
Final Minutes 30 November – 4 December,
2020

MEETING OF ISO/IEC JTC 1/SC 22/WG 14 AND INCITS
PL22.11

WG 14 / N 2691 

Dates and Times

Each day will have a half-hour break from 16:00-16:30 UTC. 

30 November, 2020 14:30 – 18:00 UTC

1 December, 2020 14:00 – 17:30 UTC

2 December, 2020 14:00 – 17:30 UTC

3 December, 2020 14:00 – 17:30 UTC

4 December, 2020 14:00 – 17:30 UTC

Meeting Location

This meeting is virtual via Zoom. 

Meeting information

Please see the ISO Meetings platform (log into login.iso.org and click on
Meetings) or contact the convener for the URL and password. 

Local contact information



David Keaton <dmk@dmk.com> 

1. Opening Activities

1.1 Opening Comments (Keaton)

1.2 Introduction of Participants / Roll Call

Name Organization NB Notes

Bill Ash     SC22 CM

Aaron
Bachmann

Austrian Standards Austria Austria NB

Roberto
Bagnara

University of Parma Italy Italy NB,
MISRA Liaison

Aaron
Ballman

Intel USA WG21 Liaison

Dave Banham BlackBerry QNX UK MISRA Liaison

Andrew
Banks

LDRA Ltd. UK MISRA Liaison

Rajan Bhakta IBM USA,
Canada

PL22.11 Chair

Lars Gullik
Bjønnes

Cisco Systems USA  

Melanie
Blower

Intel USA  

Alex Gilding Perforce / Programming
Research Ltd.

USA  

Jens Gustedt INRIA France  



Name Organization NB Notes

Barry
Hedquist

Perennial USA PL22.11 IR

Tommy
Hoffner

Intel USA  

David Keaton Keaton Consulting USA Convener

Philipp
Krause

Albert-Ludwigs-
Universität Freiburg

Germany  

Kayvan
Memarian

University of Cambridge UK  

JeanHeyd
Meneide

NEN Netherlands  

Maged
Michael

Facebook USA  

Joseph Myers CodeSourcery / Siemens UK  

Miguel Ojeda UNE Spain Spain NB

Thomas Plum Plum Hall USA  

Clive Pygott LDRA Inc. USA WG23 liaison

Robert
Seacord

NCC Group USA  

Peter Sewell University of Cambridge UK Memory Model
SG

Nick
Stoughton

USENIX, ISO/IEC JTC 1 USA Austin Group
Liaison

David
Svoboda

CERT/SEI/CMU USA Scribe



Name Organization NB Notes

Fred
Tydeman

Tydeman Consulting USA PL22.11 Vice
Chair

Martin
Uecker

University of Goettingen Germany  

Freek Wiedijk Plum Hall USA  

Michael
Wong

Codeplay Canada,
UK

WG21 Liaison

Jörg Wunsch   Germany Invited Guest

1.3 Procedures for this Meeting (Keaton)

1.4 JTC 1 Required Reading

1.4.1 ISO Code of Conduct 
1.4.2 IEC Code of Conduct 
1.4.3 JTC 1 Summary of Key Points [N 2613] 
1.4.4 INCITS Code of Conduct 

1.5 Approval of Previous WG 14 Minutes

1.5.1 August, 2020 [N 2588] (WG 14 motion) 

Moved by Seacord, seconded by Tydeman, no objections 

1.5.2 October, 2020 [N 2605] (WG 14 motion) 

Moved by Ballman, seconded by Bhakta, no objections 

1.6 Review of Action Items and Resolutions



Seacord: Update TS 17961 (fold in Defect Reports and update C11
references to C17). 

Seacord: In progress 

Svoboda: Write a proposal to define "type-generic" (for functions and
macros) and make it consistent. Consider N2558 as a possible usage. 

Svoboda: No progress yet 

Banks: Write a paper to strengthen the recommended practice for using
const in these areas, along the lines of N2565. 

Banks: Not much progress 

Ballman: Write a paper on adding separators to C integer literals, along
the lines of C++ 

Ballman: Done, on the agenda: N2606 

Wunsch: Write a paper on adding binary I/O for printf() and scanf(). 

Wunsch: Working on first revision on paper, with feedback from
Myers. Interim draft paper submitted; it is N 2618 

Ballman: Write a version of N2563 for C++. 

Ballman: Done, it is P2246R0. 

1.7 Approval of Agenda [N 2614] (PL22.11 motion, WG 14 motion)

Keaton: 2 agendas: proposed: Let's discuss on Friday this update:
http://www.open-std.org/jtc1/sc22/wg14/www/docs/tmp/n2618.pdf. No
objections. 
Bhakta: Can I object on Friday if I have not studied this paper yet? 
Keaton: Yes. It is tentatively accepted for now. Let's change future meeting

http://www.open-std.org/jtc1/sc22/wg14/www/docs/tmp/n2618.pdf


times this week from 14:30 to 14:00. 
Bhakta: Any objections to the half-hour offset? 
Keaton: Yes, Europe already objected. Modulo those, do we want to
approve the agenda? Moved by Nick, seconded by Gilding. PL22.11
agenda moved by Ballman. seconded by Tydeman. No objections. 

1.8 Identify National Bodies Sending Experts

Austria, Canada, France, Germany, Italy, Netherlands, Spain, UK, USA 

1.9 INCITS Antitrust Guidelines and Patent Policy

1.10 INCITS official designated member/alternate information

Ojeda: I am working with my national body (Spain). I do not know when I
will be approved. 
Update: Miguel was approved Thursday morning. 

2. Reports on Liaison Activities

2.1 ISO, IEC, JTC 1, SC 22

2.1.1 An ISO/IEC proposal to revoke public document access was
defeated. 

Keaton: There is no change, and documents will remain public. 
Gustedt: What are the reasons for this proposal? 
Keaton: ISO/IEC misinterpreted that all documents must be closed.
(ISO does require this, but JTC1 takes some rules from ISO and others
from IEC.) 

2.2 PL22.11/WG 14



Bhakta: Are they looking for volunteers for the rationale? 
Keaton: We do not have any volunteers yet. We are seeking volunteers. 
Meneide: Are there any recent rationales? 
Keaton: We have not had a rationale since C99. We would encourage a
volunteer to produce rationale about the new C23 features. The rationale is
an unofficial document, not published by ISO. 

2.2.1 Convener's Report and Business Plan [N 2609] 

Ballman: Is the Free Standards Group the same as the Austin Group? 
Stoughton: Yes, the Free Standards Group was the predecessor of the
Linux Foundation. The Linux Foundation has no projects in ISO arena.
I am one of SC22's liaisons to the Austin Group. Updating "Free
Standards Group" to "Austin Group" would be good. 
Action Item: Keaton: Change Stoughton to represent Austin Group
rather than Free Standards Group. 

2.2.2 Proposed C23 Schedule [N 2610] and Charter Revised with
Proposed Schedule [N 2611] 

Keaton: Are there any objections to the schedule? 
Ojeda: When is the last meeting for new features in C23?? 
Keaton: Aug 31, 2021 is the mailing deadline for the Fall meeting (in
Minneapolis) 
Ballman: Are we now switching to 3-year schedules for C, instead of
10-year schedules? 
Keaton: In ISO, a Working Group (WG) is normally destroyed when it
creates its document. But in JTC1, the WG stayed indefinitely to
maintain the document. But in Dec 2018, ISO and JTC1 changed: Now
a WG stays until it has published all documents in progress and the SC
containing it disbands the WG. WG14 counters by submitting another
C revision now to prevent disbandment when C23 is published. So we
do not have to revise every 3 years, but we must have revisions in
place. 
Gilding: Do we want to stay coincidental with WG21's 3-year



publication cycle? 
Keaton: It was coincidental. But it is a good topic for the C/C++
liaison group. 
Pygott: I can not think of a proposal that has been agreed upon within
6 months. 
Ballman: I am concerned about trying to push WG14 to a 3-year
schedule. Our customers (mostly large government with long
contracts) view C++'s standard as not stabilized. The 3-year schedule
is tolerable in C++ only because they are the big "experimental"
language. 
Keaton: We can escalate this to SC22 and JTC1 if a 3-year revision
schedule proves harmful to customers. 
Gustedt: Can we still discuss outstanding Technical Specification's
after WG23 without a new revision published? 
Keaton: We can discuss anything until we get disbanded. 
Keaton: The rule says that the SC "shall" disband a WG with no
further publications. 
Tydeman: What does this do with regard to Defect Reports? 
Keaton: If a WG is disbanded, the editor is requested (but not required)
to act on any incoming Defect Reports. 
Ballman: Do we still plan to alternate bugfix releases with feature
releases? 
Keaton: I had not planned that far ahead. 
Gustedt: I expect we will have a backlog of new features after C23 is
published. 
Keaton: Yes, including from the Memory Object Model group. 

2.2.3 Outreach 

2.3 PL22.16/WG 21

2.3.1 Create a C/C++ Collaboration Study Group 

Keaton: Propose a new C/C++ Study Group, chaired by Ballman,
assist. chair by Meneide. WG21 will create their half too. 



Ballman: WG21 already created their half at their last meeting. 
Keaton: Are there any Objections? (None) 

2.4 PL22

2.5 WG 23

Keaton: We have completed the first 3 revisions of its TR. They were
turned down because it was a TR. WG23 is converting those Technical
Reports into standards. It is free because it is a catalog of material from
other standards. (So ISO C cannot be free because it contains original
material). 

2.6 MISRA C

Pygott: Bagnara, you are on MISRA, can you report? 
Keaton: Bagnara's audio is not working. 
Bagnara: We are proceeding with the accommodation of C11 and C17
features. There is not much else to report. 

2.7 Other Liaison Activities

3. Reports from Study Groups

3.1 C Floating Point activity report

3.2 C Safety and Security Rules Study Group

Keaton: The charter was to add safety to TS 17961. Due to conflicts with
MISRA, we decided not to add safety. At the previous meeting, we decided
to promote TS 17961 as is to a standard. There is nothing left for the group
to do under its original charter now, so we should disband the SG. The
chair may contact people to form a new SG. 



Pygott: I am intrigued on what the chair has in mind with alternative tasks? 
Seacord: I am still technical editor for TS 17961, right? 
Keaton: Yes. Seacord is responsible for editing the document. 
Bagnara: There is a similar study group in WG21. 
Ballman: WG21's SG studies undefined behavior, security, and
vulnerabilities. 
Pygott: I was in Belfast for WG21, and got invited to the safety study
group proposal. It is much more like the scope of MISRA. 
Ballman: But WG21's SG was not trying to incorporate MISRA into TS
17961.
Keaton: Are there any objections to disbanding this SG? (None) 

3.3 C Memory Object Model Study Group

Gustedt: We can not talk about the TS until tomorrow night, but can
discuss on Wednesday. 

4. Future Meetings

4.1 Future Meeting Schedule

Please note that in-person meetings may be converted to virtual meetings
due to coronavirus considerations. 

8-12 March, 2021 Virtual, 14:30-18:00 UTC each day
(proposed)

17-21 May, 2021 Virtual, 13:30-17:00 UTC each day
(proposed)

4-8 October, 2021 Minneapolis, Minnesota, US (tentative)

31 January - 4 February,
2022

Portland, Oregon, US (tentative)

11-15 July, 2022 Strasbourg, France (tentative)



Keaton: The May meeting is 1 hour earlier because of Daylight Savings
Time. Comments? 
Pygott: No problem with that. 
Seacord: The meetings should be evenly spaced out so we can get more
done between them. 
Keaton: We could move the second meeting later, to June or July.
Remember that we do not want this meeting to be too late because October
2021 will be a full meeting. I will propose June 14-18. Comments? 
Gilding: I was thinking that same time, so that we can have two mailings,
and a rush of proposals for new features. 
Ballman: Are we still planning on having a virtual component on our face-
to-face meetings? 
Keaton: Yes, WG14 has a policy of allowing people to dial in. 
Keaton: WG21 has separate policies. Sometimes their hosts imposed
expensive cancellation fees. So WG21 asked SC22 to make it impossible,
to avoid paying cancellation fees. This does not affect WG14 because we
have less than 100 people. We can decide three months ahead of time if we
must convert the Oct 2021 meeting to another virtual meeting. 
Svoboda: Dialing in to a face-to-face meeting has lots of technical
problems due to bad microphone coverage. 
Keaton: That varies depending on what our hosts provide. I try to make it
good every time. 
Keaton: I will update the May 2021 meeting to June, and update the
mailings, to go into the next agenda. 

4.2 Future Mailing Deadlines

Note: Please request document numbers by one week before these dates. 

Post-Virtual-202011 18 December 2020

Pre-Virtual-202103 5 February 2021

Post-Virtual-202103 / Pre-Virtual-202105 9 April 2021

Post-Virtual-202105 11 June 2021



Pre-Minneapolis 3 September 2021

Post-Minneapolis 29 October 2021

Pre-Portland 31 December 2022

Post-Portland 25 February 2022

Pre-Strasbourg 10 June 2022

Post-Strasbourg 12 August 2022

5. Document Review

Monday

5.1 Ballman, What we think we reserve [N 2572] 

Keaton: The reason for the C/C++ difference with double underscores
was name mangling. The "Cfront" C++ preprocessor would turn "::"
into "__". 
Gustedt: I wish to ask the chair of the C/C++ SG about the double-
underscore question. Perhaps it should be removed from C++? 
Ballman: If an implementation wants to experiment with a proposal,
this allows them to capture potentially reserved identifiers and turn
them into reserved identifiers on a trial basis. 
Gilding: Regarding name mangling, I prefer that this not be reserved in
C. "Gambit" is another compiler that mangles names, so that problem
is not unique to C++. 
Ballman: If I understand correctly EDG still supports Cfront's
implementation, but perhaps they do not care. 
Myers: Doing "complex" separately might be safer. 
Bhakta: Do not hold off on this paper because of hypothetical issues
(such as "complex"). Put this into C23. 
Ballman: Tydeman pointed out two editorial fixes in the paper. 
Straw Poll: Does the committee wish to adopt N 2572 with editorial
changes into C23? 21-0-0 adopted. 



5.2 Ballman, Digit separators [N 2606] 

Bhakta: Thanks for picking a digit separator that works with EBCDIC! 
Gustedt: One editorial nit: You could remove the optional wording. 
Gilding: Could the proposed wording be improved by adding non-
normative examples? 
Ballman: I did not think they were necessary, but I have no problems
adding examples. 
Wunsch: Such examples could also go into a "C23 Rationale"
document. 
Ballman: Does anyone want to keep "optional"? (no) There are enough
editorial changes that I do not want to vote on this immediately. 
Straw Poll: Does the committee want something along the lines of N
2606 to be added to C23? 21-0-1 looking good 

5.3 Pygott, Proposed enhancement for C23: Allowing the programmer
to define the type to be used to represent an enum [N 2575] 

Krause: Is there a use case for having a type with qualifiers? 
Pygott: How compatible is this with C++? 
Uecker: How compatible is type-specific enum with the underlying
enum type? 
Pygott: From our discussion in August, how would a generic function
treat two enumerated types with the same underlying type? Are they
the same or not? 
Gilding: As Myers chatted: Non-transitivity of type compatibility
already exists for enums and implementation-defined type compatible
with enums. We would also have a way forward that is compatible
with C++. 
Bhakta: Regarding the new constraint in section 6.7.2, paragraph 2,
why is that a constraint, and not semantic? 
Pygott: I can move it down to semantics. 
Gustedt: The next paragraph also reads like semantics, not a constraint. 
Pygott: I also have comments from Seacord. 



5.17 Meneide, Preprocessor embed [N 2592] 

Keaton: This item was planned for Friday, but we have time to discuss
it now. 
Gilding: I saw an example of a function call with "#embed ,0",
suggesting this list could be used as an initializer-list. Was that
intentional? It would complicate parsing, and function argument lists
could lose performance. 
Meneide: I do not have an example of that in the paper. #embed could
go anywhere an initializer-list could go. I did not add a constraint
saying it must be used to initialize an array because you would have to
mix the language and preprocessor together to enforce the constraint. 
Myers: Function arguments allows an initializer-list. 
Gustedt: Allowing #embed everywhere that comma-separate list of
numbers is allowed is too hard. So is forcing people to include limits.h
before they use #embed. 
Meneide: I kept that because you do not know the size of unsigned
char in semantics, so you need to include limits.h. 
Meneide: In Clang, I generated a make-dependency format. This plugs
into the #include section. 
Myers: Does anyone still have a separate preprocessor from the
compiler that does not know things like sizeof(char)? 
Bhakta: Yes 
Meneide: I found several tools that did have that behavior. Not up-to-
date tools though. Some static analyzers have preprocessor steps like
that. 
Ballman: This does not provide semantic constraints as written…the
implementation already had the freedom to do this. I would like to not
require limits.h before using a preprocessor directive. 
Gustedt: Since this is normative, the preprocessor should be able to
mine limits.h itself (without requiring an #include). This feature may
include limits.h. 
Meneide: Can we also include "unsigned char UCHAR_MAX" in the
preprocessor the way we smuggle in INT_MAX? 
Gilding: It is necessary configuration information. so it could be



overridden by a command-line option or configuration file. 
Bhakta: If you need to pack multiple octets, the ordering of octets in a
16- or 32-bit word can be an issue. 
Meneide: I left that up to the implementation. 
Meneide: I would like to know if WG14 wants #embed-produced
things inside function argument lists, along the lines of N 2592? 
Ballman: Are we allowed to mention things like endianness? 
Keaton: Yes that would work. 
Straw Poll: Do we want to allow #embed to appear in any context that
is different from an initialization of a character array? 5-8-6 leaning in
the direction of no but not clear 
Wiedijk: What does "allow" mean (in the straw poll) here? Do we
require or just not forbid it? 
Meneide: We can leave it as unspecified behavior. 
Ballman: I do not like the lack of portability around trying to make this
unspecified. I prefer to leave that in the compiler implementation
space. 

Tuesday

5.4 Seacord, Specific bit-width length modifier [N 2587] 

Myers: The text should say "width" not "bit-width". 
Seacord: OK 
Gustedt: The specification is not enough because specifiers are meant
to distinguish multiple types with same widths. These functions need
sizes not widths. So specifying just a width may not be sufficient. 
Seacord: The specification covers the least and exact types. I thought if
least and exact width types are defined, they would both be the same.
Do you have a specific example where least and exact types disagree? 
Gustedt: There are architectures where int_least16 is actually 32 bits?
Sorry, I don't know of a more specific example. 
Keaton: "Least" means "Least number of bits that big". 
Gilding: The "%w" does not control how many bits are read, so why is



this an issue? 
Seacord: Agreed. So 16 versus 32 bits is not a problem because of
integer promotions. 
Keaton: "exact" means "exact number of bits". So int32 cannot be 64
bits. 
Myers: If the exact-width types exist the least type must be the same
type as the exact-width type. 
Seacord: Yes, you have to tie these two things together. 
Svoboda: A least48 type might be 64 bits long. How does printf()
know to read 64 bits for the "%w48" integer? 
Seacord: It would have to infer the type.
Ballman: There are two proposals proposing to add bit-specific
modifiers for formatted I/O. I am concerned that these will confuse
users. Will this solution clash with extended integers (N 2590)? 
Svoboda: There are two purposes here: How many bits to read versus
how many to print? We should have this clarification. 
Seacord: There is not length of promoted size, we assume that the
implementation can determine the size. That why this paper does not
support ExtInt, because those types do not undergo promotion. 
Gustedt: Ballman, Seacord is coming from intmax_t and extended
integer types, regardless of how they are classified. The tool to print is
ugly with these macros, so this is a way forward. Adding other exact-
bit-width types that do not promote do not fit into our type system. 
Krause: Implementations are not disallowed from using extended
integer types, only from types that exceed intmax_t. 
Gilding: I think users would prefer this over other length modifiers like
"h". To me, this is a big simplifying factor for all types. It is useful
even if it only supported standard type sizes (16, 32, 64, etc). 
Myers: I like the concept of multiple letter modifiers: e.g.: "wx" for
exact-width, "wl" for least width, etc. 
Ballman: This should be "default integer promotions" in the "wN"
normative text. 
Seacord: Agreed, but I figured we should correct that globally
throughout the standard. 
Straw Poll: Does the committee wish to adopt N 2587 into C23 as is?



8-11-3 no consensus 
Straw Poll: Does the committee wish to require that a least integer type
matches an exact integer type when both are defined in C23? 19-1-3 
Straw Poll: Does the committee wish to add a second letter to indicate
"exact" or "least" to the width modifier in N 2587? 8-5-8 Leaning yes,
but a lot of abstains 

5.5 Krause, Character handling for freestanding implementations [N
2576] 

Svoboda: Why is ctype.h not currently required in freestanding
implementations? 
Krause: I do not know. 
Keaton: I do not have any historical recollection either. 
Bhakta: Not all freestanding implementations are on small devices;
large devices can also be freestanding. It is also not necessarily easy to
do for everyone, thanks to multiple code-pages and support for
multiple locales. Perhaps a preprocessor-query like "has-include"
would be sufficiently portable here? 
Wunsch: Even with multiple code pages, a system still has to provide a
unified means of classifying characters. 
Bachmann: There is no big advantage of having ctype.h be optional. 
Bhakta: If you have something like that, say for a kernel, then users
should have the option to not require allocated memory for character
handling for things like OS kernels. 
Bachmann: Memory should not be an issue, if we do not link in
ctype.h we do not use resources. 
Gilding: Something like a kernel should allow you to control whether
ctype.h is linked in or not. People seem to assume it will have a large
memory footprint even when unused. 
Bhakta: Here is one example: If you have a number of systems linked
together with a hypervisor, you have a small chip with limited memory
dedicated for various purposes. So memory is critical on the hypervisor
chip and we need the ability to leave out extra memory, which ctype.h
would require. On that level, you have only static linking (but no



dynamic linking) and a linker that is not necessarily smart enough to
identify unused memory. 
Ojeda: You do not include ctype.h if you do not want to use it, so
linker does not include it. What we want is the ability to control
linking in the memory used by ctype.h, and that is outside WG14's
scope. 
Krause: In Bhakta's example, a hypervisor would be similar to tiny
devices, but also have multiple locales. 
Bhakta: In my example, people who write implementation for the
hypervisor do not want the memory usage of ctype.h to be required.
We do not want to force the overhead on anyone who does not need it. 
Krause: But could your hypervisor implementation have some switch
to not link in locales? 
Bhakta: Right now, C only has "freestanding" or "hosted"
implementations. 
Krause: Why prevent multiple locales from including ctype.h? 
Bhakta: There is either local support (with everything) or none. There
is currently no single-locale option. 
Stoughton: Required includes affect the language, not the library.
Adding ctype.h is very different, it affects the library, not the language. 
Krause: We added some string functions at the previous meeting. 
Straw Poll: Does the committee wish to adopt N 2576 into C23 as is?
4-8-10 no sentiment to add 

5.6 Blower, Adding Fundamental Type for N-bit Integers [N 2590] 

Gilding: In interaction with generics, this is symmetrical with how
arrays are handled. _Generic does not support array dimensions or
ExtInt widths. 
Gustedt: I am still horrified by this. This is a real constraint for
implementors. It excludes implementations where people could use a
struct with a bit-field. It is much too much to impose on everyone's
implementation for a marginal feature. We have cleaned up integer
types. This will bring us years of difficulty teaching and more cleanup.
I do not like having ExtInt be a keyword in the language (rather than as



a macro). See my paper (N 2522) about how to use a keyword. 
Ballman: We do not want implementations to do whatever they want
for ExtInt as a macro. It must be a keyword because it is exempt from
integer promotions. 
Bhakta: Atomic ext-int lock-free. Did you want this to not be suitable
in a preprocessing directive? 
Ballman: The intent is you can use ExtInt as an atomic lock-free at a
particular bit-width. We might have problems scaling for all potential
bit-widths. Do you think ExtInt should be integrated into atomics now? 
Bhakta: I thought it was better to not be in atomics for now. But this is
not a big concern. 
Bhakta: This still sounds like invention, as it is not part of the market
yet. Perhaps this should be a Technical Specification (TS)? 
Ballman: We know of 4 different implementations. We are not opposed
to a TS. I want some concrete questions from the committee regarding
TS versus language extensions. Its hard to get implementors to support
a TS. 
Meneide: I also want to match more than one exact width for ExtInt.
Perhaps we should improve generic selection? 
Myers: This could be 2 papers: one for the new types, and one for the
width-of operator. 
Ballman: I have no problem splitting this into two papers. 
Seacord: Among my cryptography co-workers, they could not see the
usefulness of this paper. I agree a TS is not the right direction because
of prior art. Perhaps an optional annex. Perhaps we should target some
hardware to use this feature? 
Ballman: Perhaps your co-workers are used to the way things are
already done? I have heard that there were cryptographers (concerned
with AES) who would be interested in using this. ExtInt does not
extend the design space that allows you to solve new problems. With
regard to an annex, we are not opposed, but we do not know how we
would specify this. They are more additive than transformative. Integer
promotion is important to us, but I do not understand how we would
avoid default integer promotion in an annex. 
Bhakta: Decimal floating-point types are already in an annex. 



Krause: Also complex numbers. 
Ballman: I can study those. 
Krause: I prefer that the type be "BitInt" because they are not extended
integers anymore. 
Straw Poll: Does the committee prefer changing the name from ExtInt
to BitInt in N 2590? 12-0-8 there is sentiment to do that. 
Straw Poll: Does the committee prefer splitting N 2590 into a "bare-
minimum" paper and an ancillary paper? 11-0-8 there is sentiment to
do that. 

5.7 Ojeda, secure_clear [N 2599] 

Svoboda: One editorial change in the normative text of all three
proposed functions: The implementation may not clear other copies of
the data (e.g. intermediate values, cache lines, spilled registers, etc.).
Change "may" to "might", because "may not" is interpreted as
normative in English while "might not" is not. I wonder if alternative
#1 is viable (e.g.: does any platform prefer to write data other than 0?) 
Keaton: The ISO usage has changed recently, they do not like "may
not" anymore. 
Ojeda: I do not know of any platforms for which option #1
(indeterminate values)? 
Krause: Some platforms might be faster using the accumulator value. I
think memset_explicit() is most elegant, because it is similar to
memset(). I asked about this on the BSD mailing list. It is useful to
overwrite with 0, not useful to overwrite with different or
indeterminate values. Their function is named bzero_explicit(). 
Bachmann: Using "Recommended practice" is not a good idea. It is
useful to have a memory barrier after writing, which impacts
performance. I prefer weaker wording like "should not have
significantly worse performance". 
Ojeda: Some people wanted a function to be "as secure as possible",
while others wanted current practice with only the "not optimized
away" part being new. 
Gilding: I do not think "Recommended practice" is necessary.



Performance is less important than security. I think there is great value
in the option #1 (indeterminate values). 
Uecker: I am concerned about 1st alternative wording; what
"indeterminate values" means here. I prefer the other two alternatives,
which are more clear. 
Seacord: I dislike trap representations (with regard to 1st alternative),
because they are an excuse to make a subsequent read into undefined
behavior. We did not address whether values can wobble. Alex's idea
that we could add all three functions is decent. memset_explicit() is the
most general. We could also pull memset_s() into main standard (from
Annex K), and modify it to not use runtime constraint handlers. We left
a lot of work in Annex K…perhaps we should eliminate memset_s()
when adding this proposal? I would be happy with "indeterminate
values that are not allowed to be trap representations." 
Keaton: The memory object issue (wobbly values) has not been
dropped; it is addressed in the Memory Provenance Model, which we
will discuss tomorrow. But it will not get added to C23. 
Banham: This is an instance of a broader problem; we want more
control over what the optimizer is doing. 
Ojeda: Some have suggested this for C++. We can explore that, but it
would be a major proposal. We can standardize this and then explore
the broader optimization problem. 
Bhakta: Filing with 0's is faster on zed machines. We really should
remove memset_s() if we add one of these functions. It does make
sense to have a more general approach to optimizer suppression.
Perhaps we can also use or revise nodiscard attribute to prevent
optimization? 
Ballman: No, attributes are not appropriate because program must
remain correct in if its attributes are ignored. A keyword would be
more appropriate. I am uneasy with memerase(), because it does not
indicate if resulting memory are initialized. 
Krause: Adding all three is a big cost to users, and makes the standard
less readable. I want there to be only one function. 
Svoboda: Trap representations are unlikely to help (because the exact
trap values depends on the array type). We can promote or delete



memset_s() but let's do it separately. 3rd alternative memset_explicit()
is the same as memset_s() with the runtime-constraint-handling
removed. 
Wong: WG21 wants to also address safety and security, and is also
reviewing this paper. We are creating a Safety Security Review Group,
which reviews material without generating new material. There will be
an SG14 call on December 9 to discuss charter goals and chairs for this
group. We will review this paper, but not on December 9. 
Ojeda: So should the function write 0 or another value? 
Straw Poll: Does the committee wish to adopt something along the
lines of alternative 3 of N 2599 into C23? 16-1-6 clear direction. 
Ojeda: I need direction on how to improve wording? 
Keaton: We recommend that you have a discussion on the reflector and
then submit a new paper. Also you should request 1 hour, rather than
30 minutes, to discuss this issue at the next meeting.. 

5.8 Gilding, Qualifier-preserving standard library functions [N 2603] 

Krause: I like this proposal, but it will break code that used to compile. 
Gilding: I felt that here the user has control over what is const; this is a
difference from strerror() (N 2526) 
Svoboda: Would this apply to volatile objects as well as const objects?
How about atomic objects? 
Gilding: I have ruled out volatile and atomic explicitly in the
normative text. Neither are appropriate. I do want this to be generic to
address other future qualifiers, such as a memory-space qualifier. 
Bhakta: Generic functions have a drawback: They are not address-able.
This would break more than just user-controllable code. 
Gilding: Because these functions currently have only one address each,
I would expect them to still be preserved as external and address-able
objects. My hope is that this does not break anything. 
Bhakta: I do not see much gain in doing this, for the functions in the
paper. 
Gilding: I do not have numbers of people making these errors, in
particular losing constness. 



Ballman: Some static-analysis-tool users miss bugs performing a
typecast which is legal by the typing rules, but not legal by the rest of
the language. 
Banham: I am not sure about the syntax. The user might want to write
functions with similar properties (e.g.: preserve constness in return
values). 
Myers: More work is needed in wording, specifically when const is
preserved, and similarly for volatile and other qualifiers. 
Seacord: _Generic seems to be the C solution for generic
programming. Is it time to deprecate "auto"? We should probably not
say these are generic. 
Gilding: These functions are parametrically polymorphic; they do not
use _Generic. 
Wiedijk: What is "Q"? How hard is it to parse this? 
Gilding: "Q" is a qualifier variable. I lifted this convention from the
atomic library. They are parsed like the atomic functions. 
Straw Poll: Does the committee wish to preserve "const" across the
functions listed in N 2603? 13-1-8 leaning to yes 
Straw Poll: Does the committee wish to adopt something along the
lines of the first syntax option in N 2603 into C23? 10-4-7 leaning to
yes 

Wednesday

5.10 A Provenance-aware Memory Object Model for C 
Tutorial Slides [N 2378] 

Wiedijk: Can you please summarize what exposed pointers is about? 
Sewell: If a pointer which points past its item points to the start of next
item is cloned, then the clone cast to integer. If both pointers have been
exposed, then casting the integer back to a pointer. This becomes
ambiguous as to which provenance the cast pointer should pick up.
Option #1: this is forbidden. Option #2: the pointer gets provenance of
the region of memory it points into. This means casting a one-past



pointer to int and back is still forbidden. The solution is to be
symbolic: If cast int-to-pointer is ambiguous with regard to
provenance, it gets symbolic provenance until one performs an access
or arithmetic that disambiguates the pointer. 
Svoboda: How is provenance related to the overhead stored in fat
pointers? 
Sewell: Overhead is key…provenance is not something that a program
keeps track of at run time. Provenance is only in the abstract machine
and alias analysis. Basic provenance cases are isomorphic to fat pointer
overhead. At any one point in time pointer provenance is the same fat
pointer overhead. But fat-pointer-overhead info can be foiled by
freeing and allocating memory which might duplicate a previously-
existing object. In that case pointer bits might be identical but
provenance would be different. 
Gilding: Are there any new optimizations found or disabled by
provenance model? Does this enable people to do more things? 
Sewell: We are only focused on what disables optimizations. 
Michael: I would like clarification on lifetime end-pointer zap. What
are the implications of this TS with regard to undefined behavior? 
Sewell: This TS does not attempt to solve issues of pointer zap. 
Ballman: Forming a pointer with bad provenance is not undefined
behavior, but dereferencing it is, right? 
Sewell: Some of those things were undefined behavior before. We are
not trying to change that in this draft. 

Working Draft Technical Specification [N 2577] 

Seacord: Is it possible for pointers p and q to have identical bit-pattern
but p==q = False? 
Sewell: Yes! 
Seacord: Is this considered an unfix-able bug? 
Sewell: Our intent has been to not change things. We might need to
change this though. See slide #67 for details on pointer equality. 
Gilding: Does assigning pointer to point to an external variable
constitute exposure? 



Gustedt: Assigning to pointer carries provenance, so this is not a
problem for us. 
Seacord: There is a lot of history with C with regard to books, training,
etc. Is it not possible to keep the terminology everyone is familiar
with? In particular, "Memory Management Functions". 
Gustedt: The term "memory" is ambiguous in the standard. Malloc &
similar functions manage storage without talking about real physical
memory underneath. But we could change headline back to "Memory
Management" if people wish. 
Seacord: In your document, section 7.22.3, paragraph 2 says "Memory
Allocation Functions". 
Gustedt: Thanks, we should fix that. 
Krause: Why do we have aligned_alloc() if malloc() aligns things? 
Gustedt: This is off-topic, but the point is to allow larger alignment
than necessary. 
Svoboda: Is there still no well-defined way to tell if realloc() moved an
object in memory? 
Gustedt: There is no semantic change here. The new object and old
object from realloc() are considered to be two different objects. Old
and new pointer values might be equivalent but their objects are
different. So comparing these pointers is still undefined behavior. 
Sewell: We might want to re-visit this problem. 
Wong: What does it mean when an allocation is marked as exposed? 
Sewell: It means if a pointer is cast to an integer, and when cast back to
pointer it regains its original provenance. 
Wiedijk: Using "%p" is another way to expose a pointer. Also
examining bit representations, using unions. or fwrite(). 
Gustedt: Yes. In the abstract machine if integer-to-pointer cast points to
one past storage instance of exposed pointer, the pointer regains its
previous provenance. 
Gustedt: Conversion between pointers and integers is outside our
scope, we just manage the provenance.. 
Seacord: We say "the pointer / address / storage instance is exposed".
So informal conversation is actually incorrect. 
Sewell: Yes, what is exposed is the address to storage instance…e.g.:



the bit-pattern, rather than the pointer value, which includes
provenance. 
Wiedijk: Why are not all addresses exposed all the time? 
Sewell: Personally, I would prefer that. The expose mechanism means
you can observe a desirable undefined behavior by examining a single
execution. Otherwise one relies more heavily on non-determinism to
observe undefined behaviors. It seems that WG14 and WG21 prefer
the concrete view. 
Keaton: If everything is exposed, some optimizations will be
disallowed. 
Sewell: Yes, but surprisingly few. 
Gustedt: It is easier to argue about unexposed addresses. 
Bagnara: In how many pages can you explain what can and cannot be
done, to C programmers? 
Gustedt: We tried to do this today. Provenance, storage instance,
exposed, and synthesized. These are the concepts you must clearly
explain. The rest are standardese. 
Sewell: If one wants to understand all cases, one needs a bit more. Not
all that difficult, compared to something like arithmetic semantics in C. 
Gilding: In many places it is a lot simpler. 
Seacord: Is this not lower-priority since it cannot get added to C23?
We have also farmed out other things to this study group that got
deprioritized because of provenance. Should we address these other
problem areas? 
Gustedt: These other things are more difficult to reach consensus on.
So they would also never make it into C23 even if we prioritized them
now. 
Seacord: So are we not concerned about uninitialized reads or wobbly
values? 
Sewell: In the list of papers, several talk about those things, like
wobbly values. We focused on provenance because we could obtain
consensus. 
Krause: What would stop us from voting this into C23 then? 
Keaton: Many people objected to that, because of unintended
consequences with regard to optimizations. 



Sewell: That would also assume we have serious compiler feedback,
which we currently lack. 
Gustedt: This is more of a certification that compilers abide by these
constraints. No one has currently certified that. 
Gilding: Would it be acceptable to extract papers out of this? Like one
on storage instances, without provenance, going into C23? 
Gustedt: There is a paper about storage instances. We still could
discuss that. Not very difficult to do. It would not reduce the size of the
TS, which is based on C17. A C23-based TS would be smaller though. 
Wiedijk: How can one participate in the Memory Object group? Can
you publish how to get involved? 
Sewell: There is a mailing list among the authors. 
Ballman: I can add info to the C study group website if you publish
info on getting on the mailing list. 
Sewell: We suggest people read the draft TS diffs offline and submit
comments. It is unclear how long our feedback window should be.
Perhaps we can aim for consensus on TS diffs by next WG14 meeting
in March. 
Wiedijk: One way to do this is by giving weird corner cases where
compilers behave "oddly". But compiler writers will want to prevent
changing their behavior. How do you see that? 
Sewell: It is good to identify those examples; we have done many of
those in the TS. Many compilers have "won't-fix" bugs, so that info
may come with a big pinch of salt. It is hard for us to identify causes
for these discrepancies. 
Keaton: This is the first day we have been able to discuss the TS, so I
understand people being unfamiliar with content. Please read and be
prepared to discuss in the March meeting. 
Svoboda: Since our virtual meetings alternate between different sets of
topics, would we discuss this in March meeting or June meeting? 
Keaton: Both. 
Sewell: it depends on what feedback we get. 
Bachmann: Do not talk about this in a single day. Perhaps Monday and
Thursday and allow thoughts to settle? 
Keaton: Good idea; we could do that in the March meeting. 



Seacord: The 2-3 years we have on this; how fungible is that? 
Keaton: Only as a last resort. It is bad form to build that into our
planning. 
Sewell: Again, I encourage feedback from compiler implementors. 
Keaton: Blower, how long does Intel need to evaluate this TS? 
Bhakta: Like Blower, I cannot say how much time I would need. But
having a published TS will make it a magnitude more likely to spend
resources and provide an estimate. 
Gilding: Would not take my group long, now that it is final. Weeks
rather than months to study this TS and modify and fix our model. 
Keaton: Blower has audio problems, but she chatted that LLVM has an
analysis round-table. It would be good to reach out to that group. 
Sewell: I think we got them in the WG21 meeting. 
Keaton: So some people can analyze this quickly, while others need
this published as a TS so they can gain resources to analyze it. We can
get some good feedback by March. 
Gustedt: Can we also get feedback on the points that come after
provenance. What other points are important? (uninitialized values ,
end-life zap)? What is the most urgent? 
Ballman: Uninitialized values come up surprisingly often. 
Gustedt: Because they are clearly related to padding. 
Bachmann: Another version of the proposal to undermine type system
to access storage instance. This is important for performance reasons. 
Gilding: Did we not reach consensus on end-zap in the London
meeting? 
Uecker: End-zap somehow depends on provenance. 
Sewell: We should distinguish end-zap pointers that need to be
compared against versus dereferenced. 
Bachmann: We can do these topics incrementally. Later on we can
allow more situations. 
Gilding: The consensus in London was removing end-zap completely.
This seems simplistic to me. 
Uecker: There is no improvement if we allow comparisons without
fixing other things.
Keaton: The advice I hear is to keep the Big Picture in mind when



working on any of these. Then the priority for the Memory Object
Model SG would be: first the current TS on pointer provenance, then
uninitialized values, then pointer lifetime/end-zap. 
Sewell: Thanks to everyone for a constructive discussion! Again,
please read the diff and provide feedback, preferably to our mailing list
as soon as possible. 
Keaton: Sewell, please publish the slides you presented, since they are
slightly different than N 2378. 

Thursday

5.11 Thomas, C23 proposal - TS 18661-3 annex update 2 [N 2579]
(slide deck [N 2578]) 

Superseded 

5.12 Thomas, Footnote about sufficient formatting precision [N 2586] 

Championed by Bhakta 
Straw Poll: Does the committee wish to adopt N 2586 into C23 as is?
13-0-3 accepted 

5.13 Thomas, Revised N2559 update for IEC 60559 2020 [N 2600] 

Championed by Bhakta 
Krause: In section 17, IEEE 854 was approved in 1987, not 1988. 
Bhakta: Yes, it should be 1987. 
Straw Poll: Does the committee wish to adopt N 2600 into C23 as is?
16-0-3 accepted 

5.14 Thomas, C23 proposal - TS 18661-3 annex update 3 [N 2601] 

Championed by Tydeman and Bhakta 
This covers the material in 5.11 (N 2579) 
Tydeman: Should the draft be meeting-based, draft-based or standard-



based? 
Ballman: We prefer meeting-based. 
Bhakta: Keep this C-standard-based since it has been translated to an
annex. 
Bhakta: No vote needed, but we can re-vote it in if necessary. 
Keaton: We voted it in pending changes. A Re-vote would only be
necessary if someone wants it. 

5.15 Thomas, C23 proposal - edits for infinity and NaN macros [N
2602] 

Championed by Bhakta 
Myers: We do have a more recent paper (N 2617) to fix NAN macros. 
Keaton: This paper is not on the agenda; it was not submitted in time. 
Bachmann: Why do we have to prefix D32/64? 
Keaton: That is what N 2617 was about. When this material moved
from math.h to float.h, these prefixes changed to match the convention
of the new header. I told Jim to post the document but the change was
editorial. 
Straw Poll: Does the committee wish to adopt N 2602 into C23 with
changes to the prefixes that are appropriate to the new header? 12-0-5
accepted 

5.16 Tydeman, DFP triples [N 2580] 

Svoboda: Is the C convention documented in the standard? 
Tydeman: Yes, in section 5.2.4.2, paragraph 2. 
Gilding: This is clarifying the C convention, not changing anything,
right? 
Tydeman: Right! 
Straw Poll: Does the committee wish to adopt N 2580 into C23 as is?
13-0-4 accepted 
Bhakta: Why did anyone abstain? 
Pygott: I know nothing about floating-point, so I had no position to
express. 



Ballman: Same. Also I trust the C floating-point group. 
Gilding: Same, but that is why I asked my question. 
Svoboda: I usually abstain from floating-point items but I actually
understood this one so did not abstain. 

5.18 Meneide, Not-So-Magic: typeof() for C [N 2593] 

Bhakta: Can typeof apply to a function type? What is the intent? 
Meneide: It is intended to be applicable to function types. Bit-fields are
the only forbidden types. 
Wiedijk: If I cast to something that involves a variable-length array
where size calls a function with a side effect, is that forbidden or will it
be evaluated even if not on the execution path? 
Meneide: The wording should say if the type of operand is a variably
modified type, such as a variable-length array, it is evaluated at run
time. Otherwise nothing happens at run time. 
Wiedijk: And is this required, even in dead code? 
Meneide: An implementation could choose not to do any evaluation if
it can determine proper type at compile time. 
Svoboda: Why has not this been standardized before? It must have
some history. 
Meneide: A form of this paper showed up before: N 1229 (by
Stoughton), which suggests extensions including typeof. But it did not
try to standardize typeof. 
Stoughton: In N 1229, we were looking around for features to consider
for standardization. 
Keaton: Right. But each topic needs a champion, and no one
volunteered for some topics. 
Gilding: With regard to variable-length array size, it is unspecified if
this is evaluated if the size expression does not affect the result. During
discussion of _Generic I recall that people shied away from things that
were "too close" to C++ templates. 
Meneide: It is not apparent if we can have a computation for imaginary
I and have typeof produce const imaginary float…that is what
unqual_typeof is for. 



Myers: With typeof you could consider whether an lvalue is const or
not. 
Meneide: We could add that in a subsequent paper. 
Seacord: I read the name as "unequal_typeof" not "unqual_typeof". I
do not know how to fix this awkward name. 
Meneide: I went with "unqual_typeof" for shortness. But we could
change typeof to qual_typeof and unqual_typeof to typeof. I do not
know if that would help. 
Seacord: That would be worse. Next naming comment: _Typeof is
inconsistent with _ExtInt. Capitalization is weird. 
Meneide: I was trying to follow the practice of _Static_assert. Gustedt
suggested taking the keyword ("typeof", "unqual_typeof"). 
Ballman: How should paper handle type attributes? Are those treated
like qualifiers? Can we have examples or make behavior explicit? 
Meneide: We are not sure if attributes should stay, but we are leaning
in favor of them staying. We can add non-normative wording. 
Ballman: there are no standard type-based attributes yet, so this is
currently academic. A footnote would be helpful. Perhaps also
recommended practice. We both agree that "typeof" should leave
attributes in and "unqual_typeof" should strip them. 
Gilding: How much implementation divergence is there? 
Meneide: People do various things to strip qualifiers. They prefer
unqual_typeof. It is a mixed bag of what implementors were trying to
do. In corner cases and bug reports involving qualifiers, there is no
consensus on what people wanted. 
Gilding: Stealing the keyword would be consistent with what we vote
into C23 already. 
Meneide: I thought we fully accepted promoting everything to
keywords. 
Uecker: I agree with Alex, we should steal the keyword. Compilers
almost always preserve qualifiers, except GCC. 
Bhakta: I have seen some divergence, with regard to keeping qualifiers
and attributes. Keep _Typeof name because "typeof" has non-portable
semantics. I suggest we leave existing platform-specific "typeof"
keywords unchanged. 



Meneide: Hmm, maybe we should vote on the keyword. 
Krause: Introduce _Keyword now, and perhaps in 10-15 years add
"keyword". Keep both qualifier-preserving versus stripping. 
Myers: If you are concerned with compatibility, perhaps use
qual_typeof and unqual_typeof, and do not use "typeof". 
Ballman: Is there any expectation that C++ will also pick up this
functionality? Or will they have the same problem with _Typeof versus
typeof? 
Meneide: The header file is for C's usage. C++ could take this, perhaps
and get an empty header. 
Ballman: Myers' suggestion would solve C++-compatibility too. 
Bhakta: For our compilers, we support "__typeof", because it is strictly
internal. We also have "typeof" in non-strict mode, which supports
some qualifiers and attributes but not others. 
Gilding: The divergences seem to be unintentional. I wonder to what
extent code breakage would be our problem? This would be an
opportunity for us to declare the keyword for a standard truth. Our
compiler always strips qualifiers. 
Meneide: The main purpose is creating temporary variables, and either
strip or choose their own qualifiers. People use casts to tweak
qualifiers. 
Meneide: I would like a vote about whether we should use a footnote
or recommended practice to describe the usage of implementation-
defined attributes? 
Bhakta: You are looking for something that is non-normative then? 
Meneide: We do not need votes on what keywords to use until I work
more on the paper. 
Keaton: This is opening a can of worms. Perhaps this is a better topic
for next time? I recommend you ask for one hour instead of 30
minutes. 
Seacord: For attributes for functions, we should make the text
normative, as there is no existing practice we would squash. 
Myers: One more thing about compatibility: The one area I might like
different semantics is for _Noreturn, which is not part of the type. 
Meneide: OK, I will consider that for the next iteration of the paper. 



5.9 Uecker, Compatibility of Pointers to Arrays with Qualifiers
(updates N2497) [N 2607] 

Ballman: C++ is trying to get _Atomic to work in C++ as it works in
C. Since this paper excludes the _Atomic qualifier, will this introduce
C++ versus C incompatibilities. 
Uecker: I do not know what C++ does here. In C _Atomic is
technically not a qualifier. Nothing here changes _Atomic (in C). 
Ballman: Is this for "atomic type" or "Atomic(type)"? 
Uecker: For here it is the qualifier, without parentheses. 
Ballman: If this is the one without parentheses, it does not affect C++
at all. 
Straw Poll: Does the committee wish to adopt N 2607 into C23 as is?
17-1-2 accepted 
Seacord: Does it make sense to clean up the Standard language so that
atomic is not a qualifier? 
Uecker: I would like to change this about atomic, it is not clear now. 

5.19 Meneide, Mixed String Literal Concatenation [N 2594] 

Krause: This was implementation-defined in the first place. I do not
know any users of our implementation. Perhaps there was a potential
use that never came up. 
Meneide: I was hoping someone would catch this paper and claim that
string literal mixing was useful. I could not find uses of mixed string
literals in open-source code. 
Gilding: I asked our customer base if anyone was using this. It
produces compiler warnings on our platform. No one has seen this
warning in the wild. 
Ballman: The type confusion from mixed literal concatenation is a loss
of information. So closing this hole for security purposes is a good
thing. 
Bhakta: We do not support doing this in our implementations either, so
no contrary use cases. Hypothetically, would it make sense to have a
"u8" prefix followed by a wide string literal with characters present in



a keyboard for people who use that locale? 
Meneide: This could make sense, as a way of adding in non-ASCII
characters to string literals. If people tried this, they got burned by
inconsistent compiler support. We could write a follow-on paper that
provides such use cases. 
Gilding: Would this also forbid wide literals, non-prefixed literals, and
another wide literals? 
Meneide: Yes, by transitivity. 
Krause: The wording with regard to "adjacent" is confusing. 
Meneide: We could add working along the lines of: "UTF8 string
literal, nor shall they have a qualified string literal with a different
prefix". Also, "Adjacent wide string literal" could be written better. 
Bhakta: Why can narrow string literals not concatenate? They
currently can. I think the current words are good. 
Krause: Plain ones without prefix, wide ones with prefix, utf8 prefixes. 
Keaton: Perhaps we should vote on the document as is, and then revise
later, or if vote fails. 
Straw Poll: Does the committee wish to adopt N 2594 into C23 as is?
18-0-2 passes 

Friday

5.20 Wunsch, C23 proposal: formatted input/output of binary integer
numbers [N 2612] 

The paper has been updated here: http://www.open-
std.org/jtc1/sc22/wg14/www/docs/tmp/n2618.pdf 
Keaton: Are there any objections to covering this paper? (None) 
Krause: There is precedent in other languages but not in C. Do C
programmers really need this? 
Wunsch: We believe that the presence in other languages indicates
people want this feature. 
Ojeda: It is a useful feature to add. It is also easy to implement, so
perhaps C programmers currently roll their own. 

http://www.open-std.org/jtc1/sc22/wg14/www/docs/tmp/n2618.pdf


Ballman: It is strange that we currently support hex and octal but not
binary. We could not find any C platforms that support %B. So I prefer
option #2. 
Gilding: Lack of prior art means a vicious cycle; it does not mean no
one will use this. I suspect uptake would be immediate. 
Krause: I do not see option #1 as advantage over option #3. In our
source code "b" is used, I do not know what for. 
Bhakta: "B" or "b"? 
Krause: "B". 
Ballman: I am uncomfortable with a recommended practice.
Recommending the practice does not buy programmers anything. If
"B" is implementation-defined, that does not increase portability. 
Bhakta: I view recommended practice as advice for implementers not
programmers. 
Gilding: Option #1 is scary, because if "%B" consumes some large
differently-sized type (than int), this introduces subtle portability error. 
Wunsch: That is why options #2 and #3 exist. 
Bachmann: In the future, we will probably be forced to use uppercase
letters (as format specifiers) because we are running out of lowercase
letters. 
Wunsch: In that case, we should deprecate the use of capital letters in
the standard (reserving them for platform-specific extensions) 
Gilding: Leaving "%B" out now gives us the choice to add it later. 
Myers: We are already using new uppercase letters in C23 ("D" and
"H"). C99 also used new uppercase letters ("A" and "F"). Also, we
could use lowercase letters with an escape should we run out. 
Krause: "H" has similar problems. We say we reserve capital letters
and then break this promise. 
Myers: I think everything outside the basic character set should be left
to extensions. 
Bhakta: Agreed. But I also agree with Krause that we do not take away
from implementations (e.g.: standardize capital letters) So option #2 is
out. And option #1 would reduce confidence in C due to portability. 
Meneide: I figure that the best way to standardize identifiers is not the
best way forward. Instead, we should spend time on a better printing



function that is more type-safe and extensible. This is a good way out
of our current problem. For now, I would choose option #2 or #3.
Gilding: I agree that printf() and format strings should be superseded.
But a new function could never replace printf(), so this problem would
outlive a replacement function. 
Myers: With regard to alternatives: printf() does work better than many
alternatives with internationalization because arguments can be
reordered for different format strings. 
Keaton: What if we did option #1, with fair notice that a future
standard would go to option #2? 
Bhakta: I disagree. It would be better to focus on current
implementations. A printf() alternative is a sidetrack. 
Gilding: Leaving it implementation-defined forces platforms to specify
their behavior, and makes it unreliable and non-portable. 
Myers: If we want option #1 over #2, we should use "recommended
practice" to specify #1. 
Svoboda: When we do straw polls, please only do binary voting. We
spend more time discussing how to do trinary or more voting properly
than we spend doing the actual voting. So do something like option #1
versus #2 or #3, please. 
Ballman: Are we voting this into the standard right now? 
Keaton: No, this poll is option #3 versus #1 or #2.
Straw Poll: Does the committee prefer something along the lines of
option #3, instead of #1 or #2, for N 2618? 15-2-3 clear direction to
pursue option #3 
Bhakta: We can talk, but I do not want this into C23 without time to go
through other peoples' feedback. 
Keaton: You are right, this paper is not officially on the agenda. Give
Wunsch time to update the paper and strip out options #1 and #2. 
Myers: Should we do an "along the lines of" straw poll? 
Svoboda: Let Wunsch decide if he needs more clear direction, in the
form of a straw poll. 
Wunsch: I have direction, I will submit a new paper. 
Keaton: Do people want a non-normative mention of "B"? 
Wunsch: Perhaps for the rationale? 



Keaton: We do not have any volunteers to write the rationale. 
Straw Poll: With regard to N 2618, does the committee want non-
normative wording mentioning capital "B" for this purpose? 6-3-11 no
clear direction 
Keaton: Wunsch, it is up to you if you want to add wording. 

6. Clarification Requests

The previous queue of clarification requests has been processed. 

7. Other Business

7.2 Meneide, Restart-able and Non-Restart-able Functions for
Efficient Character Conversions [N 2595]

Banham: Why change from multi-byte to multi-character and multi-wide-
character? 
Meneide: One problem with the previous design assumed only one
character (or wide character). HKCS has to return chars outside the
standard which hurts portability. The new interface is fashioned after the
style of "iconv()". 
Banham: A single wide character might map to more than one regular
character. 
Meneide: It was outputting two UTF32 code points, you could use either in
a render-er. We wanted a new set of functions where we could modify
inputs, outputs, and return values. And we could convert from multi-
character inputs that map to one or multi-character outputs. For now, I am
only proposing the conversion functions. 
Myers: I cannot follow what "code unit" means at all. 
Meneide: We need a better definition for things like "code unit". Every
function call works on indivisible units of work. A code unit is the type
(char16_t, char32_t, char, wchar_t) of input. Input is typically a sequence
of code units. 
Myers: I am unclear about the current maximum minimum values for



output. 
Meneide: I was trying to preempt an implementation from defining these
things to be too small. If they have to increase these numbers, they will be
overwriting buffers that were not big enough. So I set these minimums to
be rather high. 
Krause: We do not want to allocate so many bytes because the standard is
being cautious. Also, the C to UTF conversion functions have been left out. 
Meneide: I could perpend STDC_ to standard C function names. But I am
concerned about some platforms' 32-char limit on unique function names. 
Ojeda: Are you planning to bring UTF to UTF once? 
Meneide: That depends on if people want it. I wanted minimum changes to
fix narrow versus wide encodings and Unicode to narrow versus wide
encodings. It might be better to provide UTF functions anyway. 
Ojeda: Have you considered Windows functions to have an error when a
character cannot be converted. Or substitute with a replacement character? 
Meneide: The function stops if there is an error. It increments input
pointers and decrements sizes so you can see how much of the buffers were
produced and consumed. This is the lowest-level API you can design to
handle these sorts of things. I did not want to impose any specific error-
handling behavior. 
Myers: What about the UTF to UTF conversions? 
Meneide: I could add it if people want. Perhaps we should vote to see if
people want them. 
Bhakta: I thought we were discussing a future paper, not an update. 
Keaton: Good point. The concepts are separable so paper should be
separable too. 
Straw Poll: In the context of character conversions, would the committee
like to see a future paper that includes UTF-to-UTF conversion functions?
14-0-6 clear direction in favor 
Action Item: Meneide: Write a proposal to write a paper suggesting UTF-
to-UTF conversion functions. 
Banham: The standard, including this paper has to be a lot clearer than it is
on the definition of a character, especially the width (that is, range of
values) of a character. 
Meneide: C++ went on a Unicode tear to better address character sets. But



that will be a separate paper. The phrase "Wide character set" is in the
standard, but the term "narrow" is not. 
Seacord: For some functions we were saying "character" instead of "code
unit". After committee discussion, there were three different definitions of
"character" in the standard, but you had to know which definition each use
of "character" employed. I was told you have to fix the entire standard to
address this. This is a big problem with a lot of effort required. 
Gilding: In Ithaca, the question was asked for a precise definition of
"character", and the answer was that it was ambiguous and followed the
English meaning. 
Keaton: There is a tool, "wkhtml2pdf", that preserves search-ability and
links in the resulting PDF. I have had problems with "pandoc". The new
ISO document system forces conversion to PDF. But Plakosh has found an
option to preserve HTML. So you can send Dan raw HTML, but let Dan
know when you request document numbers if you plan to submit your
document as HTML. 
Krause: What is the plan on ending N-space pollution? 
Keaton: It is on hold, because Plakosh is overwhelmed, so he wants to
delay the conversion to C documents. Also Meneide is working on
software to allow document submission. 
Meneide: Yes, I hope to have that software ready by February. 

The following papers have not come in yet, so we will not discuss them

7.1 Seacord, Defer Mechanism for C [N 2591] (slide deck [N 2589]) 
7.3 Working draft updates 
Meneide, C23 Working Draft [N 2596] 
Meneide, C23 Working Draft - Diffmarks [N 2597] 
Meneide, C23 Working Draft - Editor is Report [N 2598] 
7.4 Gilding, Review and comparison of existing extensions and
practice for functional programming in C [N 2604] 

8. Resolutions and Decisions reached



8.1 Review of Decisions Reached

Does the committee wish to adopt N 2572 with editorial changes into C23?
21-0-0 adopted. 
Does the committee want something along the lines of N 2606 to be added
to C23? 21-0-1 looking good 
Do we want to allow #embed to appear in any context that is different from
an initialization of a character array? 5-8-6 leaning in the direction of no
but not clear 
Does the committee wish to adopt N 2587 into C23 as is? 8-11-3 no
consensus 
Does the committee wish to require that a least integer type matches an
exact integer type when both are defined in C23? 19-1-3 
Does the committee wish to add a second letter to indicate "exact" or
"least" to the width modifier in N 2587? 8-5-8 
Does the committee wish to adopt N 2576 into C23 as is? 4-8-10 no
sentiment to add 
Does the committee prefer changing the name from ExtInt to BitInt in N
2590? 12-0-8 there is sentiment to do that. 
Does the committee prefer splitting N 2590 into a "bare-minimum" paper
and an ancillary paper? 11-0-8 there is sentiment to do that. 
Does the committee wish to adopt something along the lines of alternative
3 of N 2599 into C23? 16-1-6 clear direction. 
Does the committee wish to preserve "const" across the functions listed in
N 2603? 13-1-8 leaning to yes 
Does the committee wish to adopt something along the lines of the first
syntax option in N 2603 into C23? 10-4-7 leaning to yes 
Does the committee wish to adopt N 2586 into C23 as is? 13-0-3 accepted 
Does the committee wish to adopt N 2600 into C23 as is? 16-0-3 accepted 
Does the committee wish to adopt N 2602 into C23 with changes to the
prefixes that are appropriate to the new header? 12-0-5 accepted 
Does the committee wish to adopt N 2580 into C23 as is? 13-0-4 accepted 
Does the committee wish to adopt N 2607 into C23 as is? 17-1-2 accepted 
Does the committee wish to adopt N 2594 into C23 as is? 18-0-2 passes 



Does the committee prefer something along the lines of option #3, instead
of #1 or #2, for N 2618? 15-2-3 clear direction to pursue option #3 
With regard to N 2618, does the committee want non-normative wording
mentioning capital "B" for this purpose? 6-3-11 no clear direction 
In the context of character conversions, would the committee like to see a
future paper that includes UTF-to-UTF conversion functions? 14-0-6 clear
direction in favor 

8.2 Review of Action Items

Keaton: Change Stoughton to represent Austin Group rather than Free
Standards Group. 
Meneide: Write a proposal to write a paper suggesting UTF-to-UTF
conversion functions. 

10. Thanks to Host

10.1 Thanks to ISO for supplying Zoom capabilities

11. Adjournment (PL22.11 motion)

Keaton: WG14 does not require a motion to adjourn. 


