
ISO/IEC JTC 1/SC 22/WG14
WG 21, SG 22

2021-3-28

N2695 v2
P2306R1

Type-generic lambdas
proposal for C23

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

For the lambda expressions that were introduced in N2694, we propose the addition of auto parameters
that can be completed by the arguments (in a function call) or by the parameter types of target function

pointer (in a conversion).

Changes:

v2/R1.

— make primary expressions transparent for lambda expression operands

— force types to be the same when a tg lambda is converted

— specify with syntax verifications are necessary for lamda expressions in void expressions

I. MOTIVATION

This paper is fully motivated in N2693, namely for the improvement of type-generic pro-
gramming in C. For a simple motivation of the feature compared to simple lambdas see for
example the MAXIMUM macro in the proposed text, 6.5.2.6 p17.

II. DESIGN CHOICES

We chose to follow C++ syntax and semantic as close a possible.

II.1. Permissible contexts for type-generic lambdas

It is the intent of this paper, to allow a value of a type-generic lambda type only in a context
where it will be completed, either by the arguments of a function call or by the parameter
types of a target function pointer to which a type-generic function literal is converted.
This is to ensure that compilers that implement this feature have to do no lookahead or
pre-compilation of code snippets with a lot of unknown types.

This is achieved by integrating types of type-generic lambdas into the terminology of the
standard as being incomplete types. Thereby it is not possible to define objects of such a
type. Because lambdas can only be declared in definitions by type inference, effectively such
lambdas cannot even be declared.

By these properties, the only possibility to specify a type-generic lambda that is re-usable
at different places of a source is textual, in particular by defining function-like macros. This
restriction is a deliberate choice for this proposal, here. If in a later phase (probably C26)
WG14 would also want to add objects of type-generic lambda type to the language or adopt
C++’s template functions, this could easily be achieved on top of what is done here.

II.2. Parameter type inference

Parameter type inference only leaves a design choice for array and function parameters. To
be in line with traditional function declarations, we extend the possibility of type inference

© 2021 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2694.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2693.pdf

N2695
P2306R1

:2 Jens Gustedt

to such types and specify that these are to be re-written to pointers to form a valid function
prototype.

III. SYNTAX AND TERMINOLOGY

For all proposed wording see Section VII.

Syntax considerations for this feature are straight forward; we just have to allow the auto
feature to extend to the parameters of lambdas, 6.7.6.3.

In terms of terminology, we introduce the terms incomplete lambda type (6.2.5 p20) and
type-generic lambda (6.5.2.6 p9).

IV. SEMANTICS

The principal semantics of type-generic lambdas are described within three paragraphs.

— Paragraph 6.2.5.6 p9 specifies the possible use of type-generic lambdas.
— Paragraph 6.2.5.6 p10 provides the rules for the completion of such a lambda in a function

call.
— An insertion into 6.3.2.1 p5 describes the mechanism for conversions of type-generic

function literals to function pointers.

V. CONSTRAINTS AND REQUIREMENTS

This proposal constrains the possible uses of type-generic lambdas even further than for
simple lambdas, namely essentially to function calls and conversions to pointer-types. Even
though it would have been possible to formulate such a requirement as a constraint, we chose
not to do so because this might be an area for implementations to extend the C standard
and to implement some template feature for lambda values. Forcing them to diagnose such
constructs would be counter-productive and hinder progress in that area.

The only constraint that this proposal includes is in 6.5.2.6 p6, namely that a type-generic
lambda that is used in a conversion to a function pointer must have a return type that is
compatible to the one of the target function pointer type.

VI. QUESTIONS FOR WG14

(1) Does WG14 want type-generic lambdas for C23 along the lines of N2695?
(2) Does WG14 want to integrate the changes as specified in N2695 into C23?

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2695.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2695.pdf

Type-generic lambdas
N2695
P2306R1

:3

References

Jens Gustedt. 2021a. Function literals and value closures. Technical Report N2694. ISO. available at http:
//www.open-std.org/jtc1/sc22/wg14/www/docs/n2694.pdf.

Jens Gustedt. 2021b. Improve type generic programming. Technical Report N2693. ISO. available at http:
//www.open-std.org/jtc1/sc22/wg14/www/docs/n2693.pdf.

Jens Gustedt. 2021c. Lvalue closures. Technical Report N2696. ISO. available at http://www.open-std.org/
jtc1/sc22/wg14/www/docs/n2696.pdf.

Jens Gustedt. 2021d. Type-generic lambdas. Technical Report N2695. ISO. available at http://www.
open-std.org/jtc1/sc22/wg14/www/docs/n2695.pdf.

Jens Gustedt. 2021e. Type inference for variable definitions and function return. Technical Report N2697.
ISO. available at http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2697.pdf.

VII. PROPOSED WORDING

The proposed text is given as diff against N2694.

— Additions to the text are marked as
::::::
shown.

— Deletions of text are marked as shown.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2694.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2694.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2693.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2693.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2696.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2696.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2695.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2695.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2697.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2694.pdf

N2695 lambda-C17.. § 6.2.5, working draft — March 28, 2021 CORE 202101 (E)

20 Any number of derived types can be constructed from the object and function types, as follows:

— An array type describes a contiguously allocated nonempty set of objects with a particular
member object type, called the element type. The element type shall be complete whenever the
array type is specified. Array types are characterized by their element type and by the number
of elements in the array. An array type is said to be derived from its element type, and if its
element type is T, the array type is sometimes called "array of T". The construction of an array
type from an element type is called "array type derivation".

— A structure type describes a sequentially allocated nonempty set of member objects (and, in
certain circumstances, an incomplete array), each of which has an optionally specified name
and possibly distinct type.

— A union type describes an overlapping nonempty set of member objects, each of which has an
optionally specified name and possibly distinct type.

— A function type describes a function with specified return type. A function type is characterized
by its return type and the number and types of its parameters. A function type is said to
be derived from its return type, and if its return type is T, the function type is sometimes
called "function returning T". The construction of a function type from a return type is called
"function type derivation".

— A lambda type is a complete
:::
an object type that describes the value of a lambda expression. A

::::::::
complete

:
lambda type is characterized but not determined by a return type that is inferred

from the function body of the lambda expression, and by the number, order, and type of
parameters that are expected for function calls. ;

:
The

::
the

:
function type that has the same return

type and list of parameter types as the lambda is called the prototype of the lambda. A lambda
type has no syntax derivation.50) Objects of such a type shall only be defined as a capture (of
another lambda expression) or by an underspecified declaration for which the lambda type is
inferred.51) An object of lambda type shall only be modified by simple assignment (6.5.16.1)

:
.
::
A

:::::::
lambda

::::::::::
expression

::::
that

:::
has

::::::::::::::
underspecified

:::::::::::
parameters

::::
has

::
an

:::::::::::
incomplete

:::::::
lambda

:::::
type

::::
that

:::
can

:::
be

::::::::::
completed

:::
by

::::::::
function

:::
call

:::::::::::
arguments,

:::
or,

::
if

::
it

::::
has

::
no

:::::::::
captures,

:::
in

:
a
:::::::::::
conversion

::
to

::
a

:::::::
function

:::::::
pointer.

— A pointer type may be derived from a function type or an object type, called the referenced type. A
pointer type describes an object whose value provides a reference to an entity of the referenced
type. A pointer type derived from the referenced type T is sometimes called "pointer to T".
The construction of a pointer type from a referenced type is called "pointer type derivation".
A pointer type is a complete object type.

— An atomic type describes the type designated by the construct _Atomic(type-name). (Atomic
types are a conditional feature that implementations need not support; see 6.10.8.3.)

These methods of constructing derived types can be applied recursively.

21 Arithmetic types and pointer types are collectively called scalar types. Array and structure types are
collectively called aggregate types.52)

22 An array type of unknown size is an incomplete type. It is completed, for an identifier of that type,
by specifying the size in a later declaration (with internal or external linkage). A structure or union
type of unknown content (as described in 6.7.2.3) is an incomplete type. It is completed, for all
declarations of that type, by declaring the same structure or union tag with its defining content later
in the same scope.

23 A type has known constant size if the type is not incomplete and is not a variable length array type.

50)Not even a typeof type specifier with lambda type can be formed. So there is no syntax to make a lambda type a choice
in a generic selection other than default

51)Another possibility to create an object that has an effective lambda type is to copy a lambda value into allocated storage
via simple assignment.

52)Note that aggregate type does not include union type because an object with union type can only contain one member at
a time.

Language modifications to ISO/IEC 9899:2018, § 6.2.5 page 33

1

N2695 lambda-C17.. § 6.3.2.1, working draft — March 28, 2021 CORE 202101 (E)

the object. A modifiable lvalue is an lvalue that does not have array type, does not have an incomplete
type, does not have a const-qualified type, and if it is a structure or union, does not have any
member (including, recursively, any member or element of all contained aggregates or unions) with
a const-qualified type.

2 Except when it is the operand of the typeof specifier, the sizeof operator, the unary & operator,
the++ operator, the-- operator, or the left operand of the . operator or an assignment operator, an
lvalue that does not have array type is converted to the value stored in the designated object (and is
no longer an lvalue); this is called lvalue conversion. If the lvalue has qualified type, the value has the
unqualified version of the type of the lvalue; additionally, if the lvalue has atomic type, the value has
the non-atomic version of the type of the lvalue; otherwise, the value has the type of the lvalue. If the
lvalue has an incomplete type and does not have array type, the behavior is undefined. If the lvalue
designates an object of automatic storage duration that could have been declared with the register
storage class (never had its address taken), and that object is uninitialized (not declared with an
initializer and no assignment to it has been performed prior to use), the behavior is undefined.

3 Except when it is the operand of the typeof specifier, the unary sizeof operator, or the unary &
operator, or is a string literal used to initialize an array, an expression that has type "array of type" is
converted to an expression with type "pointer to type" that points to the initial element of the array
object and is not an lvalue. If the array object has register storage class, the behavior is undefined.

4 A function designator is an expression that has function type. Except when it is the operand of the
typeof specifier, the sizeof operator,72) or the unary & operator, a function designator with type
"function returning type" is converted to an expression that has type "pointer to function returning
type".

5 Closures
:::::
Other

:::::
than

::::::::
specified

:::
in

:::
the

::::::::::
following,

:::::::
lambda

:::::
types

:
shall not be converted to any other

object type. A
::::::::
complete

:
function literal with a type "lambda with prototype P" can be converted

implicitly or explicitly to an expression that has type "pointer to Q", where Q is a function type
that is compatible with P.73)

:::
For

::
a
:::::::::::
type-generic

::::::::
function

::::::
literal

::::::::::
expression,

::::::
types

::
of

::::::::::::::
underspecified

::::::::::
parameters

:::::
shall

::::
first

::
be

::::::::::
completed

:::::::::
according

:::
to

:::
the

::::::::::
parameters

:::
of

:::
the

::::::
target

:::::::::
prototype,

::::
that

:::
is,

:::
for

::::
each

::::::::::::::
underspecified

:::::::::
parameter

:::::
there

:::::
shall

::
be

::
a
::::
type

::::::::
specifier

::
of

::
a

::::::
unique

:::::
type

::
as

:::::::::
described

::
in

::::::
6.7.11

::::
such

::::
that

::::
the

::::::::
adjusted

::::::::::
parameter

:::::
type

::
is

:::
the

::::::
same

::
as

::::
the

::::::::
adjusted

::::::::::
parameter

:::::
type

::
of

::::
the

::::::
target

:::::::
function

::::::
type;

:::::
after

::::
that,

::::
the

:::::::::
prototype

::
P
:::
of

:::
the

:::::
thus

::::::::::
completed

:::::::
lambda

::::::::::
expression

:::::
shall

:::
be

::::
the

:::::
target

:::::::::
prototype

::
Q.74) The function pointer value behaves as if a function F of type P with internal

linkage, a unique name, and the same parameter list and function body as for λ, where uses of
identifiers from an outer scope in expressions that are not evaluated are replaced by proper types
or values, had been defined in the translation unit , and the function pointer had been formed by
function-to-pointer conversion of that function. The only difference is

:::::::::
differences

::::
are

::::
that,

::
if

:
λ
::
is
::::
not

::::::::::::
type-generic,

:::
the

::::::::
resulting

::::::::
function

:::::::
pointer

::
is

:::
the

:::::
same

:::
for

:::
the

::::::
whole

::::::::
program

::::::::::
execution

:::::::::
whenever

:
a
::::::::::
conversion

:::
of

:
λ
::
is
::::
met75)

:::
and

:
that the function pointer needs not necessarily to be distinct from

any other compatible function pointer that provides the same observable behavior.

Forward references: lambda expressions (6.5.2.6) address and indirection operators (6.5.3.2), assign-
ment operators (6.5.16), common definitions <stddef.h> (7.19), typeof specifier 6.7.9, initialization
(6.7.10), postfix increment and decrement operators (6.5.2.4), prefix increment and decrement opera-
tors (6.5.3.1), the sizeof and _Alignof operators (6.5.3.4), structure and union members (6.5.2.3).

:
,

::::
type

:::::::::
inference

:::::::
(6.7.11).

72)Because this conversion does not occur, the operand of the sizeof operator remains a function designator and violates
the constraints in 6.5.3.4.

73)It follows that lambdas of different type cannot be assigned to each other. Thus, in the conversion of a function literal to a
function pointer, the prototype of the originating lambda expression can be assumed to be known, and a diagnostic can be
issued if the prototypes do not aggree.

74)
:::
Thus

::
a
:::::::::
specification

::
of

:::
the

::::
target

:::::::
function

:::::
pointer

::::
type

::
in

:
a
::::::::
conversion

::::
from

:
a
::::::::::

type-generic
::::::
function

:::::
literal

::::::::
expression

:::
that

:::
uses

:::
the

:::
[*]:::::

syntax
::
for

:::
VM

:::::
types

:
is
::::::
invalid.

75)
:::
Thus

::
a
::::::
function

:::::
literal

:::
that

::
is

::
not

::::::::::
type-generic

:::
has

:::::::
properties

::::
that

::
are

::::::
similar

:
to
::

a
::::::
function

:::::::
declared

:::
with

::::::
static

:::
and

:

::::::
inline.

:
A
:::::::
possible

:::::::::::
implementation

::
of

:::
the

:::::
lambda

::::
type

:
is
::

to
::
be

:::
the

:::
the

::::::
function

:::::
pointer

::::
type

::
to

:::::
which

:::
they

::::::
convert.

Language modifications to ISO/IEC 9899:2018, § 6.3.2.1 page 41

2

CORE 202101 (E) § 6.5.1, working draft — March 28, 2021 lambda-C17.. N2695

— a type that is the signed or unsigned type corresponding to the effective type of the object,

— a type that is the signed or unsigned type corresponding to a qualified version of the effective
type of the object,

— an aggregate or union type that includes one of the aforementioned types among its members
(including, recursively, a member of a subaggregate or contained union), or

— a character type.

8 A floating expression may be contracted, that is, evaluated as though it were a single opera-
tion, thereby omitting rounding errors implied by the source code and the expression evalua-
tion method.100) The FP_CONTRACT pragma in <math.h> provides a way to disallow contracted
expressions. Otherwise, whether and how expressions are contracted is implementation-defined.101)

Forward references: the FP_CONTRACT pragma (7.12.2), copying functions (7.24.2).

6.5.1 Primary expressions
Syntax

1 primary-expression:
identifier
constant
string-literal
(expression)
generic-selection

Semantics
2 An identifier is a primary expression, provided it has been declared as designating an object (in

which case it is an lvalue) or a function (in which case it is a function designator).102)

3 A constant is a primary expression. Its type depends on its form and value, as detailed in 6.4.4.

4 A string literal is a primary expression. It is an lvalue with type as detailed in 6.4.5.

5 A parenthesized expression is a primary expression. Its type and value are identical to those of the
unparenthesized expression. It is an lvalue, a function designator,

:
a

:::::::
lambda

::::::::::
expression,

:
or a void

expression if the unparenthesized expression is, respectively, an lvalue, a function designator,
:
a

:::::::
lambda

::::::::::
expression,

:
or a void expression.

6 A generic selection is a primary expression. Its type and value depend on the selected generic
association, as detailed in the following subclause.

Forward references: declarations (6.7).

6.5.1.1 Generic selection
Syntax

1 generic-selection:
_Generic (assignment-expression , generic-assoc-list)

generic-assoc-list:
generic-association
generic-assoc-list , generic-association

generic-association:
type-name : assignment-expression

100)The intermediate operations in the contracted expression are evaluated as if to infinite range and precision, while the
final operation is rounded to the format determined by the expression evaluation method. A contracted expression might
also omit the raising of floating-point exceptions.
101)This license is specifically intended to allow implementations to exploit fast machine instructions that combine multiple

C operators. As contractions potentially undermine predictability, and can even decrease accuracy for containing expressions,
their use needs to be well-defined and clearly documented.
102)Thus, an undeclared identifier is a violation of the syntax.

modifications to ISO/IEC 9899:2018, § 6.5.1.1 page 58 Language

3

N2695 lambda-C17.. § 6.5.2, working draft — March 28, 2021 CORE 202101 (E)

default : assignment-expression

Constraints
2 A generic selection shall have no more than one default generic association. The type name in a

generic association shall specify a complete object type other than a variably modified type. No two
generic associations in the same generic selection shall specify compatible types. The type of the
controlling expression is the type of the expression as if it had undergone an lvalue conversion,103)

array to pointer conversion, or function to pointer conversion. That type shall be compatible with at
most one of the types named in the generic association list. If a generic selection has no default
generic association, its controlling expression shall have type compatible with exactly one of the
types named in its generic association list.

Semantics
3 The controlling expression of a generic selection is not evaluated. If a generic selection has a generic

association with a type name that is compatible with the type of the controlling expression, then the
result expression of the generic selection is the expression in that generic association. Otherwise, the
result expression of the generic selection is the expression in the default generic association. None
of the expressions from any other generic association of the generic selection is evaluated.

4 The type and value of a generic selection are identical to those of its result expression. It is an lvalue, a
function designator,

:
a

:::::::
lambda

::::::::::
expression,

:
or a void expression if its result expression is, respectively,

an lvalue, a function designator,
:
a
::::::::
lambda

::::::::::
expression,

:
or a void expression. A generic selection that

is the operand of a typeof specification behaves as if the selected assignment expression had been
the operand.

5 EXAMPLE The cbrt type-generic macro could be implemented as follows:

#define cbrt(X) _Generic((X), \
long double: cbrtl, \
default: cbrt, \
float: cbrtf \
)(X)

6.5.2 Postfix operators
Syntax

1 postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (argument-expression-listopt)
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression -
(type-name) { initializer-list }
(type-name) { initializer-list , }
lambda-expression

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

103)An lvalue conversion drops type qualifiers.

Language modifications to ISO/IEC 9899:2018, § 6.5.2 page 59

4

CORE 202101 (E) § 6.5.2.6, working draft — March 28, 2021 lambda-C17.. N2695

capture:
identifier

parameter-clause:
(parameter-listopt)

Constraints
2 A capture that is listed in the capture list is an explicit capture. If the capture clause is [=], id is the

name of an object with automatic storage duration in a surrounding scope that is not an array, id is
used within the function body of the lambda without redeclaration and id is not a parameter, the
effect is as if a capture list had been specified with id as a member. Such a capture is an implicit
capture.

3 Captures without assignment expression shall be names of complete objects with automatic storage
duration in a scope surrounding the lambda expression that do not have array type and that are
visible at the point of evaluation of the lambda expression. An identifier shall appear at most once;
either as an explicit capture or as a parameter name in the parameter type list.

4 Within the lambda expression, identifiers (including explicit and implicit captures, and parameters
of the lambda) shall be used according to the usual scoping rules, but outside the assignment
expression of a value capture the following exceptions apply to identifiers that are declared in a
scope that strictly includes the lambda expression:

— Objects or type definitions with VM type shall not be used.

— Objects with automatic storage duration shall not be evaluated.114)

5 The
:::::
After

::::::::::::
determining

::::
the

:::::
type

::
of

::::
all

::::::::
captures

::::
and

::::::::::::
parameters,

::::::
either

::::::::
directly

:::
or

::::::::
because

::
a

:::::::::::
type-generic

:::::::
lambda

::::::::
appears

::
in

:
a
::::::::::::
function-call

::
or

:::::::::::
conversion

::
to

::::::::
function

:::::::
pointer,

:::
the

:
function body

shall be such that a return type type according to the rules in 6.8.6.4 can be inferred.
:
If
::::
the

:::::::
lambda

::::::
occurs

::
in

::
a
::::::::::
conversion

:::
to

::
a

::::::::
function

:::::::
pointer,

::::
the

::::::::
inferred

::::::
return

::::
type

:::::
shall

:::
be

:::::::::::
compatible

::
to

::::
the

::::::::
specified

::::::
return

::::
type

:::
of

:::
the

::::::::
function

::::::::
pointer;

:
if
::::::::::::
additionally

:::
the

:::::::
lambda

::
is

::::::::::::
type-generic,

::::
the

::::::
return

::::
type

:::::
shall

::
be

:::
the

::::::
same

::
as

:::
the

::::::::
specified

:::::::
return

::::
type.

:

6
:::::
When

::
a
:::::::
lambda

::::::::::
expression

:::::
with

:::
an

::::::::::::::
underspecified

::::::::::
parameter

::
is

:::::::::
evaluated

:::
as

::
a

::::
void

:::::::::::
expression,

:::
the

:::::::
capture

::::::
clause

:::::
shall

:::::
fulfill

:::
the

:::::::::::
constraints

::
as

::::::::
specified

:::::::
above.

::::
The

:::::::::::::
parenthesized

::::::::::
parameter

:::
list

::::
shall

::::::::
provide

:
a
::::::

valid
:::
list

::
of

::::::::::::
declarations

::
of

:::::::::::
parameters,

:::::
only

::::
that

::::
one

::
or

::::::
more

::
of

:::::
these

:::::
may

:::::
have

::
an

::::::::::::::
underspecified

:::::
type.

:::::
After

:::::
that

::::
shall

:::::::
follow

:
a
::
{

::::::
token,

::
a

::::::::
balanced

::::::
token

::::::::
sequence

::::
(??),

::::
and

::
a
::
}

:::::
token.115)

Semantics
7 The optional attribute specifier sequence in a lambda expression appertains to the resulting lambda

value. If the parameter clause is omitted, a clause of the form () is assumed. A lambda expression
without any capture is called a function literal expression, otherwise it is called a closure expression. A
lambda value originating from a function literal expression is called a function literal, otherwise it is
called a closure.

8 Similar to a function definition, a lambda expression forms a single block scope that comprises its
capture clause, its parameter clause and its function body. Each explicit capture and parameter has a
scope of visibility that starts immediately after its definition is completed and extends to the end
of the function body. The scope of visibility of implicit captures is the function body. In particular,

114)Identifiers of visible automatic objects that are not captures and that do not have a VM type, may still be used if they are
not evaluated, for example in sizeof expressions, in typeof specifiers (if they are not lambdas themselves) or as controlling
expression of a generic primary expression.
115)

:::
That

::::::
means,

:::::
besides

:::
the

::::::
validity

::
of

:::
the

::::::
capture

:::::
clause

:::
and

:::
the

::::::::
parameter

:::
list,

::
an

::::::::::::
implementation

:
is
::::

only
:::::::
required

::
to

::::
parse

:::
the

::::::
function

::::
body

::
as

:
a
:::::
token

:::::::
sequence

::
but

::
is
:::
not

::::::
required

::
to
:::::::
diagnose

::::::::
additional

::::::::
constraints,

::::
such

::
as

:::
the

::::::
validity

::
of

::
the

:::
use

::
of

::::::::
keywords

:
or
::::::::

identifiers
:::::
within

:::
the

::::::
function

:::::
body

:
if
::::
these

:::
are

::::::
possibly

:::::::
restricted

:::::::
through

:
a
:::::
syntax

::::::::
derivation

::
or

:::::::
additional

:::::::::
constraints.

modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 66 Language

5

N2695 lambda-C17.. § 6.5.2.6, working draft — March 28, 2021 CORE 202101 (E)

captures and parameters are visible throughout the whole function body, unless they are redeclared
in a depending block within that function body. Captures

:::::
Value

::::::::
captures and parameters have

automatic storage duration; in each function call to the formed lambda value, a new instance of
each

:::::
value

:
capture and parameter is created and initialized in order of declaration and has a lifetime

until the end of the call, only that the addresses of captures are not necessarily unique.

9
::
A

:::::::
lambda

::::::::::
expression

:::
for

::::::
which

::
at

::::
least

::::
one

::::::::::
parameter

::::::::::
declaration

::
in

:::
the

::::::::::
parameter

:::
list

::::
has

::
no

:::::
type

:::::::
specifier

::
is
::

a
:
type-generic lambda

::::
with

:::
an

:::::::::::
imcomplete

:::::::
lambda

:::::
type.

::
It
:::::
shall

:::::
only

::
be

::::::::::
evaluated

::
as

::
a

::::
void

::::::::::
expression,

:::
be

:::
the

:::::::
postfix

::::::::::
expression

::
of

:
a
::::::::
function

::::
call

:::
or,

:
if
:::
the

::::::::
capture

::::::
clause

:
is
:::::::
empty,

::
be

::::
the

:::::::
operand

:::
of

:
a
:::::::::::

conversion
::
to

::
a
:::::::
pointer

::
to

::::::::
function

:::::
with

:::::
fully

::::::::
specified

::::::::::
parameter

::::::
types,

:::
see

:::::::
6.3.2.1.

:::
For

::
a

::::
void

:::::::::::
expression,

::
it
::::
has

:::::
only

:::
the

::::
side

:::::::
effects

::::
that

::::::
result

:::::
from

:::
the

::::::::::
evaluation

:::
of

:::
the

::::::::
capture

:::::
clause

::::
and

:::::
shall

:::
be

::::::::::::
syntactically

::::::
correct

:::
as

::::::::
indicated

:::
in

:::
the

:::::::::::
constraints;

:::
the

::::::::::
translation

:::::
may

::::
fail,

::
if

:::
the

::::::::
function

:::::
body

::
is

::::
such

::::
that

:::
no

::::::::
possible

::::::::
function

:::
call

::::::::::
arguments

:::
or

::::::
target

:::::
types

:::
for

:
a
:::::::::::

conversion

:::::
could

:::::::::::
successfully

:::::::::
complete

:::
the

:::::::
lambda

:::::
type;

:::
the

::::::::
lambda

:::::::::
expression

:::::
shall

:::::::::
otherwise

:::
be

::::::::
ignored.

10
:::
For

::
a

::::::::
function

::::
call,

:::
the

:::::
type

:::
of

::
an

::::::::::
argument

:::::
(after

:::::::
lvalue,

:::::::::::::::
array-to-pointer

::
or

::::::::::::::::::
function-to-pointer

::::::::::
conversion)

:::
to

::
an

::::::::::::::
underspecified

:::::::::
parameter

:::::
shall

::
be

:::::
such

::::
that

::
it

:::
can

:::
be

::::
used

::
to

:::::::::
complete

:::
the

:::::
type

::
of

:::
that

::::::::::
parameter

::::::::::
analogous

::
to

::::::
6.7.11,

::::
only

::::
that

:::
the

::::::::
inferred

::::
type

:::
for

:::
an

:::::::::
parameter

::
of

::::::
array

::
or

::::::::
function

::::
type

::
is

::::::::
adjusted

:::::::::::
analogously

:::
to

::::::::
function

::::::::::
declarators

::::::::
(6.7.6.3)

::
to

::
a

::::::::
possibly

::::::::
qualified

::::::
object

:::::::
pointer

::::
type

::::
(for

::
an

::::::
array)

:::
or

::
to

:
a
::::::::
function

:::::::
pointer

:::::
type

:::
(for

::
a

::::::::
function)

:::
to

::::::
match

::::
type

::
of

::::
the

:::::::::
argument.

::::
For

:
a
::::::::::
conversion

::
of

::::
any

:::::::::::
arguments,

:::
the

::::::::::
parameter

:::::
types

:::::
shall

::
be

:::::
those

:::
of

:::
the

::::::::
function

:::::
type.

11 If a capture id is defined without an assignment expression, the assignment expression is assumed
to be id itself, referring to the object of automatic storage duration of the surrounding scope that
exists according to the constraints.116)

12 The implicit or explicit assignment expression E in the definition of a value capture determines
a value E0 with type T0, which is E after possible lvalue, array-to-pointer or function-to-pointer
conversion. The type of the capture is T0 const and its value is E0 for all evaluations in all function
calls to the lambda value. If, within the function body, the address of the capture id or one of
its members is taken, either explicitly by applying a unary & operator or by an array to pointer
conversion,117) and that address is used to modify the underlying object, the behavior is undefined.

13 The evaluation of the explicit or implicit assignment expressions of value captures takes place
during each evaluation of the lambda expression. The evaluation of assignment expressions for
explicit value captures is sequenced in order of declaration; an earlier capture may occur within an
assignment expression of a later one. The objects of automatic storage duration corresponding to
implicit value captures are evaluated unsequenced among each other. The evaluation of a lambda
expression is sequenced before any use of the resulting lambda value. For each call to a lambda
value, explicit value captures (with type and value as determined during the evaluation of the
lambda expression) and then parameter types and values are determined in order of declaration.
Explicit value captures and earlier parameters may occur within the declaration of a later one.

14 For each lambda expression, the return type type is inferred as indicated in the constraints. A lambda
expression λ

:::
that

::
is
::::
not

:::::::::::
type-generic

:
has an unspecified lambda type L that is the same for every

evaluation of λ. As ;
:::
as a result of the expression, a value of type L is formed that identifies λ and the

specific set of values of the identifiers in the capture clause for the evaluation, if any. This is called a
lambda value. It is unspecified, whether two lambda expressions λ and κ share the same lambda type
even if they are lexically equal but appear at different points of the program. Objects of lambda type
shall not be modified.

15
::
A

:::::::
lambda

::::::::::
expression

:
λ

:::
that

:::
is

:::::::
generic

::::
has

:::
an

::::::::::
incomplete

::::::::
lambda

::::
type

:::::
that

::
is

::::::::::
completed

::::::
when

:::
the

::::::::::
expression

::
is
:::::

used
::::::::

directly
::
in

::
a
::::::::

function
::::

call
:::::::::::

expression
::
or

::::::::::
converted

::
to

::
a
::::::::

function
::::::::

pointer.

:::::
When

:::::
used

:::
in

:
a
::::::::

function
:::::

call,
:::
the

::::::::::
parameter

::::::
types

:::
are

::::::::
inferred

::
in

::::::
order

::
of

:::::::::::
declaration,

::::
but

:::::
after

:::
the

::::::::::
evaluation

::
of

:::
the

:::::::::::
assignment

:::::::::::
expressions

::
of

::::
the

:::::::
explicit

:::::
value

:::::::::
captures,

::::
after

::::::
which

::::
the

::::::
return

::::
type

::
of

:::
the

::::::::
lambda

:
is
::::::::
inferred

:::::
from

:::
the

::::::::
function

:::::
body.

::::
The

::
so

::::::::::
completed

:::::::
lambda

::::::
value

::
is

::::
then

:::::
used

::
in

:::
the

::::::::
function

:::
call

::::::
which

::
is
::::::::::
sequenced

:::::
after

:::
the

::::::::::
evaluation

::
of

:::
the

::::::::
lambda

::::::::::
expression.

:

116)The evaluation rules in the next paragraph then stipulate that it is evaluated at the point of evaluation of the lambda
expression, and that within the body of the lambda an unmutable auto object of the same name, value and type is made
accesssible.
117)The capture does not have array type, but if it has a union or structure type, one of its members may have such a type.

Language modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 67

6

N2695 lambda-C17.. § 6.5.2.6, working draft — March 28, 2021 CORE 202101 (E)

19 EXAMPLE 3
::::::
Consider

:::
the

:::::::
following

::::::::::
type-generic

::::::
function

:::::
literal

:::
that

:::::::
computes

:::
the

::::::::
maximum

::::
value

::
of

:::
two

::::::::
parameters

::
X

:::
and

:
Y.
:

:
#
::::::
define

::::::::
MAXIMUM

:
(

:
X,

::
Y
:
)
: ::::::::::::::::::::::::::::: :

\

:::::::
[](

::::
auto

::
a

:
,

::::
auto

::
b
:
)
:
{
: ::::::::::::::::::::::::::: :

\

::::::::::::
return

::
(

:
a

::
<

::
0)

: :::::::::::::::::::::::::::::: :
\

::::::::::::::
?

:::
((b

::
<
: :::

0)
::
?
:::
((

:
a
::
<
::
b
:
)
::
?
::
b
::
:
::
a
:
)

::
:

::
b

:
)

::::
\

::::::::::::::
:

:::
((b

:::
>=

:::
0)

::
?
:::
((

:
a
::
<
::
b
:
)
::
?
::
b
::
:
::
a
:
)

::
:

::
a

:
)

:
;

:::
\

::::::
}(

:
X
::
,

::
Y

:
)

::::::::
auto

::
R

::
=

:::::::
MAXIMUM

::::
(-1,

:::
-1

:
U
:
)
:
;

::::::::
auto

::
S

::
=

:::::::
MAXIMUM

:::
(-1

:
U
:
,
:::
-1

:
L
:
)
:
;

::::
After

::::::::::
preprocessing,

:::
the

:::::::
definition

::
of

::
R,

::::::
becomes

:

::::
auto

::
R
::
=
::::
[](

::::
auto

:
a
:
,
:::::
auto

::
b
:
)
:
{

::::::::
return

::
(

:
a

::
<

:::
0)

::::::
?
:::
((

:
b

::
<

:: ::
0)

:
?
:::
((

:
a
::
<
::
b
:
)
::
?
::
b
::
:
::
a
:
)
::
:
::
b
:
)

::::::
:
:::
((

:
b

:::
>=

:::
0)

:
?
:::
((

:
a
::
<
::
b
:
)
::
?
::
b
::
:
::
a
:
)
::
:
::
a
:
)
:
;

:::::::
}(-1,

:::
-1

:
U

:
)

:
;

::
To

:::::::
determine

::::
type

:::
and

:::::
value

::
of

:
R,
::::

first
::
the

::::
type

::
of

:::
the

::::::::
parameters

::
in

:::
the

::::::
function

:::
call

:::
are

::::::
inferred

::
to

::
be

:::::::::
signed int

:::
and

:

:::::::::::
unsigned int,

:::::::::
respectively.

::::
With

:::
this

:::::::::
information,

:::
the

:::
type

::
of

::
the

::::::
return

::::::::
expression

::::::
becomes

:::
the

:::::::
common

:::::::
arithmetic

::::
type

:
of
:::

the
::::
two,

::::
which

::
is
:::::::::::
unsigned int.

::::
Thus

:::
the

:::::
return

:::
type

::
of

:::
the

::::::
lambda

:
is
:::
that

::::
type.

::::
The

::::::
resulting

::::::
lambda

::::
value

::
is

:::
the

:::
first

::::::
operand

::
to

::
the

:::::::
function

:::
call

::::::
operator

:::
().

::
So

:
R
:::
has

::
the

::::
type

:::::::::::
unsigned int

:::
and

:
a
::::
value

::
of

::::::::
UINT_MAX.

::
For

::
S,

:
a
::::::
similar

:::::::
deduction

:::::
shows

:::
that

:::
the

::::
value

:::
still

::
is

:::::::
UINT_MAX

:::
but

::
the

::::
type

::::
could

::
be

:::::::::::
unsigned int

::
(if

:::
int

:::
and

::::
long

::::
have

::
the

::::
same

:::::
width)

::
or
::::
long

::
(if

::::
long

::
is

::::
wider

::::
than

::::
int).

::
As

::::
long

:
as
::::

they
:::
are

::::::
integers,

::::::::
regardless

:
of
:::

the
::::::
specific

:::
type

::
of

:::
the

::::::::
arguments,

:::
the

:::
type

::
of
:::
the

::::::::
expression

:
is
::::::

always
::::
such

:::
that

::
the

::::::::::
mathematical

::::::::
maximum

::
of

:::
the

:::::
values

:::
fits.

::
So

::::::
MAXIMUM

:::::::::
implements

::
a

:::::::::
type-generic

::::::::
maximum

::::
macro

::::
that

:
is
::::::
suitable

:::
for

:::
any

:::::::::
combination

::
of

:::::
integer

::::
types.

20 EXAMPLE 4

void matmult(size_t k, size_t l, size_t m,
double const A[k][l], double const B[l][m], double const C[k][m]) {

// dot product with stride of m for B
// ensure constant propagation of l and m
auto const λδ = [l,m](double const v[l], double const B[l][m], size_t m0) {
double ret = 0.0;
for (size_t i = 0; i < l; ++i) {
ret += v[i]*B[i][m0];

}
return ret;

};
// vector matrix product
// ensure constant propagation of l and m, and accessibility of λδ
auto const λµ = [l, m, λδ](double const v[l], double const B[l][m], double res[m]) {
for (size_t m0 = 0; m0 < m; ++m0) {
res[m0] = λδ(v, B, m0);

}
};
for (size_t k0 = 0; k0 < k; ++k0) {
double const (*Ap)[l] = A[k0];
double (*Cp)[m] = C[k0];
λµ(*Ap, B, *Cp);

}
}

This function evaluates two closures; λδ has a return type of double, λµ of void. Both lambda values serve repeatedly as
first operand to function evaluation but the evaluation of the captures is only done once for each of the closures. For the
purpose of optimization, an implementation could generate copies of the underlying functions for each evaluation of such a
closure such that the values of the captures l and m are replaced on a machine instruction level.

Language modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 69

7

CORE 202101 (E) § 6.7.6.3, working draft — March 28, 2021 lambda-C17.. N2695

}

Forward references: function declarators (6.7.6.3), function definitions (6.9.1), initialization (6.7.10).

6.7.6.3 Function declarators (including prototypes)
Constraints

1 A function declarator shall not specify a return type that is a function type or an array type.

2 The only storage-class specifier
::::::::
specifiers that shall occur in a parameter declaration is

:::
are

:::::
auto

::::
and

register.

3 An identifier list in a function declarator that is not part of a definition of that function shall be
empty.

::
A

:::::::::
parameter

:::::::::::
declaration

:::::::
without

:::::
type

::::::::
specifier

:::::
shall

:::
not

:::
be

:::::::
formed,

:::::::
unless

:
it
::::::::
includes

::::
the

::::::
storage

:::::
class

::::::::
specifier

:::::
auto

::::
and

::::::
unless

::
it

:::::::
appears

::
in

::::
the

:::::::::
parameter

:::
list

:::
of

:
a
:::::::
lambda

:::::::::::
expression.

4 After adjustment, the parameters in a parameter type list in a function declarator that is part of a
definition of that function shall not have incomplete type.

Semantics
5 If, in the declaration "T D1", D1 has the form

D (parameter-type-list)
or

D (identifier-listopt)

and the type specified for ident in the declaration "T D" is "derived-declarator-type-list T", then the
type specified for ident is "derived-declarator-type-list function returning the unqualified version of T".

6 A parameter type list specifies the types of, and may declare identifiers for, the parameters of the
function.

7 A
:::::
After

:::
the

:::::::::
declared

:::::
types

:::
of

:::
all

::::::::::
parameters

:::::
have

:::::
been

:::::::::::
determined

:::
in

:::::
order

:::
of

:::::::::::
declaration,

::::
any

declaration of a parameter as "array of type" shall be adjusted to "qualified pointer to type", where
the type qualifiers (if any) are those specified within the [and] of the array type derivation. If the
keyword static also appears within the [and] of the array type derivation, then for each call to
the function, the value of the corresponding actual argument shall provide access to the first element
of an array with at least as many elements as specified by the size expression.

8 A declaration of a parameter as "function returning type" shall be adjusted to "pointer to function
returning type", as in 6.3.2.1.

9 If the list terminates with an ellipsis (, ...), no information about the number or types of the
parameters after the comma is supplied.159)

10 The special case of an unnamed parameter of type void as the only item in the list specifies that the
function has no parameters.

11 If, in a parameter declaration, an identifier can be treated either as a typedef name or as a parameter
name, it shall be taken as a typedef name.

12 If the function declarator is not part of a definition of that function, parameters may have incomplete
type and may use the [*] notation in their sequences of declarator specifiers to specify variable
length array types.

13 The storage-class specifier in the declaration specifiers for a parameter declaration, if present, is
ignored unless the declared parameter is one of the members of the parameter type list for a function
definition.

14 An identifier list declares only the identifiers of the parameters of the function. An empty list in
a function declarator that is part of a definition of that function specifies that the function has no
parameters. The empty list in a function declarator that is not part of a definition of that function

159)The macros defined in the <stdarg.h> header (7.16) can be used to access arguments that correspond to the ellipsis.

modifications to ISO/IEC 9899:2018, § 6.7.6.3 page 104 Language

8

N2695 § 6.7.11, working draft — March 28, 2021 CORE 202101 (E)

of the same rank and signedness but that are nevertheless different types shall not be considered.171)

If the assignment-expression is the evaluation of a bit-field designator, the inferred type shall be the
standard integer type that would be chosen by a generic primary expression with the that bit-field as
controlling expression. If type is a VM type, the variable array bounds shall be such that the declared
types for all defined objects and their assignment expression correspond as required for all possible
executions of the current function.

::
If
::::
the

::::::::::
assignment

::::::::::
expression

::::
has

:::::::
lambda

:::::
type,

:::
the

:::::::
lambda

:::::
type

::::
shall

:::
be

:::::::::
complete,

:::
the

::::::::::
declaration

:::::
shall

::::
only

::::::
define

::::
one

::::::
object

:::
and

:::::
shall

::::
only

:::::::
consist

::
of

:::::::
storage

:::::
class

:::::::::
specifiers,

:::::::::
qualifiers,

:::
the

:::::::::
identifier

::::
that

::
is

::
to

:::
be

::::::::
declared,

::::
and

:::
the

:::::::::
initializer.

Description
6 Although there is no syntax derivation to form declarators of lambda type, values of lambda type

can be used as assignment expression and the inferred type is that lambda type, possibly qualified.
Otherwise, provided the constraints above are respected, in an underspecified declaration the type
of the declared identifiers is the type after the declaration would have been adjusted by a choice for
type as described. If the declaration is also an object definition, the assignment expressions that are
used to determine types and initial values of the objects are evaluated at most once; the scope rules
as described in 6.2.1 then also prohibit the use of the identifier of an object within the assignment
expression that determines its type and initial value.

7 NOTE 1 Because of the relatively complex syntax and semantics of type specifiers, the requirements for type use a typeof
specifier. If for example the identifier or tag name of the type of the initializer expression v in the initializer of x is shadowed

auto x = v;

a type type as required can still be found and the definition can be adjusted as follows:

typeof(v) x = v;

Such a possible adjustment not withstanding, if v is a VM type, the requirements ensure that v is evaluated at most once.

8 NOTE 2 The scope of the identifier for which the type is inferred only starts after the end of the initializer (6.2.1), so the
assignment expression cannot use the identifier to refer to the object or function that is declared, for example to take its
address. Any use of the identifier in the initializer is invalid, even if an entity with the same name exists in an outer scope.

{
double a = 7;
double b = 9;
{
double b = b * b; // error, RHS uses uninitialized variable
printf("%g\n", a); // valid, uses "a" from outer scope, prints 7
auto a = a * a; // error, "a" from outer scope is already shadowed

}
{
auto b = a * a; // valid, uses "a" from outer scope
auto a = b; // valid, shadows "a" from outer scope
...
printf("%g\n", a); // valid, uses "a" from inner scope, prints 49

}
...

}

9 NOTE 3 Declarations that are the definition of several objects, may make type inferrence difficult and not portable.

enum A { aVal, } aObj = aVal;
enum B { bVal, } bObj = bVal;
int au = aObj, bu = bObj; // valid, values have type compatible to int
auto ax = aObj, bx = bObj; // invalid, same rank but different types
auto ay = aObj; // valid, ay has type enum A
auto by = bObj; // valid, by has type enum B
auto az = aVal, bz = bVal; // valid, az and bz have type int

171)This can for example be two different enumerated types that are compatible to the same basic type. Note nevertheless,
that enumeration constants have type int, so using these will never lead to the inference of an enumerated type.

Language modifications to ISO/IEC 9899:2018, § 6.7.11 page 115

9

	Motivation
	Design choices
	Permissible contexts for type-generic lambdas
	Parameter type inference

	Syntax and terminology
	Semantics
	Constraints and requirements
	Questions for WG14
	References
	Proposed wording

