-defined.

5 An object whose identifier is declared with no linkage and without the storage-class specifier static
has automatic storage duration, as do some compound literals. The result of attempting to indirectly
access an object with automatic storage duration from a thread other than the one with which the
object is associated is implementation-defined.

35)There is only one name space for tags even though three are possible.
36)The term "constant address" means that two pointers to the object constructed at possibly different times will compare

equal. The address can be different during two different executions of the same program.
37)In the case of a volatile object, the last store need not be explicit in the program.

modifications to ISO/IEC 9899:2018, § 6.2.4 page 30 Language

1

CORE 202101 (E) § 6.5.2.6, working draft — March 28, 2021 lambda-C17.. N2696

The first always has static storage duration and has type array of char, but need not be modifiable; the last two have
automatic storage duration when they occur within the body of a function, and the first of these two is modifiable.

13 EXAMPLE 6 Like string literals, const-qualified compound literals can be placed into read-only memory and can even be
shared. For example,

(const char []){"abc"} == "abc"

might yield 1 if the literals’ storage is shared.

14 EXAMPLE 7 Since compound literals are unnamed, a single compound literal cannot specify a circularly linked object. For
example, there is no way to write a self-referential compound literal that could be used as the function argument in place of
the named object endless_zeros below:

struct int_list { int car; struct int_list *cdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval(endless_zeros);

15 EXAMPLE 8 Each compound literal creates only a single object in a given scope:

struct s { int i; };

int f (void)
{

struct s *p = 0, *q;
int j = 0;

again:
q = p, p = &((struct s){ j++ });
if (j < 2) goto again;

return p == q && q->i == 1;
}

The function f() always returns the value 1.

16 Note that if an iteration statement were used instead of an explicit goto and a labeled statement, the lifetime of the unnamed
object would be the body of the loop only, and on entry next time around p would have an indeterminate value, which would
result in undefined behavior.

Forward references: type names (6.7.7), initialization (6.7.10).

6.5.2.6 Lambda expressions
Syntax

1 lambda-expression:
capture-clause parameter-clauseopt attribute-specifier-sequenceopt function-body

capture-clause:
[capture-list opt]

capture-list:
capture-default

::::::::::::::::
capture-list-element
capture-list , capture-list-element

capture-default:
=

::::::::::::::::
&

capture-list-element:
::::::::::::::::

value-capture
::::::::::::::::

lvalue-capture

modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 64 Language

2

N2696 lambda-C17.. § 6.5.2.6, working draft — March 28, 2021 CORE 202101 (E)

value-capture:
capture
capture = assignment-expression

lvalue-capture:
::::::::::::::::

& capture

capture:
identifier

parameter-clause:
(parameter-listopt)

Constraints
2 A capture that is listed in the capture list is an explicit capture. If the capture clause is [=]

::::
first

:::::::
element

::
in

::::
the

:::::::
capture

:::
list

::
is

:
a
::::::::

capture
::::::
default, id is the name of an object with automatic storage

duration in a surrounding scope that is not an array, id is used within the function body of the
lambda without redeclaration and id is not

::
an

::::::::
explicit

:::::::
capture

::
or

:
a parameter, the effect is as if

a capture list had been specified with id as a member
::
id

:::::
were

::
a
:::::
value

::::::::
capture

::::
(for

::
an

::
=
::::::
token)

:::
or

::
an

::::::
lvalue

:::::::
capture

::::
(for

:::
an

::
&

::::::
token). Such a capture is an implicit capture.

:
If

:::
the

::::
first

::::::::
element

::
in

::::
the

:::::::
capture

:::
list

::
is

:::
an

:
=
::::::
token,

:::
all

:::::
other

:::::::::
elements

::::
shall

:::
be

::::::
lvalue

:::::::::
captures;

:
if
::

it
::
is

:::
an

::
&

::::::
token,

::
all

:::::
shall

:::
be

:::::
value

::::::::
captures.

:

3 Captures
:::::
Value

::::::::
captures without assignment expression

::
or

::::::
lvalue

::::::::
captures

:
shall be names of com-

plete objects with automatic storage duration in a scope surrounding the lambda expression that
do not have array type and that are visible at the point of evaluation of the lambda expression.

::::::::::::
Additionally,

:::::
value

::::::::
captures

:::::
shall

:::
not

:::::
have

:::
an

:::::
array

:::::
type. An identifier shall appear at most once;

either as an explicit capture or as a parameter name in the parameter type list.

4 Within the lambda expression, identifiers (including explicit and implicit captures, and parameters
of the lambda) shall be used according to the usual scoping rules, but outside the assignment
expression of a value capture the following exceptions apply to identifiers that are declared in a
scope that strictly includes the lambda expression

::::
and

::::
that

:::
are

:::
not

::::::
lvalue

::::::::
captures:

— Objects or type definitions with VM type shall not be used.

— Objects with automatic storage duration shall not be evaluated.112)

5
::
A

:::::::
variable

:::
id

::
is

:::
an indirect lvalue capture

::
of

:
a
::::::::
lambda

::::::::::
expression

::::
and

::
of

:::
the

::::::::::::::
corresponding

:::::::
lambda

:::::
value

::
if

:
it
::

is
::::

one
:::
of

:::
the

:::::::
implicit

:::
or

:::::::
explicit

::::::
lvalue

::::::::
captures,

:::
or

::::::::::
recursively,

::
if
::
it

::
is

:::
the

::::::::
indirect

::::::
lvalue

:::::::
capture

::
of

::::
one

::
of

:::
the

::::::::
captures

:::
of

:::::::
lambda

:::::
type.

::
A

:::::::
lambda

::::::
value

::::
that

:::
has

:::
an

::::::::
indirect

::::::
lvalue

:::::::
capture

::
id

:::::
shall

:::
not

:::
be

:::::
used

::
as

:::
the

::::::::::
expression

::
of

::
a
:::::::
return

::::::::::
statement,

::::::
unless

::::
that

:::::::
return

:::::::::
statement

::
is

:::::
itself

:::::::::
associated

::
to

::::::::
another

:::::::
lambda

::::::::::
expression

:::
for

::::::
which

::
id

::
is

:::
an

:::::::
indirect

::::::
lvalue

:::::::
capture

::::
that

:::::
refers

::
to

::::
the

:::::
same

::::::
object.113)

:
If
::
a
:::::::
lambda

:::::
value

:::::
with

:::
an

:::::::
indirect

::::::
lvalue

:::::::
capture

:::
id

::
is

::::
used

:::
to

::::::::
initialize

::
an

::::::
object

::
λ

::
of

:::::::
lambda

:::::
type

::::
and

:::
id

:::
has

:::::
been

::::::::
defined

::::
with

::::
the

:::::::::
register

:::::::
storage

::::::
class,

::
λ

::::
shall

:::::
also

:::::
have

:::
the

:

:::::::::
register

:::::::
storage

:::::
class.

6 The function body shall be such that a return type type according to the rules in 6.8.6.4 can be
inferred.

112)Identifiers of visible automatic objects that are not captures and that do not have a VM type, may still be used if they are
not evaluated, for example in sizeof expressions, in typeof specifiers (if they are not lambdas themselves) or as controlling
expression of a generic primary expression.
113)

::::
Since

:::
each

::::::
closure

::::::::
expression

:::
may

::::
have

:
a
::::::
unique

::::
type,

:
it
::
is

:::::::
generally

::
not

:::::::
possible

:
to
:::::

assign
::
it

::
to

::
an

::::
object

::::
with

::::::
lambda

::::
value

::
or

::
to

:
a
::::::
function

::::::
pointer

:::
that

::
is

::::::
declared

::::::
outside

::
of

::
its

::::::
defining

::::
scope

::
or

::
to

:::
use

::
it,

::::
even

:::::::
indirectly,

::::::
through

:
a
::::::
pointer

::
to

:::::
lambda

:::::
value.

:::::::
Therefore

:::
the

::::::
present

:::::::
constraint

::::::
inhibits

::
the

:::
use

::
of

::
an

:::::
lvalue

:::::
closure

::::::
outside

::
of

::
the

:::::
widest

::::::::
enclosing

::::
scope

::
of

::
its

::::::
defining

:::::
closure

::::::::
expression

::
in
:::::
which

::
all

::
its

:::::
lvalue

::::::
captures

:::
are

:::::
visible.

:

Language modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 65

3

CORE 202101 (E) § 6.5.2.6, working draft — March 28, 2021 lambda-C17.. N2696

Semantics
7 The optional attribute specifier sequence in a lambda expression appertains to the resulting lambda

value. If the parameter clause is omitted, a clause of the form () is assumed. A lambda expression
without any capture is called a function literal expression, otherwise it is called a closure expression. A
lambda value originating from a function literal expression is called a function literal, otherwise it is
called a closure.

::
A

::::::
closure

::::
that

::::
has

:::
an

:::::::
indirect

::::::
lvalue

:::::::
capture

::
is

::::::
called

::
an

:
lvalue closure

:
,
:::::::::
otherwise

::
it

:
is
::
a value closure

:
.
:

8 Similar to a function definition, a lambda expression forms a single block scope that comprises its
capture clause, its parameter clause and its function body. Each explicit capture and parameter has a
scope of visibility that starts immediately after its definition is completed and extends to the end
of the function body. The scope of visibility of implicit captures is the function body. In particular,
captures and parameters are visible throughout the whole function body, unless they are redeclared
in a depending block within that function body. Captures

:::::
Value

::::::::
captures and parameters have

automatic storage duration; in each function call to the formed lambda value, a new instance of
each

:::::
value

:
capture and parameter is created and initialized in order of declaration and has a lifetime

until the end of the call, only that the addresses of
:::::
value

:
captures are not necessarily unique.

9 If a
::::
value

:
capture id is defined without an assignment expression, the assignment expression is

assumed to be id itself, referring to the object of automatic storage duration of the surrounding
scope that exists according to the constraints.114)

10 The implicit or explicit assignment expression E in the definition of a value capture determines
a value E0 with type T0, which is E after possible lvalue, array-to-pointer or function-to-pointer
conversion. The type of the capture is T0 const and its value is E0 for all evaluations in all function
calls to the lambda value. If, within the function body, the address of the capture id or one of
its members is taken, either explicitly by applying a unary & operator or by an array to pointer
conversion,115) and that address is used to modify the underlying object, the behavior is undefined.

11 The evaluation of the explicit or implicit assignment expressions of value captures takes place
during each evaluation of the lambda expression. The evaluation of assignment expressions for
explicit value captures is sequenced in order of declaration; an earlier capture may occur within an
assignment expression of a later one. The objects of automatic storage duration corresponding to
implicit value captures are evaluated unsequenced among each other. The evaluation of a lambda
expression is sequenced before any use of the resulting lambda value. For each call to a lambda
value, explicit value captures (with type and value as determined during the evaluation of the
lambda expression) and then parameter types and values are determined in order of declaration.
Explicit value captures and earlier parameters may occur within the declaration of a later one.

12
:::
The

::::::
object

::
of

:::::::::
automatic

:::::::
storage

:::::::::
duration

::
id

::
of

::::
the

:::::::::::
surrounding

::::::
scope

::::
that

:::::::::::
corresponds

::
to

:::
an

::::::
lvalue

:::::::
capture

::::
shall

:::
be

::::::
visible

:::::::
within

:::
the

::::::::
function

:::::
body

:::::::::
according

::
to

::::
the

:::::
usual

::::::::
scoping

::::
rules

::::
and

:::::
shall

:::
be

:::::::::
accessible

::::::
within

:::
the

::::::::
function

:::::
body

:::::::::::
throughout

::::
each

::::
call

::
to

:::
the

::::::::
lambda.

::::::
Access

:::
to

:::
the

:::::
object

:::::::
within

:
a
::::
call

::
to

:::
the

::::::::
lambda

:::::::
follows

:::
the

:::::::::::::::
happens-before

::::::::
relation,

::
in

:::::::::
particular

:::::::::::::
modifications

:::
to

:::
the

::::::
object

:::
that

::::::::
happen

::::::
before

:::
the

:::
call

::::
are

::::::
visible

::::::
within

:::
the

::::
call,

::::
and

:::::::::::::
modifications

::
to

:::
the

::::::
object

::::::
within

:::
the

::::
call

:::
are

::::::
visible

:::
for

:::
all

::::::::::
evaluations

::::
that

::::::::
happen

::::
after

:::
the

::::
call.116)

13 For each lambda expression, the return type type is inferred as indicated in the constraints. A lambda
expression λ has an unspecified lambda type L that is the same for every evaluation of λ. As a
result of the expression, a value of type L is formed that identifies λ and the specific set of values
of the identifiers in the capture clause for the evaluation, if any. This is called a lambda value. It is
unspecified, whether two lambda expressions λ and κ share the same lambda type even if they are
lexically equal but appear at different points of the program. Objects of lambda type shall not be
modified.

114)The evaluation rules in the next paragraph then stipulate that it is evaluated at the point of evaluation of the lambda
expression, and that within the body of the lambda an unmutable auto object of the same name, value and type is made
accesssible.
115)The capture does not have array type, but if it has a union or structure type, one of its members may have such a type.
116)

:::
That

::
is,

::::::::
evaluation

::
of

::
id

::::::
results

:
in
:::

the
::::
same

:::::
lvalue

::::
with

:::
the

::::
same

::::
type

:::
and

::::::
address

::
as

::
for

:::
the

:::::
scope

:::::::::
surrounding

:::
the

::::::
lambda.

::
In

:::::::
particular,

::
it

:
is
::::::
possible

:::
that

:::
the

::::
value

::
of

:::
such

::
an

:::::
object

::::::
becomes

::::::::::
indeterminate

::::
after

:
a
:::
call

:
to
:::::::
longjmp,

:::
see

::::::
7.13.2.1.

modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 66 Language

4

N2696 lambda-C17.. § 6.5.2.6, working draft — March 28, 2021 CORE 202101 (E)

Recommended practice
14 To avoid their accidental modification, it is recommended that declarations of lambda type objects

are const qualified. Whenever possible, implementations are encouraged to diagnose any attempt
to modify a lambda type object.

15 EXAMPLE 1 The usual scoping rules extend to lambda expressions; the concept of captures only restricts which identifiers
may be evaluated or not.

#include <stdio.h>
static long var;
int main(void) {
[](void){ printf("%ld\n", var); }(); // valid, prints 0
[var](void){ printf("%ld\n", var); }(); // invalid, var is static

int var = 5;

[var](void){ printf("%d\n", var); }(); // valid, prints 5

::::::
auto

::::::
const

::
λ
: :
=

:
[
:::
var

::
](

::::
void

:
)
:
{
:::::::
printf

:::
("%

:
d
:
\
:
n
::
",

::::
var

:
)

:
;

:::
};

:::::::
//

:::::::
freeze

::::
var

::::
[&

:::
var

::
](

::::
void

:
)

:
{

:::
var

::
=
:::
7;

:::::::
printf

:::
("%

:
d
:
\
:
n
::
",

::::
var

:
)

:
;

::::
}()

:
;

:::::::::::
//

::::::
valid

:
,
:::::::
prints

::
7

:::
λ
::
()

:
;
::

//
::::::
valid

:
,
:::::::
prints

::
5

:::
[
::::
var

::
](

::::
void

:
)

:
{

::::::
printf

:::
("%

:
d
:
\
:
n
::
",

::::
var

:
)
:
;
::::
}()

:
;
::::::::::::::::::::

//
::::::
valid

:
,
:::::::
prints

::
7

[](void){ printf("%d\n", var); }(); // invalid
[var](void){ printf("%zu\n", sizeof var); }(); // valid, prints sizeof(int)

:::
[
::::
var

::
](

::::
void

:
)

:
{

::::::
printf

:::
("%

::
zu

:
\
:
n
::
",

:::::::
sizeof

::::
var

:
)
:
;

::::
}()

:
;

::::::::::::
//

::::::
valid

:
,
:::::::
prints

:::::::
sizeof

:
(

:::
int

:
)

[](void){ printf("%zu\n", sizeof var); }(); // valid, prints sizeof(int)
[](void){ extern long var; printf("%ld\n", var; }(); // valid, prints 0

}

16 EXAMPLE 2 The following uses a function literal as a comparison function argument for qsort.

#define SORTFUNC(TYPE) [](size_t nmemb, TYPE A[nmemb]) { \
qsort(A, nmemb, sizeof(A[0]), \

[](void const* x, void const* y){ /* comparison lambda */ \
TYPE X = *(TYPE const*)x; \
TYPE Y = *(TYPE const*)y; \
return (X < Y) ? -1 : ((X > Y) ? 1 : 0); /* return of type int */ \

} \
); \

return A; \
}
...
long C[5] = { 4, 3, 2, 1, 0, };
SORTFUNC(long)(5, C); // lambda → (pointer →) function call
...
auto const sortDouble = SORTFUNC(double); // lambda value → lambda object
double* (*sF)(size_t nmemb, double[nmemb]) = sortDouble; // conversion
...
double* ap = sortDouble(4, (double[]){ 5, 8.9, 0.1, 99, });
double B[27] = { /* some values ... */ };
sF(27, B); // reuses the same function
...
double* (*sG)(size_t nmemb, double[nmemb]) = SORTFUNC(double); // conversion

This code evaluates the macro SORTFUNC twice, therefore in total four lambda expressions are formed.

The function literals of the "comparison lambdas" are not operands of a function call expression, and so by conversion a
pointer to function is formed and passed to the corresponding call of qsort. Since the respective captures are empty, the
effect is as if to define two comparison functions, that could equally well be implemented as static functions with auxiliary
names and these names could be used to pass the function pointers to qsort.

The outer lambdas are again without capture. In the first case, for long, the lambda value is subject to a function call, and it is
unspecified if the function call uses a specific lambda type or directly uses a function pointer. For the second, a copy of the
lambda value is stored in the variable sortDouble and then converted to a function pointer sF. Other than for the difference

Language modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 67

5

	Motivation
	Design choices
	Syntax and terminology
	Semantics
	Constraints and requirements
	Questions for WG14
	References
	Proposed wording

