
ISO/IEC JTC 1/SC 22/WG14
WG 21, SG 22

2021-3-31

N2692 v3
P2312R1

Introduce the nullptr constant
proposal for C23

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

Since more than a decade C++ has already replaced the problematic definition of NULL which might be either

of integer type or void*. By using a new constant nullptr, they achieve a more constrained specification,
that allows much better diagnosis of user code. We propose to integrate this concept into C as far as possible

by imposing only minimal ABI additions.
This is a follow-up of N2394 (which has been a split-off of N2368) that builds on the approval of N2654

and N2655.

Changes:

v3/R1. this document, integrating feedback from different sources
— make the type of nullptr incomplete and incompletable

— move most of the type information to nullptr itself and insist that it has as type that is different

from any other standard type or type that could be defined by users code
— since nullptr does not have a scalar type, add it explicitly to contexts such as if or similar that so

far only had scalars

— change the adjustment rules to result in int of value 0 and 1 for contexts where logical evaluation
still has that type

— insist that the first operand of a ternary or comma expression is evaluated

— insist that primary expressions such as () or _Generic also are constant expressions or null pointer
constants if the respective operands are

— add nullptr_t to generic selection
— don’t allow nullptr_t as the last parameter before a ...
— only allow nullptr_t parameters without names

v2/R0. a complete rewrite as a proper language feature instead of a shallow macro solution

1. INTRODUCTION

The macro NULL that goes back quite early, was meant to provide a tool to specify a null
pointer constant such that it is easily visible and such that it makes the intention of the
programmer to specifier a pointer value clear. Unfortunately, the definition as it is given in
the standard misses that goal, because the constant that is hidden behind the macro can
be of very different nature.
A null pointer constant can be any integer constant of value 0 or such a constant converted
to void*. Thereby several types are possible for NULL. Commonly used are 0 with int, 0L
with long and (void*)0 with void*.

(1) This may lead to surprises when invoking a type-generic macro with a NULL argument.
(2) Conditional expressions such as (1 ? 0 : NULL) and (1 ? 1 : NULL) have different sta-

tus depending how NULL is defined. Whereas the first is always defined, the second is a
constraint violation if NULL has type void*, and defined otherwise.

(3) A NULL argument that is passed to a va_arg function that expects a pointer can have
severe consequences. On many architectures nowadays int and void* have different size,
and so if NULL is just 0, a wrongly sized arguments is passed to the function.

2. POSSIBLE SPECIFICATIONS FOR A MORE RESTRICTIVE NULL POINTER CONSTANT

Because of such problems, C++ has long shifted to a different setting, namely the keyword
nullptr. They use a special type nullptr_t for this constant, which allows to analyze and
constrain the use of the constant more precisely:

© 2021 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2394.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2368.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2654.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2655.pdf

N2692
P2312R1

:2 Jens Gustedt

— The constant can only be used in specific contexts, namely for conversion to pointer
type, initialization, assignment and equality testing. It cannot be used in arithmetic or
comparison.

— This type cannot be converted to an arithmetic type.
— No object can be created with this type.

In addition, a specific nullptr_t type allows C++ to provide neat overloading facilities
such that optimized versions of functions can be accessed when their argument is a null
pointer constant.
WG14 has expressed a clear position (15-1-1) to introduce the nullptr constant into the
C language, but the path to achieve that as proposed in N2394 was considered not to go
far enough. So instead of a primarily macro facility, we now propose a typed solution, that
is capable to do most deductions at translation time and that also integrates well with C’s
_Generic feature.

3. DESIGN CHOICES

The most important choice in the design of the new feature is to draw the line between
properties of the nullptr constant and its type, nullptr_t. It seemed to us that the most
important feature here is the nullptr constant itself, and that the type is of much less
importance. Therefore we opted to attach most properties to the constant; otherwise all
places in the standard that make sophisticated choices according to a null pointer constant
and/or about a type void* would have to be amended.
To avoid having to talk too much about the type of nullptr and expressions with that type
we chose to adjust expressions that contain nullptr as much as possible, see Table I.

Table I. Proposed adjustment rules for nullptr expressions

expression adjustment context
(nullptr) nullptr
_Generic(X, T: nullptr, ...) nullptr if X has type T
nullptr 0 controlling expression for if, do,

for, while, && and || operators
nullptr != nullptr 0
nullptr false conversion to bool
!nullptr 1
nullptr == nullptr 1
x ? nullptr : nullptr nullptr x is evaluated, result may not
x , nullptr be a null pointer constant

Otherwise, nullptr is only allowed where a null pointer constant is converted to a pointer
type, namely, pointer equality, pointer initialization and pointer assignment, including func-
tion arguments for functions with a pointer parameter in their prototype. Forbidden are the
following uses.

— operand of an arithmetic operator,
— operand of relational comparison,
— as second or third operand in a ?: choice, unless the other expression has pointer type,
— any conversion to a type other than a pointer type or bool,
— initialization or assignment other than for a pointer type,
— argument to a function parameter without prototype.

Only once these choices have been made, we have to minimally design the nullptr_t such
that it is usable in generic selection and function declaration. Thereby it can be used to

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2394.pdf

Introduce the nullptr constant
N2692
P2312R1

:3

improve the possibility of translation time choices through existing C features for type-
generic programming.
As a consequence:

— Declarations of objects of type nullptr_t are only allowed for function parameters.
— Even if defined as a function parameter such an object cannot be named.

By this tricks we avoid any difficulties that could arise if the representation of such an object
would be manipulated. There is no need for a specification of trap representations for the
type, the sizeof and alignof operators cannot be applied, and the type cannot be used for
the last parameter before a ... list or as an argument to such a list. Also, necessary ABI
additions are minimized. The only specification that implementations have to agree upon is
if a parameter of such a type is passed along, and, if it even is, the size or hardware register
for such a parameter.

4. PROPOSED CHANGES

4.1. nullptr

First, we have to anchor nullptr in the syntax. This is not very difficult and requires
additions of nullptr to 6.4.1 p1 and p2, 6.4.4.5 p1, 6.10.8.1 and Annex A.
The most important change is a new clause (6.5.4.4.2) that describes the main properties
of the new constant. In particular it describes the main mechanism according to which it is
used:

p1 is a list of contexts where expressions with nullptr are adjusted to simplify them at
translation time, and that lead to null pointer constants or integer constant expressions

p2 gives two contexts that can lead to expressions of the same type and value as nullptr,
but that are not necessarily null pointer constants.

p3 is a list of contexts in which nullptr is allowed after such adjustments.

The description part (p4) then describes the type of that constant. Namely it is an incom-
plete type that cannot be used in much other contexts than conversion to a pointer type and
can be used with none of the usual type derivations. None of this specification makes use of
the nullptr_t name, such that the decision to add that or not can be made independently.
Because the type is incomplete it follows that nullptr cannot be used for lvalue conversion,
sizeof, alignof, alignas, declarations, arithmetic etc.
It also cannot be used as function parameter and in _Generic, but that restriction is lifted
below if we introduce nullptr_t.
Then, some special arrangments are necessary:

(1) For pointer conversion (6.3.2.3) we add it to the list of null pointer constants.
(2) A note (6.4.4.5.2 p6) explains the contexts in which nullptr is not allowed by the

constraints. In particular, for default function argument promotions we stipulate that
nullptr is not a valid argument.

(3) We make the special provisions for nullptr constants that are adjusted, operator !
(6.5.3.3 p1), equality (6.5.9 p2 and new p5), operator && (6.5.13), operator || (6.5.14),
conditional operator (6.5.15 p3 and new p6).

(4) Also rules for the controlling expressions of if (6.8.4.1 p1 and p2) and iterations state-
ments (6.8.5 p2 and p4) adapted.

Note that at this point the function call operator needs no change, because nullptr argu-
ments to pointer parameters are already covered by conversion.
As an optional change we add a new clause (6.11.3) to mark other constructs for null pointer
constants obsolescent.

N2692
P2312R1

:4 Jens Gustedt

4.2. nullptr_t

In this proposal the type nullptr_t only plays a minor role and is only needed for user code
that explicitly requests it. Therefore we propose to add it as semantic type to <stddef.h>
much as size_t or ptrdiff_t (7.19 p2). The very few details of this type then are added
in a new subclause (7.19.1).
The presentation of the new type is then accomplished by a sequence of three examples
that illustrate the connection of nullptr_t and _Generic.
The intent is to use this type for type-generic interfaces, so special provisions are added to
_Generic (6.5.1 p2), function calls (6.5.2.2 p2) and function declarators (6.7.6.3 p10).

4.3. NULL

Another set of changes concern NULL. The new constant nullptr is introduced to phase
this one out, so NULL should be deprecated and replaced (7.19 p3 and new p5, 7.31.12).
In the future even existing usage of NULL should provide all the possible diagnostics, so its
expansion should preferably be set to nullptr (7.19 p5).
In addition, all uses of NULL should be replaced by nullptr. These changes are mainly text
replacement, so we don’t list them in the diffmarks, below.

5. QUESTIONS FOR WG14

As WG14 has already clearly expressed the wish to add nullptr to the C standard, we
don’t repeat that question here.

Question 1. Does WG14 want to integrate nullptr as proposed in N2692 into C23?

Question 2. Does WG14 want to have a nullptr_t type along the lines of N2692
in C23?

Question 3. Does WG14 want to integrate nullptr_t as proposed in N2692 into C23?

Question 4. Does WG14 want to mark the constructs for other null pointer constants
as obsolescent as proposed in N2692 for C23?

Question 5. Does WG14 want to mark the NULL macro as obsolescent as proposed in
N2692 for C23?

Ackowledgments

Many thanks to Joseph Myers for the very detailed review and feedback.

Appendix: pages with diffmarks of the proposed changes
against proposals N2654 and N2655.
The following page numbers are from the particular snapshot and may vary once the changes
are integrated.
Necessary text replacement of NULL by nullptr is not listed and should be applied addi-
tionally.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2692.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2692.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2692.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2692.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2692.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2654.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2655.pdf

N2692 truebool.. § 6.3.2.3, working draft — March 31, 2021 CORE 202101 (E)

6.3.2.3 Pointers
1 A pointer to void may be converted to or from a pointer to any object type. A pointer to any object

type may be converted to a pointer to void and back again; the result shall compare equal to the
original pointer.

2 For any qualifier q, a pointer to a non-q-qualified type may be converted to a pointer to the q-qualified
version of the type; the values stored in the original and converted pointers shall compare equal.

3 An integer constant expression with the value 0, or such an expression cast to type void *,
:
or

::::
the

:::::::
constant

:::::::::
nullptr,

:
is called a null pointer constant.68) If a null pointer constant is converted to a

pointer type, the resulting pointer, called a null pointer, is guaranteed to compare unequal to a pointer
to any object or function.

4 Conversion of a null pointer to another pointer type yields a null pointer of that type. Any two null
pointers shall compare equal.

5 An integer may be converted to any pointer type. Except as previously specified, the result is imple-
mentation-defined, might not be correctly aligned, might not point to an entity of the referenced
type, and might be a trap representation.69)

6 Any pointer type may be converted to an integer type. Except as previously specified, the result
is implementation-defined. If the result cannot be represented in the integer type, the behavior is
undefined. The result need not be in the range of values of any integer type.

7 A pointer to an object type may be converted to a pointer to a different object type. If the resulting
pointer is not correctly aligned70) for the referenced type, the behavior is undefined. Otherwise,
when converted back again, the result shall compare equal to the original pointer. When a pointer to
an object is converted to a pointer to a character type, the result points to the lowest addressed byte
of the object. Successive increments of the result, up to the size of the object, yield pointers to the
remaining bytes of the object.

8 A pointer to a function of one type may be converted to a pointer to a function of another type and
back again; the result shall compare equal to the original pointer. If a converted pointer is used to
call a function whose type is not compatible with the referenced type, the behavior is undefined.

Forward references:
:::
the

::::::::
nullptr

::::::::
constant

::::::::::
(6.4.4.5.2),

:
cast operators (6.5.4), equality operators

(6.5.9), integer types capable of holding object pointers (7.20.1.4), simple assignment (6.5.16.1).

6.4 Lexical elements
Syntax

1 token:
keyword
identifier
constant
string-literal
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator

each non-white-space character that cannot be one of the above

68)The
::::::::
obsolescent

:
macro NULL is defined in <stddef.h> (and other headers) as a null pointer constant; see 7.19

:
,
::
but

::::
new

:::
code

::::::
should

::::
prefer

:::
the

:::::::
keyword

::::::
nullptr

:::::::
wherever

:
a
::::

null
:::::
pointer

:::::::
constant

:
is
:::::::
specified.

69)The mapping functions for converting a pointer to an integer or an integer to a pointer are intended to be consistent with
the addressing structure of the execution environment.

70)In general, the concept "correctly aligned" is transitive: if a pointer to type A is correctly aligned for a pointer to type B,
which in turn is correctly aligned for a pointer to type C, then a pointer to type A is correctly aligned for a pointer to type C.

Language modifications to ISO/IEC 9899:2018, § 6.4 page 41

1

CORE 202101 (E) § 6.4.1, working draft — March 31, 2021 truebool.. N2692

Constraints
2 Each preprocessing token that is converted to a token shall have the lexical form of a keyword, an

identifier, a constant, a string literal, or a punctuator.

Semantics
3 A token is the minimal lexical element of the language in translation phases 7 and 8. The categories of

tokens are: keywords, identifiers, constants, string literals, and punctuators. A preprocessing token
is the minimal lexical element of the language in translation phases 3 through 6. The categories of
preprocessing tokens are: header names, identifiers, preprocessing numbers, character constants,
string literals, punctuators, and single non-white-space characters that do not lexically match the
other preprocessing token categories.71) If a’ or a " character matches the last category, the behavior
is undefined. Preprocessing tokens can be separated by white space; this consists of comments
(described later), or white-space characters (space, horizontal tab, new-line, vertical tab, and form-
feed), or both. As described in 6.10, in certain circumstances during translation phase 4, white
space (or the absence thereof) serves as more than preprocessing token separation. White space
may appear within a preprocessing token only as part of a header name or between the quotation
characters in a character constant or string literal.

4 If the input stream has been parsed into preprocessing tokens up to a given character, the next
preprocessing token is the longest sequence of characters that could constitute a preprocessing
token. There is one exception to this rule: header name preprocessing tokens are recognized only
within #include preprocessing directives and in implementation-defined locations within #pragma
directives. In such contexts, a sequence of characters that could be either a header name or a string
literal is recognized as the former.

5 EXAMPLE 1 The program fragment 1Ex is parsed as a preprocessing number token (one that is not a valid floating or integer
constant token), even though a parse as the pair of preprocessing tokens 1 and Ex might produce a valid expression (for
example, if Ex were a macro defined as+1). Similarly, the program fragment 1E1 is parsed as a preprocessing number (one
that is a valid floating constant token), whether or not E is a macro name.

6 EXAMPLE 2 The program fragment x+++++y is parsed as x ++ ++ + y, which violates a constraint on increment operators,
even though the parse x ++ + ++ y might yield a correct expression.

Forward references: character constants (6.4.4.4), comments (6.4.9), expressions (6.5), floating
constants (6.4.4.2), header names (6.4.7), macro replacement (6.10.3), postfix increment and decrement
operators (6.5.2.4), prefix increment and decrement operators (6.5.3.1), preprocessing directives (6.10),
preprocessing numbers (6.4.8), string literals (6.4.5).

6.4.1 Keywords
Syntax

1 keyword: one of
alignas
alignof
auto
bool
break
case
char
const
continue
default
do
double

else
enum
extern
false
float
for
goto
if
inline
int
long

::::::::
nullptr

register
restrict
return
short
signed
sizeof
static
static_assert
struct
switch
thread_local
true

typedef
union
unsigned
void
volatile
while
_Atomic
_Complex
_Generic
_Imaginary
_Noreturn

71)An additional category, placemarkers, is used internally in translation phase 4 (see 6.10.3.3); it cannot occur in source
files.

modifications to ISO/IEC 9899:2018, § 6.4.1 page 42 Language

2

N2692 truebool.. § 6.4.2, working draft — March 31, 2021 CORE 202101 (E)

Constraints
2 The keywords

alignas
alignof

bool
false

::::::::
nullptr
static_assert

thread_local
true

may optionally be predefined macro names (6.10.8.4). None of these shall be the subject of a #define
or a #undef preprocessing directive.

Semantics
3 The above tokens (case sensitive) are reserved (in translation phases 7 and 8) for use as keywords,

and shall not be used otherwise. The keyword _Imaginary is reserved for specifying imaginary
types.72)

4 The following table provides alternate spellings for certain keywords. These can be used wherever
the keyword can.73)

keyword alternative spelling
alignas _Alignas
alignof _Alignof
bool _Bool
static_assert _Static_assert
thread_local _Thread_local

5 The spelling of keywords that are also predefined macros and that are subject to the # and ##
preprocessing operators is unspecified.74)

6.4.2 Identifiers
6.4.2.1 General
Syntax

1 identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

identifier-nondigit:
nondigit
universal-character-name

other implementation-defined characters

nondigit: one of
_ a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

Semantics
2 An identifier is a sequence of nondigit characters (including the underscore _, the lowercase and

uppercase Latin letters, and other characters) and digits, which designates one or more entities as
72)One possible specification for imaginary types appears in Annex G.
73)These alternative keywords are obsolescent features and should not be used for new code.
74)The intent of these specifications is to allow but not to force the implementation of the correspondig feature by means of

a predefined macro.

Language modifications to ISO/IEC 9899:2018, § 6.4.2.1 page 43

3

N2692 truebool.. § 6.4.4.5, working draft — March 31, 2021 CORE 202101 (E)

Constraints
9 The value of an octal or hexadecimal escape sequence shall be in the range of representable values

for the corresponding type:

Prefix Corresponding Type
none unsigned char
L the unsigned type corresponding to wchar_t
u char16_t
U char32_t

Semantics
10 An integer character constant has type int. The value of an integer character constant containing

a single character that maps to a single-byte execution character is the numerical value of the
representation of the mapped character interpreted as an integer. The value of an integer character
constant containing more than one character (e.g.,’ab’), or containing a character or escape sequence
that does not map to a single-byte execution character, is implementation-defined. If an integer
character constant contains a single character or escape sequence, its value is the one that results
when an object with type char whose value is that of the single character or escape sequence is
converted to type int.

11 A wide character constant prefixed by the letter L has type wchar_t, an integer type defined in the
<stddef.h> header; a wide character constant prefixed by the letter u or U has type char16_t or
char32_t, respectively, unsigned integer types defined in the <uchar.h> header. The value of a
wide character constant containing a single multibyte character that maps to a single member of the
extended execution character set is the wide character corresponding to that multibyte character,
as defined by the mbtowc, mbrtoc16, or mbrtoc32 function as appropriate for its type, with an
implementation-defined current locale. The value of a wide character constant containing more
than one multibyte character or a single multibyte character that maps to multiple members of
the extended execution character set, or containing a multibyte character or escape sequence not
represented in the extended execution character set, is implementation-defined.

12 EXAMPLE 1 The construction’\0’ is commonly used to represent the null character.

13 EXAMPLE 2 Consider implementations that use two’s complement representation for integers and eight bits for objects
that have type char. In an implementation in which type char has the same range of values as signed char, the integer
character constant’\xFF’ has the value −1; if type char has the same range of values as unsigned char, the character
constant’\xFF’ has the value +255.

14 EXAMPLE 3 Even if eight bits are used for objects that have type char, the construction’\x123’ specifies an integer character
constant containing only one character, since a hexadecimal escape sequence is terminated only by a non-hexadecimal
character. To specify an integer character constant containing the two characters whose values are’\x12’ and’3’ , the
construction’\0223’ can be used, since an octal escape sequence is terminated after three octal digits. (The value of this
two-character integer character constant is implementation-defined.)

15 EXAMPLE 4 Even if 12 or more bits are used for objects that have type wchar_t, the construction L’\1234’ specifies the
implementation-defined value that results from the combination of the values 0123 and’4’ .

Forward references: common definitions <stddef.h> (7.19), the mbtowc function (7.22.7.2), Uni-
code utilities <uchar.h> (7.28).

6.4.4.5 Predefined constants
Syntax

1 predefined-constant:
:::
one

::
of

false
true

::::::
false

::::::::::::
nullptr

:::::::::
true

Description
Some keywords represent constants of a specific value and type.

Language modifications to ISO/IEC 9899:2018, § 6.4.4.5 page 51

4

CORE 202101 (E) § 6.4.4.5.1, working draft — March 31, 2021 truebool.. N2692

6.4.4.5.1 The false and true constants
Description

1 The keywords false and true represent constants of type bool that are suitable for use as are integer
literals. Their values are 0 for false and 1 for true.82) When used in preprocessor conditional
expressions, the keywords false and true behave as if replaced with the pp-numbers 0 and 1,
respectively.83)

6.4.4.5.2 The nullptr constant
Constraints

1
:
If
::::
the nullptr constant

:::::::
appears

::
as

::::
the

::::::
subject

::::::::::
expression

:::
of

:
a
:::::::::::::
parenthesized

::::::::::
expression

:::
or

::
as

::::
the

::::::
chosen

:::::::::::
assignment

::::::::::
expression

::
of

::
a
:::::::
generic

:::::::::
selection,

:::
the

::::::::::::::
corresponding

::::::::::
expression

::
is

::::::::
adjusted

::
to

:

::::::::
nullptr;

:::
in

:
a
:::::::::::

conversion
::
to

:::::
bool

::
it
:::

is
::::::::
adjusted

::
to

:::::::
false;

::
if
::
it
::::::::
appears

:::
as

::::
both

::::
the

::::
first

::::
and

::::
the

::::::
second

::::::::
operand

::
of

:::
an

::::::::
equality

::::::::
operator,

:::
the

::::::::::::::
corresponding

::::::::::
expression

::
is

::::::::
adjusted

::
to

::::::
values

::
of

:::::
type

::::
int,

::
1

:::
(for

::::
==)

:::
or

:
0
::::

(for
::::
!=);

:::
as

::
a

::::::::::
controlling

::::::::::
expression

:::
of

::
an

::::
if,

::::::
while,

::::
for

:::
or

:::
do

:::::::::
statement

:::
or

::
of

:
a
:::::::::::

conditional
:::::::::
operator,

::
or

:::
as

:::
an

::::::::
operand

::
of

::
a
:::::::
logical

::::::::
negation,

::::::::::::
conjunction

::
or

:::::::::::
disjunction

::
it

::
is

::::::::
adjusted

::
to

::
0.
:::::

The
::::::

result
:::
of

:::::
such

::
an

::::::::::::
adjustments

::
is
::

a
::::
null

::::::::
pointer

::::::::
constant

::
or

:::::::
integer

:::::::::
constant

::::::::::
expression,

:::::::::::
respectively.

:

2
:
If
::::

the nullptr constant
:::::::
appears

::
as

:::::
both

::::
the

::::::
second

::::
and

::::::
third

::::::::
operand

::
of

::
a

::::::::::
conditional

:::::::::
operator,

::
or

::
as

::::
the

:::::::
second

::::::::
operand

::
of

::
a
:::::::
comma

:::::::::
operator,

::::
the

::::::::::
expression

:::
has

::::
the

:::::
same

:::::
type

::::
and

:::::
value

:::
as

:

::::::::
nullptr.

:

3
:::::
After

:::::
such

::::::::::::
adjustments,

:::
the

:
nullptr constant

::::
shall

:::::
only

:::
be

:::::
used

::
as

::::::::
follows:

:::
as

::
a
:::::
null

:::::::
pointer

:::::::
constant

::::::
when

::
it
::
is
::::

the
::::::::
operand

:::
of

::
a

::::::::::
conversion

:::
to

:
a
::::::::

pointer
:::::
type;

:::
as

:
a
::::::::

function
::::

call
::::::::::

argument

::
to

:
a
::::::::::
parameter

::
of

:::::
type

::::::::::
nullptr_t;

:::
or

::
as

::
a

::::
void

::::::::::
expression.

:

Description
4

:::
The

:::::::::
keyword

::::::::
nullptr

:::::::::
represents

::
a
::::
null

:::::::
pointer

::::::::
constant

::
of

:::
an

::::::::::
incomplete

:::::
type

::::
that

::
is

:::
not

:::
an

:::::
array

::
or

:::::::
pointer

:::::
type

::::
and

::::
that

:::
is

::::::::
different

:::::
from

::::
any

::::::
other

::::::
object

::::
type

:::::::::
specified

:::
by

::::
this

::::::::::
document

:::
or

::::::::
declared

::
by

::::
any

::::::::::
translation

::::
unit

::::
that

:::::::::::
constitutes

:::
the

:::::::::
program.84)

::::
The

::::
type

::
is
::::::
never

::::::::::
completed

::::
and

:
it
:::::
shall

:::
not

:::
be

:::::
used

::
in

::::
any

::::
type

:::::::::::
derivations,

:::::
such

::
as

:::::::
pointer

::::::
types,

::::::::
function

::::::
types,

:::::::
atomic

:::::
types,

:::
or

::::::
arrays.

:::::::
Values

::
of

::::
this

:::::
type

::::
shall

:::::
only

:::
be

:::::::
formed

:::
by

:::::
using

:::
the

:::::::::
nullptr

::::::::
constant,

::::::
either

:::::::
directly

:::
or

::
by

:::
the

::::::::::::
adjustments

::
or

:::::::::::
evaluations

::
as

:::::::::
described

:::
in

:::
the

::::::::::
constraints.

:

5
:
If
::

a
:::::::::::
conditional

::::::::
operator

:::
or

:
a
::::::::

comma
::::::::
operator

::::::
result

::
in

::::
the

:::::
same

::::::
value

::::
and

::::
type

:::
as

::::::::
nullptr

:::
as

::::::::
indicated

:::
in

:::
the

:::::::::::
constraints,

::::
the

:::::::::
resulting

::::::::::
expression

::
is
::

a
::::
null

::::::::
pointer

::::::::
constant

:::::
only

::
if

:::
the

:::::
first

:::::::
operand

:::
of

:::
the

::::::::
operator

::
is

:
a
::::
null

:::::::
pointer

::::::::
constant

:::
or

::
an

:::::::
integer

::::::::
constant

:::::::::::
expression.

6 NOTE
:::
The

:::::::
syntactical

:::::::::
adjustments

:::::
ensure

:::
that

:::
the

:::
use

:
of
:::::::
nullptr

::
as

:
a
:::
null

:::::
pointer

:::::::
constant

::
can

::
be

:::::::
detected

:::
and

::::
acted

::::
upon

:::::
during

::::::::
translation

::::
time.

:::
The

:::::::::
constraints

::::::
prohibit

::
the

:::
use

::
of

:::::::
nullptr

::
as

::
an

::::::
operand

::
of

:::
any

::::::::
arithmetic

::::::::
operation,

:::::::
relational

:::::::::
comparison,

::::::::::
initialization,

::::::::
assignment

::
or

::
as

::
an

:::::::
argument

::
to

:
a
:::::::
function

:::::::
parameter

:::
for

::::
which

:::
no

:::::::
prototype

::
is

:::::
visible.

Forward references:
:::
the

:::::::::::
nullptr_t

::::
type

:::::::
(7.19.1)

7 EXAMPLE

::::::::::
double

::* ::
a

::
=

:::::::
nullptr

:
;
:::::::::::::

//
:::::::::
implicit

::::::::::
conversion

:::
to

:
double*:,::::::

valid

::::::::
free

:
(

:::::::
nullptr

:
);

: :::::::::::::::::::
//

:::::::::
implicit

::::::::::
conversion

:::
to

:
void*:,::::::::

useless
:
,
::::
but

::::::
valid

::::::::::
printf

:::
("%

:
p

:
\

:
n

:
",

::::::::
nullptr

:
)
:
;
::::::::::

//
::::::::
invalid

:
,

::::
use

::
of

:
nullptr

::::::::
without

:::::::::::
conversion

::::::::::
printf

:::
("%

:
p

:
\

:
n

:
",

::
(
::::
void

::*):::::::
nullptr

:
)
:
;
:::
//

::::::
valid

:
,

::::::::
explicit

:::::::::::
conversion

:::
to

:
void*

82)When used in arithmetic expressions after translation phase 4 the values of the keywords are promoted to type int.
83)Therefore, arithmetic with false and true in translation phase 4 presents results that are generally consistent with later

translation phases.
84)

:::
This

::::::
implies

:::
that

:::
the

:::
type

::
of
:::

the
:
nullptr constant

:
is

:::::
neither

::
a
:::::
pointer

::::
type

:::
nor

::
an

::::::::
arithmetic

::::
type

:::
and

:::
that

:::
the

::::
type

:::::
cannot

:::::::::
accidentally

::
be

:::::
formed

:::
by

:::
type

:::::::::
derivations

:::
that

:::
are

:
at
:::

the
::::::
disposal

::
of
:::
the

:::::::
program,

::::
such

::
as

:::::
pointer,

:::::
array,

:::::::
structure

::
or

::::
union

:::::
types.

modifications to ISO/IEC 9899:2018, § 6.4.4.5.2 page 52 Language

5

N2692 truebool.. § 6.5.1, working draft — March 31, 2021 CORE 202101 (E)

— a type that is the signed or unsigned type corresponding to the effective type of the object,

— a type that is the signed or unsigned type corresponding to a qualified version of the effective
type of the object,

— an aggregate or union type that includes one of the aforementioned types among its members
(including, recursively, a member of a subaggregate or contained union), or

— a character type.

8 A floating expression may be contracted, that is, evaluated as though it were a single opera-
tion, thereby omitting rounding errors implied by the source code and the expression evalua-
tion method.97) The FP_CONTRACT pragma in <math.h> provides a way to disallow contracted
expressions. Otherwise, whether and how expressions are contracted is implementation-defined.98)

Forward references: the FP_CONTRACT pragma (7.12.2), copying functions (7.24.2).

6.5.1 Primary expressions
Syntax

1 primary-expression:
identifier
constant
string-literal
(expression)
generic-selection

Semantics
2 An identifier is a primary expression, provided it has been declared as designating an object (in

which case it is an lvalue) or a function (in which case it is a function designator).99)

3 A constant is a primary expression. Its type depends on its form and value, as detailed in 6.4.4.

4 A string literal is a primary expression. It is an lvalue with type as detailed in 6.4.5.

5 A parenthesized expression is a primary expression. Its type and value are identical to those of
the unparenthesized expression. It is an lvalue, a function designator,

:
a

::::::::
constant

::::::::::
expression,

::
a

::::
null

::::::
pointer

:::::::::
constant, or a void expression if the unparenthesized expression is, respectively, an lvalue, a

function designator,
:
a
::::::::
constant

:::::::::::
expression,

:
a
::::
null

:::::::
pointer

:::::::::
constant, or a void expression.

6 A generic selection is a primary expression. Its type and value depend on the selected generic
association, as detailed in the following subclause.

Forward references: declarations (6.7).

6.5.1.1 Generic selection
Syntax

1 generic-selection:
_Generic (assignment-expression , generic-assoc-list)

generic-assoc-list:
generic-association
generic-assoc-list , generic-association

generic-association:
type-name : assignment-expression

97)The intermediate operations in the contracted expression are evaluated as if to infinite range and precision, while the
final operation is rounded to the format determined by the expression evaluation method. A contracted expression might
also omit the raising of floating-point exceptions.

98)This license is specifically intended to allow implementations to exploit fast machine instructions that combine multiple
C operators. As contractions potentially undermine predictability, and can even decrease accuracy for containing expressions,
their use needs to be well-defined and clearly documented.

99)Thus, an undeclared identifier is a violation of the syntax.

Language modifications to ISO/IEC 9899:2018, § 6.5.1.1 page 59

6

CORE 202101 (E) § 6.5.2, working draft — March 31, 2021 truebool.. N2692

default : assignment-expression

Constraints
2 A generic selection shall have no more than one default generic association. The type name in a

generic association shall specify a complete object type other than a variably modified type
:
or

::
it
:::::
shall

::
be

:::::::::::
nullptr_t . No two generic associations in the same generic selection shall specify compatible

types. The type of the controlling expression is the type of the expression as if it had undergone
an lvalue conversion,100) array to pointer conversion, or function to pointer conversion. That type
shall be compatible with at most one of the types named in the generic association list. If a generic
selection has no default generic association, its controlling expression shall have type compatible
with exactly one of the types named in its generic association list.

Semantics
3 The controlling expression of a generic selection is not evaluated. If a generic selection has a generic

association with a type name that is compatible with the type of the controlling expression, then the
result expression of the generic selection is the expression in that generic association. Otherwise, the
result expression of the generic selection is the expression in the default generic association. None
of the expressions from any other generic association of the generic selection is evaluated.

4 The type and value of a generic selection are identical to those of its result expression. It is an lvalue,
a function designator,

:
a
::::::::
constant

:::::::::::
expression,

:
a
::::
null

:::::::
pointer

::::::::
constant,

:
or a void expression if its result

expression is, respectively, an lvalue, a function designator,
:
a
::::::::
constant

:::::::::::
expression,

::
a

::::
null

:::::::
pointer

::::::::
constant, or a void expression.

5 EXAMPLE The cbrt type-generic macro could be implemented as follows:

#define cbrt(X) _Generic((X), \
long double: cbrtl, \
default: cbrt, \
float: cbrtf \
)(X)

6.5.2 Postfix operators
Syntax

1 postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (argument-expression-listopt)
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression -
(type-name) { initializer-list }
(type-name) { initializer-list , }

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

6.5.2.1 Array subscripting
Constraints

1 One of the expressions shall have type "pointer to complete object type", the other expression shall
have integer type, and the result has type "type".

100)An lvalue conversion drops type qualifiers.

modifications to ISO/IEC 9899:2018, § 6.5.2.1 page 60 Language

7

N2692 truebool.. § 6.5.2.2, working draft — March 31, 2021 CORE 202101 (E)

Semantics
2 A postfix expression followed by an expression in square brackets [] is a subscripted designation of

an element of an array object. The definition of the subscript operator [] is that E1[E2] is identical
to (*((E1)+(E2))). Because of the conversion rules that apply to the binary+ operator, if E1 is an
array object (equivalently, a pointer to the initial element of an array object) and E2 is an integer,
E1[E2] designates the E2 -th element of E1 (counting from zero).

3 Successive subscript operators designate an element of a multidimensional array object. If E is an
n-dimensional array (n ≥ 2) with dimensions i× j × · · · × k, then E (used as other than an lvalue) is
converted to a pointer to an (n− 1)-dimensional array with dimensions j × · · · × k. If the unary*
operator is applied to this pointer explicitly, or implicitly as a result of subscripting, the result is the
referenced (n− 1)-dimensional array, which itself is converted into a pointer if used as other than an
lvalue. It follows from this that arrays are stored in row-major order (last subscript varies fastest).

4 EXAMPLE Consider the array object defined by the declaration

int x[3][5];

Here x

is a 3× 5 array of

int s; more precisely, x is an array of three element objects, each of which is an array of five int s. In the expression x[i],
which is equivalent to (*((x)+(i))), x is first converted to a pointer to the initial array of five int s. Then i is adjusted
according to the type of x, which conceptually entails multiplying i by the size of the object to which the pointer points,
namely an array of five int objects. The results are added and indirection is applied to yield an array of five int s. When
used in the expression x[i][j], that array is in turn converted to a pointer to the first of the int s, so x[i][j] yields an int.

Forward references: additive operators (6.5.6), address and indirection operators (6.5.3.2), array
declarators (6.7.6.2).

6.5.2.2 Function calls
Constraints

1 The expression that denotes the called function101) shall have type pointer to function returning
void or returning a complete object type other than an array type.

2 If the expression that denotes the called function has a type that includes a prototype, the number of
arguments shall agree with the number of parameters. Each argument shall have a type such that its
value may be assigned to an object with the unqualified version of the type of its corresponding
parameter

:
,
::
or

:::::
shall

::
be

::
of

:::::
type

::::::::::
nullptr_t

::
if

:::
the

::::::::::::::
corresponding

:::::::::
parameter

::::
has

::::
that

::::
type.

Semantics
3 A postfix expression followed by parentheses () containing a possibly empty, comma-separated

list of expressions is a function call. The postfix expression denotes the called function. The list of
expressions specifies the arguments to the function.

4 An argument may be an expression of any complete object type. In preparing for the call to a
function, the arguments are evaluated, and each parameter is assigned the value of the corresponding
argument.102)

5 If the expression that denotes the called function has type pointer to function returning an object
type, the function call expression has the same type as that object type, and has the value determined
as specified in 6.8.6.4. Otherwise, the function call has type void.

6 If the expression that denotes the called function has a type that does not include a prototype, the
integer promotions are performed on each argument, and arguments that have type float are
promoted to double. These are called the default argument promotions. If the number of arguments
does not equal the number of parameters, the behavior is undefined. If the function is defined with
a type that includes a prototype, and either the prototype ends with an ellipsis (, ...) or the types

101)Most often, this is the result of converting an identifier that is a function designator.
102)A function can change the values of its parameters, but these changes cannot affect the values of the arguments. On the

other hand, it is possible to pass a pointer to an object, and the function can then change the value of the object pointed to. A
parameter declared to have array or function type is adjusted to have a pointer type as described in 6.9.1.

Language modifications to ISO/IEC 9899:2018, § 6.5.2.2 page 61

8

CORE 202101 (E) § 6.5.2.3, working draft — March 31, 2021 truebool.. N2692

of the arguments after promotion are not compatible with the types of the parameters, the behavior
is undefined. If the function is defined with a type that does not include a prototype, and the types
of the arguments after promotion are not compatible with those of the parameters after promotion,
the behavior is undefined, except for the following cases:

— one promoted type is a signed integer type, the other promoted type is the corresponding
unsigned integer type, and the value is representable in both types;

— both types are pointers to qualified or unqualified versions of a character type or void.

7 If the expression that denotes the called function has a type that does include a prototype, the
arguments are implicitly converted, as if by assignment, to the types of the corresponding parameters,
taking the type of each parameter to be the unqualified version of its declared type. The ellipsis
notation in a function prototype declarator causes argument type conversion to stop after the last
declared parameter. The default argument promotions are performed on trailing arguments.

8 No other conversions are performed implicitly; in particular, the number and types of arguments are
not compared with those of the parameters in a function definition that does not include a function
prototype declarator.

9 If the function is defined with a type that is not compatible with the type (of the expression) pointed
to by the expression that denotes the called function, the behavior is undefined.

10 There is a sequence point after the evaluations of the function designator and the actual arguments
but before the actual call. Every evaluation in the calling function (including other function calls)
that is not otherwise specifically sequenced before or after the execution of the body of the called
function is indeterminately sequenced with respect to the execution of the called function.103)

11 Recursive function calls shall be permitted, both directly and indirectly through any chain of other
functions.

12 EXAMPLE In the function call

(*pf[f1()]) (f2(), f3() + f4())

the functions f1, f2, f3, and f4 can be called in any order. All side effects have to be completed before the function pointed
to by pf[f1()] is called.

Forward references: function declarators (including prototypes) (6.7.6.3), function definitions
(6.9.1), the return statement (6.8.6.4), simple assignment (6.5.16.1). ,

:::
the

:::::::::::
nullptr_t

::::
type

:::::::
(7.19.1).

:

6.5.2.3 Structure and union members
Constraints

1 The first operand of the . operator shall have an atomic, qualified, or unqualified structure or union
type, and the second operand shall name a member of that type.

2 The first operand of the-> operator shall have type "pointer to atomic, qualified, or unqualified
structure" or "pointer to atomic, qualified, or unqualified union", and the second operand shall
name a member of the type pointed to.

Semantics
3 A postfix expression followed by the . operator and an identifier designates a member of a structure

or union object. The value is that of the named member,104) and is an lvalue if the first expression is
an lvalue. If the first expression has qualified type, the result has the so-qualified version of the type
of the designated member.

4 A postfix expression followed by the-> operator and an identifier designates a member of a structure
or union object. The value is that of the named member of the object to which the first expression

103)In other words, function executions do not "interleave" with each other.
104)If the member used to read the contents of a union object is not the same as the member last used to store a value in the

object, the appropriate part of the object representation of the value is reinterpreted as an object representation in the new
type as described in 6.2.6 (a process sometimes called "type punning"). This might be a trap representation.

modifications to ISO/IEC 9899:2018, § 6.5.2.3 page 62 Language

9

N2692 truebool.. § 6.5.3.2, working draft — March 31, 2021 CORE 202101 (E)

decremented.

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).

6.5.3.2 Address and indirection operators
Constraints

1 The operand of the unary & operator shall be either a function designator, the result of a [] or unary
* operator, or an lvalue that designates an object that is not a bit-field and is not declared with the
register storage-class specifier.

2 The operand of the unary* operator shall have pointer type.

Semantics
3 The unary & operator yields the address of its operand. If the operand has type "type", the result has

type "pointer to type". If the operand is the result of a unary* operator, neither that operator nor
the & operator is evaluated and the result is as if both were omitted, except that the constraints on
the operators still apply and the result is not an lvalue. Similarly, if the operand is the result of a []
operator, neither the & operator nor the unary* that is implied by the [] is evaluated and the result
is as if the & operator were removed and the [] operator were changed to a+ operator. Otherwise,
the result is a pointer to the object or function designated by its operand.

4 The unary* operator denotes indirection. If the operand points to a function, the result is a function
designator; if it points to an object, the result is an lvalue designating the object. If the operand has
type "pointer to type", the result has type "type". If an invalid value has been assigned to the pointer,
the behavior of the unary* operator is undefined.111)

Forward references: storage-class specifiers (6.7.1), structure and union specifiers (6.7.2.1).

6.5.3.3 Unary arithmetic operators
Constraints

1 The operand of the unary+ or- operator shall have arithmetic type; of the~ operator, integer type;
of the ! operator, scalar type

:
or

:::::::::
nullptr .

Semantics
2 The result of the unary+ operator is the value of its (promoted) operand. The integer promotions

are performed on the operand, and the result has the promoted type.

3 The result of the unary- operator is the negative of its (promoted) operand. The integer promotions
are performed on the operand, and the result has the promoted type.

4 The result of the~ operator is the bitwise complement of its (promoted) operand (that is, each bit in
the result is set if and only if the corresponding bit in the converted operand is not set). The integer
promotions are performed on the operand, and the result has the promoted type. If the promoted
type is an unsigned type, the expression~E is equivalent to the maximum value representable in
that type minus E.

5 The result of the logical negation operator ! is 0 if the value of its operand compares unequal to 0, 1
if the value of its operand compares equal to 0

::
(or

::
is

:::::::::
nullptr,

:::
see

::::::::
6.4.4.5.2). The result has type int.

The expression !E is equivalent to (0==E).

6.5.3.4 The sizeof and alignof operators
Constraints

1 The sizeof operator shall not be applied to an expression that has function type or an incomplete
type, to the parenthesized name of such a type, or to an expression that designates a bit-field member.
The alignof operator shall not be applied to a function type or an incomplete type.

111)Thus, &*E is equivalent to E (even if E is a null pointer), and &(E1[E2]) to ((E1)+(E2)). It is always true that if E is a
function designator or an lvalue that is a valid operand of the unary & operator,*&E is a function designator or an lvalue
equal to E. If*P is an lvalue and T is the name of an object pointer type,*(T)P is an lvalue that has a type compatible with
that to which T points.

Among the invalid values for dereferencing a pointer by the unary* operator are a null pointer, an address inappropriately
aligned for the type of object pointed to, and the address of an object after the end of its lifetime.

Language modifications to ISO/IEC 9899:2018, § 6.5.3.4 page 67

10

CORE 202101 (E) § 6.5.9, working draft — March 31, 2021 truebool.. N2692

4 For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

5 When two pointers are compared, the result depends on the relative locations in the address space
of the objects pointed to. If two pointers to object types both point to the same object, or both point
one past the last element of the same array object, they compare equal. If the objects pointed to
are members of the same aggregate object, pointers to structure members declared later compare
greater than pointers to members declared earlier in the structure, and pointers to array elements
with larger subscript values compare greater than pointers to elements of the same array with lower
subscript values. All pointers to members of the same union object compare equal. If the expression
P points to an element of an array object and the expression Q points to the last element of the same
array object, the pointer expression Q+1 compares greater than P. In all other cases, the behavior is
undefined.

6 Each of the operators< (less than), > (greater than),<= (less than or equal to), and >= (greater than or
equal to) shall yield 1 if the specified relation is true and 0 if it is false.116) The result has type int.

6.5.9 Equality operators
Syntax

1 equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

Constraints
2 One of the following shall hold:

— both operands have arithmetic type;

—
::::
both

:::::::::
operands

:::
are

:::::::::
nullptr;

— both operands are pointers to qualified or unqualified versions of compatible types;

— one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified
version of void; or

— one operand is a pointer and the other is a null pointer constant.

Semantics
3 The == (equal to) and != (not equal to) operators are analogous to the relational operators except for

their lower precedence.117) Each of the operators yields 1 if the specified relation is true and 0 if it is
false. The result has type int. For any pair of operands, exactly one of the relations is true.

4 If both of the operands have arithmetic type, the usual arithmetic conversions are performed. Values
of complex types are equal if and only if both their real parts are equal and also their imaginary parts
are equal. Any two values of arithmetic types from different type domains are equal if and only
if the results of their conversions to the (complex) result type determined by the usual arithmetic
conversions are equal.

5
:
If
:::::
both

:::::::::
operands

:::
are

::::::::
nullptr

:::
the

::::::::::
expression

::
is

::::::::
adjusted

::
to

::
0
::::
(for

:::
!=)

::
or

::
1
::::
(for

::::
==),

:::
see

::::::::
6.4.4.5.2.

6 Otherwise, at least one operand is a pointer. If one operand is a pointer and the other is a null
pointer constant, the null pointer constant is converted to the type of the pointer. If one operand is a

116)The expression a<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it means (a<b)<c; in other
words, "if a is less than b, compare 1 to c; otherwise, compare 0 to c".

117)Because of the precedences, a<b == c<d is 1 whenever a<b and c<d have the same truth-value.

modifications to ISO/IEC 9899:2018, § 6.5.9 page 72 Language

11

CORE 202101 (E) § 6.5.13, working draft — March 31, 2021 truebool.. N2692

Semantics
3 The usual arithmetic conversions are performed on the operands.

4 The result of the | operator is the bitwise inclusive OR of the operands (that is, each bit in the result
is set if and only if at least one of the corresponding bits in the converted operands is set).

6.5.13 Logical AND operator
Syntax

1 logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

Constraints
2 Each of the operands shall have scalar type

:
or

:::
be

:::::::::
nullptr .

Semantics
3 The && operator shall yield 1 if both of its operands

::
are

:::::::
scalars

::::
and compare unequal to 0; otherwise,

it yields 0. The result has type int.

4 Unlike the bitwise binary & operator, the && operator guarantees left-to-right evaluation; if the
second operand is evaluated, there is a sequence point between the evaluations of the first and
second operands. If the first operand compares equal to 0, the second operand is not evaluated.

6.5.14 Logical OR operator
Syntax

1 logical-OR-expression:
logical-AND-expression
logical-OR-expression || logical-AND-expression

Constraints
2 Each of the operands shall have scalar type

:
or

:::
be

:::::::::
nullptr .

Semantics
3 The || operator shall yield 1 if either of its operands compare

:
is
::::::
scalar

::::
and

:::::::::
compares unequal to 0;

otherwise, it yields 0. The result has type int.

4 Unlike the bitwise | operator, the || operator guarantees left-to-right evaluation; if the second
operand is evaluated, there is a sequence point between the evaluations of the first and second
operands. If the first operand compares unequal to 0, the second operand is not evaluated.

6.5.15 Conditional operator
Syntax

1 conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

Constraints
2 The first operand shall have scalar type.

3 One of the following shall hold for the second and third operands:

— both operands have arithmetic type;

— both operands have the same structure or union type;

modifications to ISO/IEC 9899:2018, § 6.5.15 page 74 Language

12

N2692 truebool.. § 6.5.16, working draft — March 31, 2021 CORE 202101 (E)

— both operands have void type;

— both operands are pointers to qualified or unqualified versions of compatible types;

—
::::
both

:::::::::
operands

:::
are

:::::::::
nullptr;

— one operand is a pointer and the other is a null pointer constant; or

— one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified
version of void.

Semantics
4 The first operand is evaluated; there is a sequence point between its evaluation and the evaluation

of the second or third operand (whichever is evaluated). The second operand is evaluated only if
the first compares unequal to 0; the third operand is evaluated only if the first compares equal to 0;
the result is the value of the second or third operand (whichever is evaluated), converted to the type
described below.119)

5 If both the second and third operands have arithmetic type, the result type that would be determined
by the usual arithmetic conversions, were they applied to those two operands, is the type of the
result. If both the operands have structure or union type, the result has that type. If both operands
have void type, the result has void type.

6
:
If
:::::

both
::::
the

:::::::
second

::::
and

:::::
third

:::::::::
operands

::::
are

:::::::::
nullptr,

:::
the

::::::::::
expression

::::
has

::::
the

:::::
type

::::
and

:::::
value

:::
of

:

::::::::
nullptr,

:::
see

::::::::
6.4.4.5.2.

:

7 If both the second and third operands are pointers or one is a null pointer constant and the other
is a pointer, the result type is a pointer to a type qualified with all the type qualifiers of the types
referenced by both operands. Furthermore, if both operands are pointers to compatible types or to
differently qualified versions of compatible types, the result type is a pointer to an appropriately
qualified version of the composite type; if one operand is a null pointer constant, the result has the
type of the other operand; otherwise, one operand is a pointer to void or a qualified version of void,
in which case the result type is a pointer to an appropriately qualified version of void.

8 EXAMPLE The common type that results when the second and third operands are pointers is determined in two independent
stages. The appropriate qualifiers, for example, do not depend on whether the two pointers have compatible types.

9 Given the declarations

const void *c_vp;
void *vp;
const int *c_ip;
volatile int *v_ip;
int *ip;
const char *c_cp;

the third column in the following table is the common type that is the result of a conditional expression in which the first two
columns are the second and third operands (in either order):

c_vp c_ip const void *
v_ip 0 volatile int *
c_ip v_ip const volatile int *
vp c_cp const void *
ip c_ip const int *
vp ip void *

6.5.16 Assignment operators
Syntax

1 assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

119)A conditional expression does not yield an lvalue.

Language modifications to ISO/IEC 9899:2018, § 6.5.16 page 75

13

N2692 truebool.. § 6.7.6.3, working draft — March 31, 2021 CORE 202101 (E)

extern int (*r)[m]; // invalid: r has linkage and points to VLA
static int (*q)[m] = &B; // valid: q is a static block pointer to VLA

}

Forward references: function declarators (6.7.6.3), function definitions (6.9.1), initialization (6.7.9).

6.7.6.3 Function declarators (including prototypes)
Constraints

1 A function declarator shall not specify a return type that is a function type or an array type.

2 The only storage-class specifier that shall occur in a parameter declaration is register.

3 An identifier list in a function declarator that is not part of a definition of that function shall be
empty.

4 After adjustment, the parameters in a parameter type list in a function declarator that is part of a
definition of that function shall not have incomplete type.

Semantics
5 If, in the declaration "T D1", D1 has the form

D (parameter-type-list)
or

D (identifier-listopt)

and the type specified for ident in the declaration "T D" is "derived-declarator-type-list T", then the
type specified for ident is "derived-declarator-type-list function returning the unqualified version of T".

6 A parameter type list specifies the types of, and may declare identifiers for, the parameters of the
function.

7 A declaration of a parameter as "array of type" shall be adjusted to "qualified pointer to type", where
the type qualifiers (if any) are those specified within the [and] of the array type derivation. If the
keyword static also appears within the [and] of the array type derivation, then for each call to
the function, the value of the corresponding actual argument shall provide access to the first element
of an array with at least as many elements as specified by the size expression.

8 A declaration of a parameter as "function returning type" shall be adjusted to "pointer to function
returning type", as in 6.3.2.1.

9 If the list terminates with an ellipsis (, ...), no information about the number or types of the
parameters after the comma is supplied.152)

10
:::
The

:::::::
special

::::
case

::
of

:::
an

:::::::::
unnamed

::::::::::
parameter

::
of

::::
type

::::::::::
nullptr_t

:::
as

::::
item

::
in

::::
the

:::
list

::::::::
specifies

::::
that

:
a
::::
call

::
to

:::
the

::::::::
function

:::::::
expects

:::
an

:::::::::
argument

:::
of

::::
that

:::::
type

::
in

:::
the

::::::::::::::
corresponding

::::::::
position.

:::
If

:::
the

::::::::::
parameter

::::
type

:::
list

::::::::::
terminates

:::::
with

:::
an

:::::::
ellipsis

:
(
:::::::
, ...),

:::
the

::::::::::
rightmost

::::::::::
parameter

::::::::::
declaration

:::::
shall

::::
not

:::::
have

::::
type

:::::::::::
nullptr_t.

11 The special case of an unnamed parameter of type void as the only item in the list specifies that the
function has no parameters.

12 If, in a parameter declaration, an identifier can be treated either as a typedef name or as a parameter
name, it shall be taken as a typedef name.

13 If the function declarator is not part of a definition of that function, parameters may have incomplete
type and may use the [*] notation in their sequences of declarator specifiers to specify variable
length array types.

14 The storage-class specifier in the declaration specifiers for a parameter declaration, if present, is
ignored unless the declared parameter is one of the members of the parameter type list for a function
definition.

152)The macros defined in the <stdarg.h> header (7.16) can be used to access arguments that correspond to the ellipsis.

Language modifications to ISO/IEC 9899:2018, § 6.7.6.3 page 99

14

N2692 truebool.. § 6.8.4, working draft — March 31, 2021 CORE 202101 (E)

Forward references: iteration statements (6.8.5).

6.8.4 Selection statements
Syntax

1 selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

Semantics
2 A selection statement selects among a set of statements depending on the value of a controlling

expression.

3 A selection statement is a block whose scope is a strict subset of the scope of its enclosing block. Each
associated substatement is also a block whose scope is a strict subset of the scope of the selection
statement.

6.8.4.1 The if statement
Constraints

1 The controlling expression of an if statement shall have scalar type
::
or

:::
be

::::::::
nullptr .

Semantics
2 In both forms, the first substatement is executed if the expression

::
is

:::::
scalar

::::
and compares unequal to

0. In the else form, the second substatement is executed if the expression compares equal to 0.
:
0

:::
(or

:
is
:::::::::
nullptr

:::
see

::::::::
6.4.4.5.2).

:
If the first substatement is reached via a label, the second substatement is

not executed.

3 An else is associated with the lexically nearest preceding if that is allowed by the syntax.

6.8.4.2 The switch statement
Constraints

1 The controlling expression of a switch statement shall have integer type.

2 If a switch statement has an associated case or default label within the scope of an identifier with
a variably modified type, the entire switch statement shall be within the scope of that identifier.162)

3 The expression of each case label shall be an integer constant expression and no two of the case
constant expressions in the same switch statement shall have the same value after conversion.
There may be at most one default label in a switch statement. (Any enclosed switch statement
may have a default label or case constant expressions with values that duplicate case constant
expressions in the enclosing switch statement.)

Semantics
4 A switch statement causes control to jump to, into, or past the statement that is the switch body,

depending on the value of a controlling expression, and on the presence of a default label and the
values of any case labels on or in the switch body. A case or default label is accessible only within
the closest enclosing switch statement.

5 The integer promotions are performed on the controlling expression. The constant expression in
each case label is converted to the promoted type of the controlling expression. If a converted value
matches that of the promoted controlling expression, control jumps to the statement following the
matched case label. Otherwise, if there is a default label, control jumps to the labeled statement. If
no converted case constant expression matches and there is no default label, no part of the switch
body is executed.

162)That is, the declaration either precedes the switch statement, or it follows the last case or default label associated with
the switch that is in the block containing the declaration.

Language modifications to ISO/IEC 9899:2018, § 6.8.4.2 page 111

15

N2692 truebool.. § 6.8.5, working draft — March 31, 2021 CORE 202101 (E)

7 EXAMPLE In the artificial program fragment

switch (expr)
{

int i = 4;
f(i);

case 0:
i = 17;
/* falls through into default code */

default:
printf("%d\n", i);

}

the object whose identifier is i exists with automatic storage duration (within the block) but is never initialized, and thus if
the controlling expression has a nonzero value, the call to the printf function will access an indeterminate value. Similarly,
the call to the function f cannot be reached.

6.8.5 Iteration statements
Syntax

1 iteration-statement:
while (expression) statement
do statement while (expression) ;
for (expressionopt ; expressionopt ; expressionopt) statement
for (declaration expressionopt ; expressionopt) statement

Constraints
2 The controlling expression of an iteration statement shall have scalar type

::
or

:::
be

::::::::
nullptr .

3 The declaration part of a for statement shall only declare identifiers for objects having storage class
auto or register.

Semantics
4 An iteration statement causes a statement called the loop body to be executed repeatedly until the

controlling expression compares equal to 0.
:
0
:::
(or

::
is
:::::::::
nullptr

:::
see

:::::::::
6.4.4.5.2).

:
The repetition occurs

regardless of whether the loop body is entered from the iteration statement or by a jump.163)

5 An iteration statement is a block whose scope is a strict subset of the scope of its enclosing block.
The loop body is also a block whose scope is a strict subset of the scope of the iteration statement.

6 An iteration statement may be assumed by the implementation to terminate if its controlling
expression is not a constant expression,164) and none of the following operations are performed in its
body, controlling expression or (in the case of a for statement) its expression-3:165)

— input/output operations

— accessing a volatile object

— synchronization or atomic operations.

6.8.5.1 The while statement
1 The evaluation of the controlling expression takes place before each execution of the loop body.

6.8.5.2 The do statement
1 The evaluation of the controlling expression takes place after each execution of the loop body.

163)Code jumped over is not executed. In particular, the controlling expression of a for or while statement is not evaluated
before entering the loop body, nor is clause-1 of a for statement.
164)An omitted controlling expression is replaced by a nonzero constant, which is a constant expression.
165)This is intended to allow compiler transformations such as removal of empty loops even when termination cannot be

proven.

Language modifications to ISO/IEC 9899:2018, § 6.8.5.2 page 113

16

N2692 truebool.. § 6.10.8.4, working draft — March 31, 2021 CORE 202101 (E)

__STDC_IEC_559__ The integer constant 1, intended to indicate conformance to the specifications
in Annex F (IEC 60559 floating-point arithmetic).

__STDC_IEC_559_COMPLEX__ The integer constant 1, intended to indicate adherence to the specifi-
cations in Annex G (IEC 60559 compatible complex arithmetic).

__STDC_LIB_EXT1__ The integer constant 202101L, intended to indicate support for the extensions
defined in Annex K (Bounds-checking interfaces).188)

__STDC_NO_ATOMICS__ The integer constant 1, intended to indicate that the implementation does
not support atomic types (including the _Atomic type qualifier) and the <stdatomic.h>
header.

__STDC_NO_COMPLEX__ The integer constant 1, intended to indicate that the implementation does
not support complex types or the <complex.h> header.

__STDC_NO_THREADS__ The integer constant 1, intended to indicate that the implementation does
not support the <threads.h> header.

__STDC_NO_VLA__ The integer constant 1, intended to indicate that the implementation does not
support variable length arrays or variably modified types.

2 An implementation that defines__STDC_NO_COMPLEX__ shall not define__STDC_IEC_559_COMPLEX__.

6.10.8.4 Optional macros
1 The keywords

alignas
alignof

bool
false

::::::::
nullptr
static_assert

thread_local
true

optionally are also predefined macro names that expand to unspecified tokens.

6.10.9 Pragma operator
Semantics

1 A unary operator expression of the form:
_Pragma (string-literal)

is processed as follows: The string literal is destringized by deleting any encoding prefix, deleting
the leading and trailing double-quotes, replacing each escape sequence \" by a double-quote, and
replacing each escape sequence \\ by a single backslash. The resulting sequence of characters
is processed through translation phase 3 to produce preprocessing tokens that are executed as if
they were the pp-tokens in a pragma directive. The original four preprocessing tokens in the unary
operator expression are removed.

2 EXAMPLE A directive of the form:

#pragma listing on "..\listing.dir"

can also be expressed as:

_Pragma ("listing on \"..\\listing.dir\"")

The latter form is processed in the same way whether it appears literally as shown, or results from macro replacement, as in:

#define LISTING(x) PRAGMA(listing on #x)
#define PRAGMA(x) _Pragma(#x)

LISTING (..\listing.dir)

188)The intention is that this will remain an integer constant of type long int that is increased with each revision of this
document.

Language modifications to ISO/IEC 9899:2018, § 6.10.9 page 133

17

CORE 202101 (E) § 6.11, working draft — March 31, 2021 truebool.. N2692

6.11 Future language directions
6.11.1 Floating types

1 Future standardization may include additional floating-point types, including those with greater
range, precision, or both than long double.

6.11.2 Linkages of identifiers
1 Declaring an identifier with internal linkage at file scope without the static storage-class specifier

is an obsolescent feature.

6.11.3 Null pointer constants
1

:::
The

:::::::::
property

::
of

:::::::
integer

::::::::
constant

:::::::::::
expressions

:::::
with

:::
the

:::::
value

:::
0,

::::
and

::::
such

:::::::::::
expressions

::::
cast

:::
to

::::
type

:

::::::
void*,

::
to

::::::
stand

::
in

::
as

::
a

::::
null

:::::::
pointer

::::::::
constant

::
is

::
an

:::::::::::
obsolescent

:::::::
feature.

:

6.11.4 External names
1 Restriction of the significance of an external name to fewer than 255 characters (considering each

universal character name or extended source character as a single character) is an obsolescent feature
that is a concession to existing implementations.

6.11.5 Character escape sequences
1 Lowercase letters as escape sequences are reserved for future standardization. Other characters may

be used in extensions.

6.11.6 Storage-class specifiers
1 The placement of a storage-class specifier other than at the beginning of the declaration specifiers in

a declaration is an obsolescent feature.

6.11.7 Function declarators
1 The use of function declarators with empty parentheses (not prototype-format parameter type

declarators) is an obsolescent feature.

6.11.8 Function definitions
1 The use of function definitions with separate parameter identifier and declaration lists (not prototype-

format parameter type and identifier declarators) is an obsolescent feature.

6.11.9 Pragma directives
1 Pragmas whose first preprocessing token is STDC are reserved for future standardization.

6.11.10 Predefined macro names
1 Macro names beginning with __STDC_ are reserved for future standardization.

modifications to ISO/IEC 9899:2018, § 6.11.10 page 134 Language

18

N2692 § 7.12.11.3, working draft — March 31, 2021 CORE 202101 (E)

Description
2 The nan, nanf, and nanl functions convert the string pointed to by tagp according to the fol-

lowing rules. The call nan("n-char-sequence") is equivalent to strtod("NAN(n-char-sequence)",
(char**)NULL) :::::::::

nullptr) ; the call nan("") is equivalent to strtod("NAN()",(char**)NULL)

:::::::::::::::::::::::::::
strtod("NAN()", nullptr) . If tagp does not point to an n-char sequence or an empty string, the
call is equivalent to strtod("NAN",(char**)NULL) ::::::::::::::::::::::::

strtod("NAN", nullptr) . Calls to nanf and
nanl are equivalent to the corresponding calls to strtof and strtold.

Returns
3 The nan functions return a quiet NaN, if available, with content indicated through tagp. If the

implementation does not support quiet NaNs, the functions return zero.

Forward references: the strtod, strtof, and strtold functions (7.22.1.3).

7.12.11.3 The nextafter functions
Synopsis

1 #include <math.h>
double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);

Description
2 The nextafter functions determine the next representable value, in the type of the function, after x

in the direction of y, where x and y are first converted to the type of the function.250) The nextafter
functions return y if x equals y. A range error may occur if the magnitude of x is the largest finite
value representable in the type and the result is infinite or not representable in the type.

Returns
3 The nextafter functions return the next representable value in the specified format after x in the

direction of y.

7.12.11.4 The nexttoward functions
Synopsis

1 #include <math.h>
double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);

Description
2 The nexttoward functions are equivalent to the nextafter functions except that the second pa-

rameter has type long double and the functions return y converted to the type of the function if x
equals y.251)

7.12.12 Maximum, minimum, and positive difference functions
7.12.12.1 The fdim functions
Synopsis

1 #include <math.h>
double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);

250)The argument values are converted to the type of the function, even by a macro implementation of the function.
251)The result of the nexttoward functions is determined in the type of the function, without loss of range or precision in a

floating second argument.

Library modifications to ISO/IEC 9899:2018, § 7.12.12.1 page 191

19

N2692 truebool.. § 7.16, working draft — March 31, 2021 CORE 202101 (E)

7.16 Variable arguments <stdarg.h>
1 The header <stdarg.h> declares a type and defines four macros, for advancing through a list of

arguments whose number and types are not known to the called function when it is translated.

2 A function may be called with a variable number of arguments of varying types. As described in
6.9.1, its parameter list contains one or more parameters. The rightmost parameter plays a special
role in the access mechanism, and will be designated parmN in this description.263)

3 The type declared is

va_list

which is a complete object type suitable for holding information needed by the macros va_start,
va_arg, va_end, and va_copy. If access to the varying arguments is desired, the called function
shall declare an object (generally referred to as ap in this subclause) having type va_list. The object
ap may be passed as an argument to another function; if that function invokes the va_arg macro
with parameter ap, the value of ap in the calling function is indeterminate and shall be passed to the
va_end macro prior to any further reference to ap.264)

7.16.1 Variable argument list access macros
1 The va_start and va_arg macros described in this subclause shall be implemented as macros,

not functions. It is unspecified whether va_copy and va_end are macros or identifiers declared
with external linkage. If a macro definition is suppressed in order to access an actual function,
or a program defines an external identifier with the same name, the behavior is undefined. Each
invocation of the va_start and va_copy macros shall be matched by a corresponding invocation of
the va_end macro in the same function.

7.16.1.1 The va_arg macro
Synopsis

1 #include <stdarg.h>
type va_arg(va_list ap, type);

Description
2 The va_arg macro expands to an expression that has the specified type and the value of the next

argument in the call. The parameter ap shall have been initialized by the va_start or va_copy
macro (without an intervening invocation of the va_end macro for the same ap). Each invocation of
the va_arg macro modifies ap so that the values of successive arguments are returned in turn. The
parameter type shall be a type name specified such that the type of a pointer to an object that has the
specified type can be obtained simply by postfixing a* to type. If there is no actual next argument,
or if type is not compatible with the type of the actual next argument (as promoted according to the
default argument promotions), the behavior is undefined, except for the following cases:

— one type is a signed integer type, the other type is the corresponding unsigned integer type,
and the value is representable in both types;

— one type is pointer to void and the other is a pointer to a character type.

Returns
3 The first invocation of the va_arg macro after that of the va_start macro returns the value of the

argument after that specified by parmN. Successive invocations return the values of the remaining
arguments in succession.

Forward references:
:::
the

:::::::::::
nullptr_t

::::
type

:::::::
(7.19.1).

:

7.16.1.2 The va_copy macro
263)

:::
This

::::::::
parameter

:::
does

:::
not

::::
have

:::
type

:::::::::
nullptr_t,

:::
see

:::::
6.7.6.3.

264)It is permitted to create a pointer to a va_list and pass that pointer to another function, in which case the original
function can make further use of the original list after the other function returns.

Library modifications to ISO/IEC 9899:2018, § 7.16.1.2 page 201

20

N2692 truebool.. § 7.19, working draft — March 31, 2021 CORE 202101 (E)

7.19 Common definitions <stddef.h>
1 The header <stddef.h> defines the following macros and declares the following types. Some are

also defined in other headers, as noted in their respective subclauses.

2 The types are

nullptr_t

:::::
which

::
is
::::
the

::::
type

::
of

::::
the

::::::::
nullptr

::::::::
constant,

:::
see

:::::::
below;

:: ::: :::::::::
ptrdiff_t

:::::
which

::
is
::::
the

::::::
signed

:::::::
integer

::::
type

::
of

::::
the

:::::
result

::
of

:::::::::::
subtracting

::::
two

::::::::
pointers;

:

:: ::: ::::::
size_t

:::::
which

::
is
::::
the

::::::::
unsigned

:::::::
integer

:::::
type

::
of

:::
the

::::::
result

::
of

:::
the

:::::::
sizeof

:::::::::
operator;

:: ::: :::::::::::
max_align_t

:::::
which

::
is
:::
an

::::::
object

::::
type

::::::
whose

::::::::::
alignment

::
is

:::
the

:::::::
greatest

::::::::::::
fundamental

::::::::::
alignment;

::::
and

:

:: ::: :::::::
wchar_t

:::::
which

::
is
:::
an

:::::::
integer

::::
type

:::::::
whose

:::::
range

::
of

:::::::
values

:::
can

:::::::::
represent

:::::::
distinct

::::::
codes

:::
for

::
all

:::::::::
members

::
of

::::
the

::::::
largest

:::::::::
extended

::::::::
character

:::
set

:::::::::
specified

::::::
among

::::
the

:::::::::
supported

:::::::
locales;

::::
the

::::
null

::::::::
character

:::::
shall

:::::
have

:::
the

:::::
code

:::::
value

:::::
zero.

:::::
Each

::::::::
member

:::
of

:::
the

:::::
basic

:::::::::
character

:::
set

:::::
shall

:::::
have

::
a

:::::
code

:::::
value

::::::
equal

::
to

:::
its

:::::
value

:::::
when

:::::
used

:::
as

:::
the

::::
lone

:::::::::
character

::
in

:::
an

:::::::
integer

:::::::::
character

::::::::
constant

::
if

::
an

:::::::::::::::
implementation

:::::
does

:::
not

::::::
define

:::::::::::::::::::::::::::
__STDC_MB_MIGHT_NEQ_WC__.

:

3
:::
The

:::::::
macros

:::
are

:

:: ::: ::::
NULL

:::::
which

::::::::
expands

:::
to

::
an

:::::::
imple

::::
men

::
ta

:::::::::::
tion-defined

::::
null

:::::::
pointer

:::::::::
constant;271)

:::
and

:

:: ::: ::::::::
offsetof

:
(type

:
,
:
member-designator

:
)

which expands to an integer constant expression that has type size_t, the value of which is the
offset in bytes, to the structure member (designated by member-designator), from the beginning of its
structure (designated by type). The type and member designator shall be such that given

static type t;

then the expression &(t. member-designator) evaluates to an address constant. (If the specified
member is a bit-field, the behavior is undefined.)

Recommended practice
4 The types used for size_t and ptrdiff_t should not have an integer conversion rank greater than

that of signed long int unless the implementation supports objects large enough to make this
necessary.

5
:::
The

::::::
macro

:::::
NULL

:::::::
should

:::::::
expand

::
to

:::::::::
nullptr.

271)
:::
The

:::
NULL

:::::
macro

::
is

::
an

::::::::
obsolescent

::::::
feature.

Library modifications to ISO/IEC 9899:2018, § 7.19 page 215

21

CORE 202101 (E) § 7.19.1, working draft — March 31, 2021 N2692

7.19.1 The nullptr_t type
Description

1 The nullptr_t type is type of the nullptr constant. It has only a very limited use in contexts where
this type is needed to distinguish nullptr from other expression types.

2 Although it is an incomplete type that is not an array type, this type may occur as a function
parameter but, if so, it is not named, see 6.7.6.3. Therefore such parameters can never be addressed
or evaluated.

3 EXAMPLE 1 Consider a function func that receives a pointer parameter that can either be valid or a null pointer to indicate
a default choice.

// header "func.h"
void func(toto*);

// define a default action
// no parameter name, parameter is never read
inline void func_nullptr(nullptr_t) {
...

}

#define func(P) \
_Generic((P), \

nullptr_t: func_nullptr, \
default: func)(P)

--
// one translation unit
#include "func.h"
// emit an external definition
extern void func_nullptr(nullptr_t);

// define the general action
void (func)(toto* p) {
// p may still have value null
if (!p) func_nullptr(nullptr); // may only be called with nullptr
else {
...

}
}

Here, a function func_nullptr is defined that receives a nullptr_t type. The function needs no access to the parameter,
since that parameter can only hold one specific value and it may not even be evaluated. A type-generic macro func then
chooses this function or the general function func. The translation unit that defines func may then emit an external definition
of func_nullptr and also use it within the definition for the case that func receives a parameter value that is null without
being recognized as such at translation time of the call.

4 EXAMPLE 2

#include "func.h"
...

func(0); // ok, but uses the general function and may issue a diagnostic
func(nullptr); // uses default action directly

The use of the macro with a null pointer constant of integer type then uses the general function and sets the parameter to null;
implementations that chose to diagnose the use of null pointer constants of integer type may do so for this call. In contrast to
that, a call that uses nullptr as an argument directly resolves to func_nullptr, may or may not inline the corresponding
action, and will not trigger such a diagnosis.

5 EXAMPLE 3

#define func_strict(P) \
_Generic((P), \

nullptr_t: func_nullptr, \
toto*: func)(P)

...

modifications to ISO/IEC 9899:2018, § 7.19.1 page 216 Library

22

N2692 § 7.19.1, working draft — March 31, 2021 CORE 202101 (E)

func_strict(0); // invalid, int not a valid choice, constraint violation
func_strict(nullptr); // uses default action directly

The emission of a diagnosis can be forced by restricting the admissible type as shown in the definition of func_strict.

Library modifications to ISO/IEC 9899:2018, § 7.19.1 page 217

23

N2692 truebool.. § 7.31, working draft — March 31, 2021 CORE 202101 (E)

7.31 Future library directions
1 The following names are grouped under individual headers for convenience. All external names

described below are reserved no matter what headers are included by the program.

7.31.1 Complex arithmetic <complex.h>
1 The function names

cerf
cerfc
cexp2

cexpm1
clog10
clog1p

clog2
clgamma
ctgamma

and the same names suffixed with f or l may be added to the declarations in the <complex.h>
header.

7.31.2 Character handling <ctype.h>
1 Function names that begin with either is or to, and a lowercase letter may be added to the declara-

tions in the <ctype.h> header.

7.31.3 Errors <errno.h>
1 Macros that begin with E and a digit or E and an uppercase letter may be added to the macros

defined in the <errno.h> header.

7.31.4 Floating-point environment <fenv.h>
1 Macros that begin with FE_ and an uppercase letter may be added to the macros defined in the

<fenv.h> header.

7.31.5 Format conversion of integer types <inttypes.h>
1 Macros that begin with either PRI or SCN, and either a lowercase letter or X may be added to the

macros defined in the <inttypes.h> header.

7.31.6 Localization <locale.h>
1 Macros that begin with LC_ and an uppercase letter may be added to the macros defined in the

<locale.h> header.

7.31.7 Signal handling <signal.h>
1 Macros that begin with either SIG and an uppercase letter or SIG_ and an uppercase letter may be

added to the macros defined in the <signal.h> header.

7.31.8 Alignment <stdalign.h>
1 The header <stdalign.h> together with its defined macros __alignas_is_defined and

__alignas_is_defined is an obsolescent feature.

7.31.9 Atomics <stdatomic.h>
1 Macros that begin with ATOMIC_ and an uppercase letter may be added to the macros defined

in the <stdatomic.h> header. Typedef names that begin with either atomic_ or memory_, and
a lowercase letter may be added to the declarations in the <stdatomic.h> header. Enumeration
constants that begin with memory_order_ and a lowercase letter may be added to the definition
of the memory_order type in the <stdatomic.h> header. Function names that begin with atomic_

and a lowercase letter may be added to the declarations in the <stdatomic.h> header.

2 The macro ATOMIC_VAR_INIT is an obsolescent feature.

7.31.10 Common definitions <stddef.h>
1

:::
The

::::::
macro

:::::
NULL

::
is

:::
an

::::::::::
obsolescent

::::::::
feature.

Library modifications to ISO/IEC 9899:2018, § 7.31.10 page 339

24

CORE 202101 (E) § A.1.5.1, working draft — March 31, 2021 truebool.. N2692

(6.4.4.3) enumeration-constant:
identifier

(6.4.4.4) character-constant:
’ c-char-sequence ’
L’ c-char-sequence ’
u’ c-char-sequence ’
U’ c-char-sequence ’

(6.4.4.4) c-char-sequence:
c-char
c-char-sequence c-char

(6.4.4.4) c-char:
any member of the source character set except

the single-quote ’, backslash \, or new-line character
escape-sequence

(6.4.4.4) escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

(6.4.4.4) simple-escape-sequence: one of
\’ \" \? \\
\a \b \f \n \r \t \v

(6.4.4.4) octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

(6.4.4.4) hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

A.1.5.1 Predefined constants

(6.4.4.5) predefined-constant:
:::
one

:::
of

false
true

::::::
false

::::::::::::
nullptr

:::::::::
true

A.1.6 String literals

(6.4.5) string-literal:
encoding-prefixopt " s-char-sequenceopt "

(6.4.5) encoding-prefix:
u8
u
U
L

(6.4.5) s-char-sequence:
s-char
s-char-sequence s-char

modifications to ISO/IEC 9899:2018, § A.1.6 page 344 Language syntax summary

25

	Introduction
	Possible specifications for a more restrictive null pointer constant
	Design choices
	Proposed changes
	[basicstyle=]nullptr
	[basicstyle=]nullptrt
	[basicstyle=]NULL

	Questions for WG14

