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C already has a variaty of interfaces for type-generic programming, but lacks a systematic approach that
provides type safety, strong ecapsulation and general usability. This paper is a summary paper for a series

that provides improvements through

N2632. type inference for variable definitions (auto feature) and function return

N2633. function literals and value closures
N2634. type-generic lambdas (with auto parameters)

N2635. lvalue closures (pseudo-references for captures)

The aim is to have a complete set of features that allows to easily specify and reuse type-generic code

that can equally be used by applications or by library implementors. All this by remaining faithful to C’s

efficient approach of static types and automatic (stack) allocation of local variables, by avoiding superfluous
indirections and object aliasing, and by forcing no changes to existing ABI.
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I. INTRODUCTION

With the exception of type casts and pointer conversions to and from void*, C is a program-
ming language with a relatively rigid type system that can provide very useful diagnostics
during compilation, if expected and presented types don’t match. This rigidity can be, on
the other hand, quite constraining when programming general features or algorithms that
potentially can apply to a whole set of types, be they pre-defined by the C standard or
provided by applications.



Improve type generic programming v.1 N2638:3

This is probably the main reason, why C has no well established general purpose libraries
for algorithmic extensions; the interfaces (bsearch and qsort) that the C library provides
are quite rudimentary. By using pointer conversions to void* they circumvent exactly the
type safety that would be critical for a safe and secure usage of such generic features.

To our knowledge, libraries that provide type-generic features only have a relatively re-
stricted market penetration. In general, they are tedious to implement and to maintain and
the interfaces they provide to their users may place quite a burden of consistency checks to
these users.

On the other hand, some extensions in C implementations and in related programming
languages have emerged that provide type-genericity in a much more comfortable way. At
the same time these extensions improve the type-safety of the interfaces and libraries that
are coded with them.

An important feature that is proposed here, again, are lambdas. WG14 had talked about
them already at several occasions [Garst 2010; Crowl 2010; Hedquist 2016; Garst 2016;
Gustedt 2020b], and one reason why their integration in one form or another did not find
consensus in 2010 seems to be that, at that time, it had been considered to be too late for
C11. An important data point for lambdas is also that within C++ that feature has much
evolved since C++11; they have become an important feature in every-day code (not only
for C++ but many other programming languages) and their usability has much improved.
Thus we think that it is time to reconsider them for integration into C23, which is our first
opportunity to add such a new feature to C since C11.

The goal of this paper is to provide an argumentation to integrate some of the existing
extensions into the C programming language, such that we can provide interfaces that

— are type and qualifier safe;
— are comfortable to use as if they were just simple functions;
— are comfortable to implement without excessive case analysis.

It provides the introduction to four other papers that introduce different aspects of such
a future approach for type-generic programming in C. Most of the features already have
been proposed in [Gustedt 2020b] and the intent of these four papers is to make concrete
proposals to WG14 for the addition of these features, namely

(1) type inference for variable definitions and function returns,
(2) simple lambdas,
(3) type-generic lambdas,
(4) lvalue closures.

Additionally, we also anticipate that the typeof feature as proposed by a fifth pa-
per [Meneide 2020], should be integrated into C.

This paper is organized as follows. Below, Section II, we will briefly present these five papers
in subsections of their own. In Section III, we will discuss in more detail the 8 features in
the C standard that already provide type-genericity. Section IV then discusses the major
problems that current type-generic programming in C faces and the missing properties that
we would like to achieve with the proposed extensions. Then, Section V introduces the
extension that could close the gaps and shows examples of type-generic code using them,
and Section VI provides the combinations of all wordings that are proposed by the four
papers in the series.
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II. A LEVELED SPECIFICATION OF NEW FEATURES

In the following we briefly present the five papers that should be proposed for C23. The
first (Section II.1) and the fifth (Section II.5) handle two forms of type inference. The first
uses inference from evaluated expressions that undergo lvalue conversion, array-to-pointer
and function-to-pointer decay. The fifth uses direct inference from a wider range of features,
namely identifiers, type names and expressions, without performing any form of conversion.
These two papers should each be independent from all the others, with the notable thematic
connection about type inference between them.

The second paper, Section II.2, introduces a simple version of C++’s lambda feature. In
its proposed form it builds on II.1 for (lack of) the specification of return types, but this
dependency could be circumvented by adding additional C++ syntax for the specification of
return types.

Paper II.3 builds on II.1 and II.2 to provide quite powerful type-generic lambdas.

As an extension of the features proposed in [Gustedt 2020b], paper II.4 builds on II.2 to
provide full access to automatic variables from within a lambda.

II.1. Type inference for variable definitions (auto feature) and function return

C’s declaration syntax currently already allows to omit the type in a variable definition,
as long as the variable is initialized and a storage initializer (such as auto or static)
disambiguates the construct from an assignment. In previous versions of C the interpretation
of such a definition had been to attribute the type int; in current C this is a constraint
violation. We will propose to align C with C++, here, and to change this such the type of the
variable is inferred the type from the initializer expression. In a second alignment with C++
we will also propose to extend this notion of auto type inference to function return types,
namely such that such a return type can be deduced from return statements or be void if
there is none.

II.2. Simple lambdas: function literals and value closures

Since 2011, C++ has a very useful feature called lambdas. These are function-like expressions
that can be defined and called at the same point of a program. The simple lambdas that are
introduced in this paper are of two kind. We call the first function literals, that are lambdas
that interact with their context only via the arguments to a call, no automatic variables of
the context can be evaluated within the function body. If they are not used in a function
call such function literals can be converted to function pointers with the corresponding
prototype. The concept is extended with value closures, namely lambdas that can access
all or part of their context, but by evaluating automatic variables (in a so-called capture)
at the same point where the lambda as a whole is evaluated. The return type of any such
lambda is not provided by the interface specification but it is deduced from the arguments
to a possible call.

II.3. Type-generic lambdas (with auto parameters)

Type-generic lambdas extend the lambda feature such that the parameter types can use the
auto feature and thus be underspecified. This allows lambdas to be a much more general
tool and eases the programming of type-generic features. The concrete types of the auto
parameters for a specific instance of such a lambda are deduced either from the arguments if
the lambda is used in a function call, or from the target type of a lambda-to-function-pointer
conversion.
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II.4. Lvalue closures (pseudo-references for captures)

This paper also introduces C++’s syntax to access automatic variables from within the body
of a lambda and eventually modify the variable. C does not have the concept of references
to which this feature refers in C++, and the intent of this paper is not to introduce references
into C. Therefore we introduce the feature as lvalue capture (in contrast to value capture)
and just refer to the identifiers that name automatic variables and to the possible lvalue
conversion while calling the lambda.

II.5. Type inference from identifiers, value expressions and type expressions

Our hope is that the attempts to integrate gcc’s typeof extension will be successful. We
think that a typeof operator that has similar syntactic properties as the sizeof and alignof
operators and that maintains all type properties such as qualification and derivation (atomic,
array, pointer or function) could be quite useful for type-generic programming and its type
safety.

III. EXISTING TYPE-GENERIC FEATURES IN C

Type-generic features are so deeply integrated into C that most programmers are probably
not even aware of there omnipresence. Below we identify eight different features that do
indeed provide type-genericity, ranging from simple features, such as operators that work for
multiple types, to complicated programmable features, such as generic primary expressions
(_Generic).

The following discussion is not meant to cover all aspects of existing type-generic features,
but to raise awareness for their omnipresence, for their relative complexity, and for their
possible defects.

III.1. Operators

The first type-generic feature of C are operators. For example the binary operators ==
and != are defined for all wide integer types (signed, long, long long and their unsigned
variants), for all floating types (float, double, long double and their complex variants)
and for pointer types, see Tab. I for more details.

Table I. Permitted types for binary operators that require equal types

pointer
floating object

operator wide integer real complex complete void function
==, != × × × × × ×
- × × × ×
+, *, / × × ×
<, <=, >=, > × × ×
%, ˆ, &, | ×

Thus, expressions of the form a*b+c are by themselves already type-generic and the pro-
grammer does not have to be aware of the particular type of any of the operands. In addition,
if the types of the operands do not agree, there is a complicated set of conversions (see be-
low) that enforces equal types for all these operations. Other binary operators (namely shift
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narrow
wide

real floating

complex

bool

unsigned char

signed char

unsigned short

signed short

?

float

unsigned

signed

?

unsigned long

signed long

?

unsigned long long

signed long long

?

double long double

complex float complex double complex long double

Fig. 1. Upward conversion of arithmetic types. Black arrows conserve values, red arrows may occur for
integer promotion or default argument conversion, blue arrows are reduction modulo 2N , well-definition of
grey arrows depends on the platform, green arrows may loose precision

operators, object pointer addition, array subscripting) can even deal with different operand
types, even without conversion.

III.2. Default promotions and conversions

If operands for the operators in Tab. I don’t agree, or if they are even types for which
these operands are not supported (narrow integer types such as bool, char or short) a
complicated set of so-called promotion and conversion rules are set in motion. See Fig. 1
for an overview.

III.2.1. Conversions. Whenever an arithmetic argument to a function or the LHS of an
assignment or initialization has not the requested type of the corresponding parameter,
there is a whole rule set that provides a conversion from the argument type to the parameter
type.

1 printf("result␣is:␣%g\n", cosf (1));

Here, the cosf function has a float parameter and so the int argument 1 is first converted
to 1.0f.

Figure 1 shows the upward conversions that are put in place by C. These kind of conversions
help to avoid to write several versions of the same function and allow to use such a function,
to a certain extend, with several argument types.

III.2.2. Promotion and default argument conversion. In the above example, the result of cosf
is float, too, but printf as a variadic function cannot handle a float. So that value is
converted to double before being printed.

Generally, there are certain types of numbers that are not used for arithmetic operators or for
certain types of function calls, but are always replaced by a wider type. These mechanisms
are called promotion (for integer types) or default argument conversion (for floating point).

III.2.3. Default arithmetic conversion. To determine the target type of an arithmetic opera-
tion, these concepts are taken on a second level. Default arithmetic conversion determines a
common “super” type for binary arithmetic operators. For example, an operation -1 + 1U
first performs the minus operation to provide a signed int of value −1, then (for arithmetic
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conversion) converts that value to an unsigned int (with value UINT_MAX) and performs the
addition. The result is an unsigned int of value 0.

III.3. Macros

C’s preprocessor has a powerful macro feature that is designed to replace identifiers (so-
called object macros) and pseudo-function calls by other token sequences. Together with
default arithmetic promotions it can be used to provide type-generic programming for sev-
eral categories of tasks:

— type-generic expressions
— type-generic declarations and definitions
— type-generic statements that are not expressions

III.3.1. Macros for type-generic expressions. A typically type-generic macro has an arithmetic
expression that is evaluated and that uses default arithmetic conversion to determine a tar-
get type. For example the following macro computes a grey value from three color channels:

1 #define GREY(R, G, B) (((R) + (G) + (B))/3)

It can be used for any type that would be used to represent colors. If used with unsigned
char the result would typically be int, for float values the result would also be float.

Naming conventions, here for structure members r, g, and b, can also help to write type
generic macros.

1 #define red(P) (P.r)
2 #define green(P) (P.g)
3 #define blue(P) (P.b)
4 #define grey(P) (GREY(P.r, P.g, P.b))

III.3.2. Macros for declarations and definitions. Type defitions that then can use the above
macros can also be provided by macros.

1 #define declareColor(N) typedef struct N N
2
3 declareColor(color8);
4 declareColor(color64);
5 declareColor(colorF);
6 declareColor(colorD);
7
8
9 #define defineColor(N, T) struct N { T r; T g; T b; }

10
11 defineColor(color8 , uint8_t);
12 defineColor(color64 , uint64_t);
13 defineColor(colorF , float);
14 defineColor(colorD , double);

III.3.3. Macros placeable as statements. Macros can also be used to group together several
statements for which no value return is expected. Unfortunately, coding properly with this
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technique usually has to trade in some uglyness and maintenance suffering. The following
presents common practice for generic macro programming in C that can be used for any
structure type T that has a mtx_t member mut and a data member that is assignment
compatible with BASE.

1 #define dataCondStore(T, BASE , P, E, D) \
2 do { \
3 T* _pr_p = (P); \
4 BASE _pr_expected = (E); \
5 BASE _pr_desired = (D); \
6 bool _pr_c; \
7 do { \
8 mtx_lock (&_pr_p ->mtx); \
9 _pr_c = (_pr_p ->data == _pr_expected); \

10 if (_pr_c) _pr_p ->data = _pr_desired; \
11 mtx_unlock (&_pr_p ->mtx); \
12 } while (!_pr_c); \
13 } while (false)

Coded like that, the macro has several advantages:

— It can syntactically be used in the same places as a void function. This is achieved by the
crude outer do ... while(false) loop.

— Macro parameters are evaluated at most once. This is achieved by declaring auxiliary
variables to evaluate and hold the values of the macro arguments. Note that the definition
of these auxiliary variables needs knowledge about the types T and BASE.

— Some additional auxiliary variables (here _pr_c) can be bound to the scope of the macro.

Additionally, a naming convention for local variables is used as to minimize possible naming
conflicts with identifiers that might already be defined in the context where the macro is
used. Nevertheless, such a naming convention is not fool proof. In particular, if the use of
several such macros is nested, surprising interactions between them may occur.

III.4. Variadic functions

Above we also have seen another C standard tool for type-generic interfaces, variadic func-
tions such as printf:

1 int printf(char const format[static 1], ...);

The ... denotes an arbitrary list of arguments that can be passed to the function, and it
is mostly up to a convention between the implementor and the user how many and what
type of arguments a call to the function may receive. There are notable exceptions, though,
because with the ... notation all arguments that are narrow integers or are float are
converted, see Figure 1.

For such interfaces in the C standard library modern compilers can usually check the argu-
ments against the format string. In contrast to that, user specified functions remain usually
unchecked and can present serious safety problems.
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III.5. function pointers

Function pointers allow to handle algorithms that can be made dependent of another func-
tion. For example, here is a generic function that computes an approximation of the deriva-
tive of function func in point x:

1 typedef double math_f(double);
2
3 inline double tangent5(math_f* func , double x, double ε) {
4 double h = ε * x;
5 return (-func(x + 2*h) +8* func(x + h)
6 -8*func(x - h) +func(x - 2*h))/(12*h);
7 }

III.6. void pointers

The C library itself has some interfaces that use function pointers for type-genericity, namely
bsearch and qsort receive a function pointer to the following function type

1 typedef int compar_t(void const*, void const*);

with the understanding that the pointer parameters of such a function represent pointers
to the same object type BASE, depending on the function, and that the return value is less
than, equal to, or greater than 0 if the first argument compares less than, equivalent to, or
greater than the second argument.

1 int comparDouble(void const* A, void const* B){
2 double const* a = A;
3 double const* b = B;
4 return (*a < *b) ? -1 : ((*a == *b) ? 0 : +1);
5 }
6
7 double tabd[] = { 1, 4, 2, 3, };
8 qsort(tab , sizeof tabd[0], sizeof tab/sizeof tabd[0],

comparDouble);

This uses the fact that data pointers can be converted forth and back to void pointers,
as long as the target qualification is respected. The advantage is that such a comparison
(and thus search or sorting) interface can then be written quickly. The disadvantage is that
guaranteeing type safety is solely the job of the user.

III.7. Type-generic C library functions

C gained its first explicit type-generic library interface with the introduction of <tgmath.h>
in C99. The idea here is that a functionality such as the cosine should be presented to the
user as a single interface, a type-generic macro cos, instead of the three functions cos, cosf
and cosl for double, float or long double arguments, respectively.

At least for such one-argument functions the expectation seems to be clear, that such a
functionality should return a value of the same type as the argument. In a sense, such
type-generic macros are just the extension of C’s operators (which are type-generic) to a
set of well specified and understood functions. An important property here is that each of
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the type-generic macros in <tgmath.h> represents a finite set of functions in <math.h> or
<complex.h>. Many implementations implemented these macros by just choosing a function
pointer by inspecting the size of the argument, using the fact that their representations of
the argument types all had different sizes.

Then, C11 gained a whole new set of type-generic functions in <stdatomic.h>. The difficulty
here is that there is a possibly unbounded number of atomic types, some of which with equal
size but different semantics, and so the type-generic interfaces cannot simply rely on the
argument size to map to a finite set of functions. Implementations generally have to rely on
language extensions to implement these interfaces.

III.8. _Generic primary expressions

C11 introduced a new feature, generic primary expressions, that was primarily meant to
implement type generic macros similar to those in <tgmath.h>, that is to perform a choice of
a limited set of possibilities, guided by the type of an input expression. By that our example
for cos from above could be implemented as follows:

1 #define cos(X) \
2 _Generic ((X), \
3 float: cosf , \
4 long double: cosl , \
5 default: cos)(X)

That is a _Generic expression is used to choose a function pointer that is then applied to
the argument X. Note that here _Generic only uses X for its type and does not evaluate
it, that the result type of the _Generic is the type of the chosen expression, and, that the
library function cos can be used within the macro, because C macros are not recursive.
Thus, this technique allows an “overload” of some sort of the function cos with the macro
cos. Another implementation could be as follows:

1 #define cos(X) \
2 _Generic ((X), \
3 float: cosf((float)X), \
4 long double: cosl((long double)X), \
5 default: cos(( double)X))

By this, cosf and cosl themselves could even be macros and the compiler would not have
to use the corresponding function pointers.

The concept of generic primary expressions goes much further than for switching between
different function pointers. For example, the following can do a conversion of a pointer value
P according to the type of an additional argument X.

1 #define getOrderCP(X, P) \
2 _Generic ((X), \
3 float: (float const *)(P), \
4 double: (double const *)(P), \
5 long double: (long double const*)(P), \
6 unsigned: (unsigned const*)(P), \
7 unsigned long: (unsigned long const*)(P), \
8 ... /* other ordered arithmetic types */ ... \
9 )
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Still, the important concepts are the same: X is only used for its type, and the type of the
expression itself corresponds to the type of the choosen expression.

IV. MISSING FEATURES

IV.1. Temporary variables of inferred type

One of the most important restrictions for type-generic statements above (III.3.3) was that
the macro needed arguments that encoded the types for which the macro was evaluated. This
not only inconvenient for the user of these macros but also an important source of errors.
If the user chooses the wrong type, implicit conversions can impede on the correctness of
the macro. For our example dataCondStore a wrong choice of the type BASE float instead
of double could for example have the effect that the equality test never triggers, and thus
that the inner loop never terminates.

In accordance with C’s syntax for declarations and in extension of its semantics, C++ has
a feature that allows to infer the type of a variable from its initializer expression.

1 auto y = cos(x);

This eases the use of type-generic functions because now the return value and type can
be captured in an auxiliary variable, without necessarily having the type of the argument,
here x, at hand. This can become even more interesting if the return type of type-generic
functions is just an aggregation of several values for which the type itself is just an artefact:

1 #define div(X, Y) \
2 _Generix ((X)+(Y), \
3 int: div , \
4 long: ldiv , \
5 long long: lldiv) \
6 ((X), (Y))
7
8 auto res = div (38484848448 , 448484844); // int or long?
9 auto a = b * res.quot + res.rem;

Used in the macro from III.3.3, this can easily remove the need for the specification of the
types T and BASE:

1 #define dataCondStoreTG(P, E, D) \
2 do { \
3 auto* _pr_p = (P); \
4 auto _pr_expected = (E); \
5 auto _pr_desired = (D); \
6 bool _pr_c; \
7 do { \
8 mtx_lock (&_pr_p ->mtx); \
9 _pr_c = (_pr_p ->data == _pr_expected); \

10 if (_pr_c) _pr_p ->data = _pr_desired; \
11 mtx_unlock (&_pr_p ->mtx); \
12 } while (!_pr_c); \
13 } while (false)
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IV.2. Controlled encapsulation

Even as presented now, the macro dataCondStoreTG has a serious flaw that is not as apparent
as it should be. The assignment of the values of E and D to _pr_expected and _pr_desired
is not independent. This is, because D itself may be an expression that contains a reference
to an identifier _pr_expected, and thus the intended evaluation of D (before even entering
the macro) is never performed, but a completely different value (depending on E) is used
instead.

1 dataCondStoreTG(P, 4, 3* _pr_expected);

The result of the macro then depends on the order of specification of the variables
_pr_expected and _pr_desired. This kind of interaction is the main reason why we had to
chose these ugly names with a _pr_ prefix in the first place: they reduce the probability of
interaction between the code inside the macro and its caller.

C++ has a feature that is called lambda. In its simplest form (that we call function literal)
it provides just the possibility to specify an anonymous function that only interacts with
its context via parameters:

1 auto const dataCondStoreλDD =
2 [](DD *p, double expected , double desired) {
3 bool c;
4 do {
5 mtx_lock (&p->mtx);
6 c = (p->data == expected);
7 if (c) p->data = desired;
8 mtx_unlock (&p->mtx);
9 } while (!c);

10 };
11
12 dataCondStoreλDD(pDD , 0.5, 0.7);

Here, we may now chose “decent” variable and parameter names, because we know that
they will not interact with a calling context.

When we combine lambdas with the auto feature for the parameters, this tool becomes even
more powerful, because now we have in fact a way to describe a type-generic functionality
without having to worry about the particular types of the arguments nor of an uncontrolled
interaction with the calling environment.

1 #define dataCondStoreλ \
2 []( auto *p, auto expected , auto desired) { \
3 bool c; \
4 do { \
5 mtx_lock (&p->mtx); \
6 c = (p->data == expected); \
7 if (c) p->data = desired; \
8 mtx_unlock (&p->mtx); \
9 } while (!c); \



Improve type generic programming v.1 N2638:13

10 }
11
12 dataCondStoreλ(pDD , 0.5, 0.7);
13 dataCondStoreλ(pFF , 0.1f, 0);

IV.3. Controlled constant propagation

The above form of lambdas for function literals is introduced by an empty pair of brackets []
to indicate that the lambda does not access to any automatic variables from the calling
context. More general forms of lambdas called closures are available in C++ that provide
access to the calling context.

The idea is that the body of a closure may use identifiers that are free, that is that don’t
have a definition that is provided by the lambda itself but by the calling context. C++ has
a strict policy here, that such free variables must be explicitly named within the brackets,
or that the bracket should have a = token to allow any such free variables to appear. For
example a lambda expression as in the following

1 auto const tangent5λ = [ε]( math_f* func , double x) {
2 double h = ε * x;
3 return (-func(x + 2*h) +8* func(x + h)
4 -8*func(x - h) +func(x - 2*h))/(12*h);
5 };

captures the value ε from the environment and freezes it for any use of the tangent5λ closure
to the value at the point of evaluation of the lambda (and not the call).

An even more extended form of this allows the assignment of any expression to the free
variables:

1 #define TANGENT5(F, E) [func = (F), ε = (E)]( double x) { \
2 double h = ε * x; \
3 return (-func(x + 2*h) +8* func(x + h) \
4 -8*func(x - h) +func(x - 2*h))/(12*h); \
5 }
6
7 int main(int argc , char* argv[static argc +1]) {
8 auto const f0 = argc > 1 ? &sin : &cos; // function pointer
9 auto const f1 = TANGENT5(f0, 0x1E -12); // lambda value

10 auto const f2 = TANGENT5(f1, 0x1E -12); // lambda value
11 auto const f3 = TANGENT5(f2, 0x1E -12); // lambda value
12
13 for (double x = 0.01; x < 4; x += 0.5) {
14 printf("%g␣%g␣%g␣%g\n", f0(x), f1(x), f2(x), f3(x));
15 }
16 }

Here, three lambdas are evaluated and assigned to auto variables f1, f2 and f3, respectively.
By that technique, the compiler is free to optimize the code in the body of the lambda with
respect to the possible values of func and ε, and then to use these optimized versions within
the for loop as indicated.
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IV.4. Automatic instantiation of function pointers

Library programmers often need a seamless tool to describe and implement a generic feature,
and, from time to time, they need the possibility to instantiate a function pointer for a
certain set of function arguments from there. _Generic provides the complete opposite
of that: previously unrelated specialized function pointers are stitched together into one
feature.

C++’s lambda model allows to provide such a more practical tool, namely it allows to in-
stantiate function pointers from all function literals.

1 auto const sortDouble =
2 // function literal
3 []( size_t len , double const ar[static len]) {
4 // function pointer
5 int (*comp)(void const*, void const*) =
6 // function literal
7 []( void const* A, void const* B){
8 double const* a = A;
9 double const* b = B;

10 // returns -1, 0, or +1, an int
11 return (*a < *b) ? -1 : ((*a == *b) ? 0 : +1);
12 };
13 qsort(ar, sizeof ar[0], len , comp);
14 );
15 // no return statement , void
16 };
17
18 double tabd[] = { 1, 4, 2, 3, };
19 sortDouble(sizeof tab/sizeof tabd[0], tabd);

That is, all lambdas without capture can be converted implicitly or explicitly to a function
pointer with a prototype that is compatible with the parameter and return types of the
lambda. If such an attempt is made and the parameter types are not compatible, an error
(constraint violation) occurs and the compilation should abort. In the above example the
inner lambda has two parameters of type void const* and its return expression has type
int. Thus its lambda type is convertible to the function pointer type as indicated.

Such a conversion to a function pointer can be done implicitly as above, in an intialization,
assignment or by passing a lambda as an argument to a function call. It can also come from
an explicit conversion, that is a cast operator.

IV.5. Automatic instantiation of specializations

When the parameters of a lambda use the auto feature, we have a type-generic lambda,
that is a lambda that can receive different types of parameters. When such a lambda is
used, the underspecified parameter types must be completed, such that the compiler can
instantiate code that has all types fixed at compile time.

If there are no captures, one possibility to determine the parameter types is to assign such
a type-generic lambda to a function pointer:

1 #define TANGENT5TG(auto* func , auto x, auto ε) { \
2 auto h = ε * x; \
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3 return (-func(x + 2*h) +8* func(x + h) \
4 -8*func(x - h) +func(x - 2*h))/(12*h); \
5 }
6
7 typedef double math_f(double);
8 typedef float mathf_f(float);
9 typedef long double mathl_f(long double);

10
11
12 double (* tangent5)(math_f*, double , double) = TANGENT5TG;
13 float (* tangent5f)(mathf_f*, float , float) = TANGENT5TG;
14 long double (* tangent5l)(mathl_f*, long double , long double) =

TANGENT5TG;

Here, again, such a conversion to a function pointer can only be formed if the parameter
and return types can be made consistent.

The following shows how an inner lambda can even be made type-generic, such that it
synthesizes a function pointer on the fly, whenever the outer lambda is instantiated:

1 #define sortOrder \
2 []( size_t len , auto const ar[static len]) { \
3 qsort(ar, sizeof ar[0], len , \
4 []( void const* A, void const* B){ \
5 auto const* a = getOrderCP(ar[0], A); \
6 auto const* B = getOrderCP(ar[0], B); \
7 return (*a < *b) ? -1 : ((*a == *b) ? 0 : +1); \
8 } \
9 ); \

10 }
11
12 void (*sortd)(size_t len , double const ar[static len])
13 = sortOrder;
14 void (*sortu)(size_t len , unsigned const ar[static len])
15 = sortOrder;
16
17 double tabd[] = { 1, 4, 2, 3, };
18 // semantically equivalent
19 sortOrder(sizeof tab/sizeof tabd[0], tabd);
20 sortd(sizeof tab/sizeof tabd[0], tabd);
21
22 unsigned tabu[] = { 1, 4, 2, 3, };
23 // semantically equivalent
24 sortOrder(sizeof tabu/sizeof tabu[0], tabu);
25 sortu(sizeof tabu/sizeof tabu[0], tabu);

Here, we use the type-generic macro getOrderCP from above which does not evaluate its first
argument, ar[0] in this case, but only uses it for its type. Remember that the visiblity rules
for identifiers from outer scopes are the same as elsewhere, only the access to automatic
variables is constrained or allowed by the capture clause. Thus, such a use for the type
inside the inner lambda is allowed, and provides a lambda that is dependent on the type of
ar[0].
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IV.6. Direct type inferrence

The possibility of inferring a type via the auto feature has the property that it is only
possible for an expression that is evaluated in an initializer, and thus it first undergoes
lvalue, array-to-pointer or function-to-pointer conversion before the type is determined. In
particular, by this mechanism it is not possible to propagate qualifiers (including _Atomic)
nor to conserve array dimensions.

C++ has the decltype operator and many C compilers have a __typeof__ extension that fills
this gap. For the following we assume a typeof operator that just captures the type of an
expression or typename that is passed as an argument.

1 int i;
2 // an array of three int
3 typeof(i) iA[] = { 0, 8, 9, };
4
5 double A[4];
6 typedef typeof(A) typeA;
7 // equivalent definition
8 typedef double typeA [4];
9 // equivalent declaration

10 typeA A;
11 // equivalent declaration
12 typeof(double [4]) A;
13 // mutable array of 4 elements intialized to 0
14 typeof(A) dA = { 0 };
15 // immutable array of 4 elements
16 typeof(A) const cA = { 0, 1, 2, 3, };
17
18 // infer the type of a function
19 typeof(sin) cos;
20 // equivalent declaration
21 double cos(double);
22
23 // infer the type of a function pointer and initialize
24 typeof(sin)*const ∆ = cos;
25 // equivalent definition
26 auto*const ∆ = cos;
27 // equivalent definition
28 const auto ∆ = cos;
29 // equivalent definition
30 double (*const ∆)(double) = cos;

In particular, for every declared identifier id with external linkage (that is not also thread
local) the following redundant declaration can be placed anywhere where a declaration is
allowed.

1 extern typeof(id) id;

A typeof operator can be used everywhere where an typedef identifier can be used. It
can not only applied to type expressions and identifiers as above, but also to any valid
expression:
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1 #define sortOrder \
2 []( size_t len , auto const ar[static len]) { \
3 qsort(ar, sizeof ar[0], len , \
4 []( void const* A, void const* B){ \
5 typeof(ar[0])* a = A; \
6 typeof(ar[0])* b = B; \
7 return (*a < *b) ? -1 : ((*a == *b) ? 0 : +1); \
8 } \
9 ); \

10 }
11
12 void (*sortd)(size_t len , double const ar[static len])
13 = sortOrder;
14 void (*sortu)(size_t len , unsigned const ar[static len])
15 = sortOrder;
16
17 double tabd[] = { 1, 4, 2, 3, };
18 // semantically equivalent
19 sortOrder(sizeof tab/sizeof tabd[0], tabd);
20 sortd(sizeof tab/sizeof tabd[0], tabd);
21
22 unsigned tabu[] = { 1, 4, 2, 3, };
23 // semantically equivalent
24 sortOrder(sizeof tabu/sizeof tabu[0], tabu);
25 sortu(sizeof tabu/sizeof tabu[0], tabu);

By that we are now able to remove the call to getOrderCP from the inner lambda expression.
The result is a macro sortOrder that can be used to sort any array as long as the elements
that can be compared with the < operator. The only external reference that remains is the
C library function qsort. That macro can be used to instantiate a function pointer or it can
be used directly in a function call.

V. COMMON EXTENSIONS IN C IMPLEMENTATIONS AND IN OTHER RELATED
PROGRAMMING LANGUAGES

In the following we are interested in features that extend current C for type-genericity but
with one important restriction:

Features that are proposed imply no ABI changes.

In particular, with the proposed changes we do not intend

— to change the ABI for function pointers,
— to introduce linkage incompatibilities such as mangling,
— to modify the life-time of automatic objects, or
— to introduce other managed storage that is different from automatic storage.

There are a lot of features in the field that would need one or several points from the above,
such as C++’s template functions or functor classes, Objective C’s __block storage specifiers,
or gcc’s callable nested functions. All of these approaches have their merits, and this paper
is not written to argue against their integration into C. We simply try first to look into the
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features that can do without, such that they might be easily adopted by programmers that
are used to our concepts and implemented more widely than they already are.

V.1. Type inferrence

Besides the possibility of functional expression, declaring parameters, variables and return
values of inferred type is a crucial missing feature for an enhancement of standard C towards
type-genericity. This allows to declare local, auxiliary, variables of a type that is deduced
from parameters and to return dependent values and types from functional constructs.

We found several existing extensions in C or related languages that allow to infer a type from
a given construct. They differ in the way derived type constructions (qualifiers, _Atomic,
arrays or functions) influence the derived type: C++’s auto feature and gcc’s auto_type,
C++’s decltype, and gcc’s typeof.

V.1.1. auto type inference. This kind of type inference takes up an idea that already exists
in C:

A type specification may only have incomplete information, and then is completed
by an initializer.

This is currently possible for array declarations where an incomplete specification of an
array bound may be completed by an initializer:

double const A[] = { 5. 6, 7, }; // array of 3 elements
double const B[] = { [23] = 0, }; // array of 24 zeroes

In fact, the maximum index in the initializer determines the size of the array and thereby
completes the array type.

auto type inference pushes this further, such that also the base type of an object definition
can be inferred from the initializer:

auto b = B[0]; // this is double
auto a = A; // this is double const*

Here, the initializer is considered to be an expression, thus all rules for evaluation of ex-
pressions apply. So, qualifiers and some type derivations are dropped. For example, b is
double, the const is dropped, and A on the RHS undergoes array-to-pointer conversion and
the inferred type for a is double const* and not double const[24].

Since in the places that are interesting here = can have the meaning of an assignment
operator or of an initializer, constructs as the following could be ambiguous:

b = B[0];
a = A;

This ambiguity can occur as soon that an attempted declaration has no storage class,
therefore C++ extends the use of the keyword auto and allows to place it in any declaration
that is supposed to be completed by an initializer.

This feature is then extended even further into contexts that don’t even have initializers:
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— An auto declaration of a function return type infers the completed return type from a
return expression, if there is any, or infers a type of void, if there is none.

— An auto declaration of a function or lambda parameter infers the completed parameter
type from the argument to a function call or from the corresponding parameter in a
function-pointer conversion.

V.1.2. The typeof feature. typeof is an extension that has been provided since a long time in
multiple compilers. A typeof specifier is just a placeholder for a type, similar to a typedef.
It reproduces the type “as-is” without dropping qualifiers and without decaying functions
or arrays. With this feature not only qualifiers and atomics do not get dropped, but they
can even be added.

It differs (and complements) the auto feature syntactically and semantically. Its general
forms are

typeof(expression)
typeof(type-name)

and these can be substituted at any place where a type name may occur. With the definitions
of A and B as above

auto b = B[0]; // this is double
auto a = A; // this is double const*
typeof(B[0]) β; // this is double const
typeof(A) α; // this is double const[24]
typeof(double const [24]) γ; // same type

So here we see that the expressions B[0] and A do not undergo any conversion and so the
qualifier and the array derivation remain in place.

There have been some inconsistencies for the type derivation strategies for this operator in
the past, but it seems that recent compilers interpret types that are given as arguments as
it is presented above.

V.1.3. The decltype feature. Since almost a decade C++ has introduced the decltype fea-
ture which in most aspects that concern the intersection with C is similar to typeof.

Conceptually, integration into C would be a bit more difficult than for auto. This is because
for historic reasons C++ here mixes several concepts in an unfortunate way: for some types
of expressions decltype has a reference type for others it hasn’t. The line of when it does
this is not where we would expect it to be for C: most lvalues produce a reference type, but
not all of them. In particular, direct identification of variables or functions (by identifier)
or of structure or union members leads to direct types, without reference, but surrounding
them with an expression that conserves their “lvalueness” adds a reference to the type of
the decltype specification.

It is quite unusual for C to have the type of an expression depend on surrounding (), but
unfortunately that ship has sailed in C++. Therefore we prefer that a new operator typeof
be introduced into both languages that clarifies these aspects and that is designed to have
exactly the same properties in both.
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V.2. Lambdas

As we have seen above, in C macros can serve for two important type-generic tasks, namely
the specification of type-generic expressions and the specification of type-generic functions.
But unfortunately they cannot, without extension, be used in place to specify functional
units that use the whole expressiveness of the language to do their computation.

To illustrate that, consider the simple task of specifying a max feature that computes the
maximum of two values x and y. In essence, we would like this to compute the expression

1 (x < y ? y : x)

regardless of the type of the two values x and y. As such this is not possible to specify this
safely with a macro

1 #define BADMAX(X, Y) ((X) < (Y) ? (Y) : (X))

because such a macro always evaluates one of the argument twice; once in the comparison
and a second time to evaluate the chosen value. As soon as we pass in argument expressions
that have side effects (such as i++ or a function call) these effects could be produced twice
and therefore result in surprising behavior for the unaware user of the interface.

Also, when we would mix signed and unsigned arguments, the above formula would not
always compute the mathematical maximum value of the two arguments because a negative
signed value could be converted to a large positive unsigned value.

Thus, already for a simple type-generic feature such as max, we would need the possibility
to define local variables that only have the scope of the max expression, and for which we
may somehow infer the type from the arguments that are passed to max.

In a slight abuse of terminology we will borough the term lambda from the domain of
functional programming to describe a functional feature that is an expression with a lambda
value of lambda type. Several proposals have already been discussed to integrate lambdas
into C [Garst 2010; Crowl 2010; Hedquist 2016; Garst 2016].

Basically, a lambda value can be used in two ways

— It can be moved around as values of objects, that is assigned to variables or returned from
functions.

— It can replace the function specifier in a function call expression.

In C++’s lambda notation (that we will propose to adopt below) a max feature can be
implemented as follows

1 []( auto x, auto y) {
2 if ((x < 0) != (y < 0)) {
3 x = (x < 0) ? 0 : x;
4 y = (y < 0) ? 0 : y;
5 }
6 return (x < y ? y : x);
7 }

That is, [] introduces a lambda expression, x and y are parameters to the lambda that
have an underspecified type (indicated by auto) and a return statement in the body of the
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lambda specifies a return value and, implicitly, a return type. The logic of the if statement
is to capture the case where one of the two parameters is negative and the other is not, and
then to replace the negative one with the value zero. Thereby the lambda never converts a
negative signed value to a positive unsigned value.

Observe, that this lambda does not access any other identifier than its parameters.

Global identifiers are easy to handle by lambdas as they are handled by any traditional
C function. For these there are two mechanism in play:

visibility. This regulates which identifiers can be used and which type they have. In
particular, visible identifiers can be used in some context (such as sizeof or _Generic)
without being accessed.
linkage. This regulates how the object or function behind an identifier is accessible. In
particular, an object or function with internal linkage is expected to be instantiated
in the same translation unit, and one with external linkage may refer to another, yet
unknown, translation unit.

We will call a lambda as the above that does not access external identifiers other than global
variables or functions a function literal. This term is chosen because such an expression can
be used like other literals in C: all information for the lambda value is available at compilation
time. Such function literal can be moved freely within the scope of the identifiers that are
used.

V.2.1. Possible syntax. There are several possibilities to specify syntax for lambdas and
below we will see three such specifications as they are currently implemented in the field:

— C++ lambdas,
— Objective C blocks,
— gcc’s statement expressions.

A fourth syntax had been proposed by us in some discussions in WG14, namely to ex-
tend the notion of compound literals to function types. Syntactically this could be quite
simple: for a compound literal where the type expression is a function specification, the
brace-enclosed initializer would be expected to be a function body, just as for an ordinary
function. The successful presence of gcc’s statement expressions as an extension shows that
such an addition could be added to C’s syntax tree without much difficulties. But these
two approaches also share the same insufficiencies, namely the semantic ambiguity how
references to local variables of the enclosing function would resolve.

V.2.2. The design space for captures and closures. For an object id with automatic storage
duration there is currently not much a distinction between the visibility of id and the
possibility to access the object through id. For the current definition of the language this
sufficient, but if lambdas are able to refer to identifiers that correspond to objects with
automatic storage duration, things become more complicated. For example, we might want
to execute a lambda that accesses a local variable x in a context where x is hidden by
another variable with the same name. So lambdas that access local variables must use a
different mechanism to do so.

We call lambdas that access identifiers of the context in which they are evaluated, closures,
and the identifiers that are such accessed by a closure captures. Since lambdas are inherently
expressions, within the context of C there are several possible interpretations of such a
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capture. The design space for modeling the capture of local variables with existing C features
can be described as follows:

(1) The identifier id of type τ is evaluated at the point of evaluation of the capture, and
the value ν of type τ ′ that is determined is used in place throughout the whole lifetime
of the closure. Such a capture is called a value capture. A closure that has only value
captures is called a value closure.
If τ would be an array type it would not be copyable (there is no such thing as an array
value in C) and thus it would not fit well in the scheme of a value capture. Therefore,
generally array types (and maybe other, non-copyable, types) are not allowed as value
captures.
A value capture can in principle be made visible with three different models as follows.
They all have in common that id can never appear where a modifiable lvalue is required,
such as the LHS of an assignment or as the operand of an increment.

rvalue capture. A value capture id can be presented as an “rvalue”, that is as
if it were defined as the result of an expression evaluation (0,id). The address
of a capture in this model cannot be taken. Although this might seem the most
natural view for the evaluation of lambda expression in C, we are not aware of an
implementation that that uses this model.

immutable capture. A value capture id is a lambda-local object of type τ ′′ that
is initialized with ν, where τ ′′ is τ ′ with an additional const-qualification. The
address of such a capture can be taken and, for example, be passed as argument to
a function call. But nevertheless the underlying object cannot be modified.

mutable capture. A value capture id is a lambda-local object of type τ ′ that is
initialized with ν. Such a capture behaves very similar to a function parameter
that receives the same value as argument on each function call. Such an object is
mutable during the execution of the closure, but all changes are lost as soon as
control is returned to the calling context.

Note that because τ ′ is a type after an evaluation, in all these models qualification or
atomicity of τ is dropped.

(2) Throughout the life-time of the closure, id refers to the same object that is visible by
this name at the point of evaluation of the closure. Such a capture is called an lvalue
capture. A closure that has at least one lvalue capture is called an lvalue closure. Since
lvalue captures refer to objects, an lvalue closure cannot have a life-time that exceeds
any of its lvalue captures. Since id is not evaluated at the same time as the lambda
expression is formed, it has the same type τ inside the body of the lambda. No qualifiers
are dropped, type derivations such as atomic or array are maintained.

V.2.3. C++ lambdas. C++ lambdas are the most general existing extension and they also
fit well into the constraints that we have set ourselves above, namely to be compatible with
existing storage classes. Their syntactic form if we don’t consider the possibility of adding
attributes is

[ capture-list ]
{
( parameter-list )

}
opt

mutableopt
{
-> return-type

}
opt

function-body
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Identifiers with automatic storage duration are captured exclusively if they are listed in
the capture-list or if a default capture is given. This is a list of captures, each of one the
following forms

explicit
id immutable value capture
id = expression immutable value capture with type and

value of expression
&id lvalue capture
&id = lvalue-expression object alias

default
forbidden

= immutable value capture
& lvalue capture

If the optional keyword mutable is present, all captures that would otherwise be immutable
value captures are mutable value captures, instead. If -> return-type is present it describes
the return type of the lambda; if not, the return type is deduced from a return statement
if there is any, or it is void otherwise. The object alias feature introduces a C++ reference
variable. For C, these constructs would need some avoidable extension to the syntax and
object semantic, so we will not use these parts of the syntax in the proposed addition to C.

The parameter-list can be a usual parameter list with the notable extension that the type
of a parameter can be underspecified by using the auto feature, see below. A lambda that
has at least one underspecified parameter is a type-generic lambda.

Lambda values can be used just as function designators as the left operand of a function call,
and all rules for arguments to such a call and the rules to convert them transfers naturally
to a lambda call.

When used outside the LHS of a function call expression, lambdas are just values of some
object type that is not further specified. Such a lambda type has no declaration syntax, and
so the only way to store a lambda value into an object is to use the auto feature:

1 auto const λ = []( double x){ return x+1; };

By these precautions, for any C++ lambda the original expression that defined the value is
always known. So the compiler will always master any aspects of the lambda, in particular
which variables of the context are used as captures. If a lambda value leaves the scope of
definition of any of its lvalue captures the compiler can print a diagnosis.

Function literals are special with respect to these aspects, since they do not have any cap-
tures. This is why these special lambdas allow for a third operation, they can be converted
to a function pointer:

1 double (*λp)(double) = λ;
2 double (*κp)(double) = []( double x){ return x+1; };

V.2.4. Objective C’s blocks. Objective C [ObjectiveC 2014] has a highly evolved lambda
feature that they call block, see also [Garst 2009; Garst 2016]. Their syntax is

ˆ return-typeopt
{
( parameter-list )

}
opt

function-body
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Besides the obvious syntactic difference, blocks lack an important feature of C++ lambdas,
namely the possibility to specify the policy for captures. If used without other specific
extensions, an Objective C block has the same semantic as a C++ value closure, where any
automatic variable in the surrounding context can be used as immutable value capture.
Such a block can be equivalently defined with a C++ lambda as

[ = ]
{
( parameter-list )

}
opt

{
-> return-type

}
opt

function-body

and in particular the variants that omit the return type have a syntax that only differs on
the token sequence that introduces the feature:

ˆ
{
( parameter-list )

}
opt

function-body

[=]
{
( parameter-list )

}
opt

function-body

An important difference arises though, when it comes to lvalue captures, where Objective C
takes a completely different approach than C++. Here, the property if a capture is a value
or an lvalue capture is attributed to the underlying variable itself, not to the closure that
uses it.

A new storage class for managed storage is introduced, unfortunately also called __block;
__block variables are always lvalue captures. Such variables have a lifetime that is prolonged
even after their defining scope is left, as long as there is any living closure that refers to it.
By this, blocks elegantly resolve the lifetime issues of lvalue closures in C++: by definition
a block will never access a variable after its end-of-life. This elegance comes at the cost of
introducing a new storage class with a substantial implementation cost, a certain runtime
overhead, and a lack of expressiveness for the choice of the access model for each individual
capture.

Because of this extension of the lifetime of lvalue captures, for Objective C it is also much
easier to describe functors as variables of block type. The declaration syntax for these is
similar to function pointers, but using a ˆ token instead of *.

V.2.5. Statement expressions. Statement expressions are an intuitive extension first intro-
duced by the gcc compiler framework. Their basic idea is to surround a compound statement
with parenthesis and thereby to transform such a compound statement into an expression.
The value of such an expression is the value of the last statement if that is an expres-
sion statement, or void if it is any other form of statement. With statements any list of
C statements (including a terminating ; if necessary), the syntax

({ statements expression; })

is equivalent to the following function call with a C++ lvalue closure as the left operand

[ & ] (void) { statements return expression; } ()

V.2.6. Nested functions. Gcc and related compiler platforms also implement the feature of
a nested function, that is a function that is declared inside the function body of another
function. Obviously, because they are not expressions, nested functions are not lambdas,
but we will see below how they can be effectively used to implement lambdas. On the other
hand, since they cannot be forward-declared, lambda expressions don’t allow for recursion,
so nested functions clearly are more expressive.
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Nested functions can also capture local variables of the surrounding scope. Because they
are not expressions but definitions, the most natural semantic is that of lvalue captures the
use of such variables, and this is the semantic that gcc applies.

Much as global standard C functions, nested functions decay into function pointers if they
are used other than for the LHS of a function call. This is even for functions that need
access to captures, and thus the ABI must be extended to make this possible. The gcc im-
plementation does that by creating a so-called trampoline as an automatic object, namely
as a small function that collects the local information that is necessary and then calls a con-
ventional function to execute the specified function body. Doing so needs execute rights for
the automatic storage in question, which is widely criticized because of its possible security
impact. On the other hand, this approach is uncritical when it is used without captures,
because then the result of the conversion is a simple, conventional, function pointer.

Provided we have an auto feature as presented in Section V.1.1 and a typeof feature as
in Section V.1.2, the semantics of a wide variety of C++ lambdas can be implemented with
nested functions. For example, with the shnell source-to-source rewriting tool [Gustedt
2020a], we have implemented such a transformation as follows. For a value closure of the
form

[id0 = expr0, ..., idk = exprk] ( parameter-list ) function-body0

a definition of a state type _Uniq_Struct, state variable _Uniq_Capt and a definition of a
local function _Uniq_Func are placed inside the closest compound statement that contains
the lambda expression:

struct _Unique_Struct {
typeof(expr0) id0;
...
typeof(exprk) idk;

} _Uniq_Capt;
auto _Uniq_Func( parameter-list ) function-body1

Here, function-body1 is the same as function-body0, only that the contents is prefixed with
definitions of the captures:

auto const id0 = _Uniq_Capt.id0;
...
auto const idk = _Uniq_Capt.idk;

The lambda expression itself then has to be replaced by an expression that evaluates all the
expressions to be captured, followed by the name of the function:

((_Uniq_Capt = (struct _Uniq_Struct){ expr0, ..., exprk }), _Uniq_Func)

Similarly to the above, value captures of the form idI (without expression) can just use idI
for exprI.

Additionally, a C++ lvalue closure that has either a default & token or individual lvalue
captures &idI can be implemented by just removing these elements from the capture list.
Then, the same restrictions for the lifetime of lvalue captures and lambda values applies to
the rewritten code, and it is up to the programmer to verify this property.
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Although this approach covers a wide range of C++ lambdas, such a rewriting strategy has
some limits:

— The lambda expression cannot be used in all places that are valid for expression. This
are for example an initializer for a variable that is not the first declared variable in a
declaration or a controlling expression of a for loop.

— The default token = in the capture list is not implementable by such simple rewriting,
— The function body is not checked for an access of automatic variables that are not listed

in the capture clause.
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6. Language

6.1 Notation
1 In the syntax notation used in this clause, syntactic categories (nonterminals) are indicated by italic

type, and literal words and character set members (terminals) by bold type. A colon (:) following
a nonterminal introduces its definition. Alternative definitions are listed on separate lines, except
when prefaced by the words "one of". An optional symbol is indicated by the subscript "opt", so
that

{ expressionopt }

indicates an optional expression enclosed in braces.

2 When syntactic categories are referred to in the main text, they are not italicized and words are
separated by spaces instead of hyphens.

3 A summary of the language syntax is given in Annex A.

6.2 Concepts
6.2.1 Scopes of identifiers

1 An identifier can denote an object; a function; a tag or a member of a structure, union, or enumeration;
a typedef name; a label name; a macro name; or a macro parameter. The same identifier can denote
different entities at different points in the program. A member of an enumeration is called an
enumeration constant. Macro names and macro parameters are not considered further here, because
prior to the semantic phase of program translation any occurrences of macro names in the source file
are replaced by the preprocessing token sequences that constitute their macro definitions.

2 For each different entity that an identifier designates, the identifier is visible (i.e., can be used) only
within a region of program text called its scope. Different entities designated by the same identifier
either have different scopes, or are in different name spaces. There are four kinds of scopes: function,
file, block, and function prototype. (A function prototype is a declaration of a function that declares
the types of its parameters.)

3 A label name is the only kind of identifier that has function scope. It can be used (in a goto statement)
anywhere in the function

::::
body

:
in which it appears, and is declared implicitly by its syntactic

appearance (followed by a : and a statement).
::::
Each

::::::::
function

:::::
body

::::
has

::
a

::::::::
function

:::::
scope

:::::
that

::
is

:::::::
separate

:::::
from

::::
the

::::::::
function

::::::
scope

::
of

::::
any

::::::
other

::::::::
function

::::::
body.

:::
In

::::::::::
particular,

:
a
:::::

label
:::

is
::::::
visible

:::
in

::::::
exactly

::::
one

::::::::
function

:::::
scope

::::
(the

::::::::::
innermost

::::::::
function

:::::
body

::
in

::::::
which

::
it

::::::::
appears)

::::
and

:::::::
distinct

::::::::
function

::::::
bodies

::::
may

::::
use

:::
the

:::::
same

:::::::::
identifier

::
to

:::::::::
designate

::::::::
different

::::::
labels.29)

4 Every other identifier has scope determined by the placement of its declaration (in a declarator
or type specifier). If the declarator or type specifier that declares the identifier appears outside
of any block or list of parameters, the identifier has file scope, which terminates at the end of the
translation unit. If the declarator or type specifier that declares the identifier appears inside a block
or within the list of parameter declarations in a function definition, the identifier has block scope,
which terminates at the end of the associated block. If the declarator or type specifier that declares
the identifier appears within the list of parameter declarations in a function prototype (not part
of a function definition), the identifier has function prototype scope, which terminates at the end of
the function declarator.30) If an identifier designates two different entities in the same name space,
the scopes might overlap. If so, the scope of one entity (the inner scope) will end strictly before the
scope of the other entity (the outer scope). Within the inner scope, the identifier designates the entity
declared in the inner scope; the entity declared in the outer scope is hidden (and not visible) within
the inner scope.

29)
::
As

:
a
::::::::::
consequence,

::
it

:
is
:::

not
:::::::

possible
::
to

:::::
specify

::
a
::::
goto

:::::::
statement

::::
that

:::::
jumps

:::
into

::
or

:::
out

::
of

:
a
::::::

lambda
::

or
::::

into
::::::
another

::::::
function.

30)
:::::::
Identifiers

:::
that

:::
are

::::::
defined

::
in

::
the

::::::::
parameter

:::
list

::
of

:
a
::::::
lambda

::::::::
expression

::
do

:::
not

::::
have

:::::::
prototype

:::::
scope,

:::
but

:
a
::::
scope

::::
that

:::::::
comprises

:::
the

:::::
whole

::::
body

:
of
:::

the
::::::
lambda.
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5 Unless explicitly stated otherwise, where this document uses the term "identifier" to refer to some
entity (as opposed to the syntactic construct), it refers to the entity in the relevant name space whose
declaration is visible at the point the identifier occurs.

6 Two identifiers have the same scope if and only if their scopes terminate at the same point.

7 Structure, union, and enumeration tags have scope that begins just after the appearance of the
tag in a type specifier that declares the tag. Each enumeration constant has scope that begins
just after the appearance of its defining enumerator in an enumerator list.

::
An

:::::::::
identifier

::::
that

::::
has

::
an

::::::::::::::
underspecified

::::::::::
declarator

:::
and

:::::
that

:::::::::
designates

:::
an

::::::
object

::::
has

:
a
::::::
scope

::::
that

:::::
starts

::
at

::::
the

::::
end

::
of

:::
its

:::::::::
initializer;

::
if

:::
the

:::::
same

:::::::::
identifier

::::::::
declares

:::::::
another

::::::
entity

::
in

:::
an

::::::::::::
surrounding

::::::
scope,

::::
that

:::::::::::
declaration

:
is
:::::::

hidden
:::

as
:::::
soon

::
as

::::
the

:::::
inner

::::::::::
declarator

::
is

::::
met.31)

::
An

:::::::::
identifier

::::
that

::::::::::
designates

::
a
::::::::
function

:::::
with

::
an

::::::::::::::
underspecified

::::::
return

::::
type

::::
has

:
a
::::::
scope

::::
that

:::::
starts

:::::
after

:::
the

::::::::
lexically

::::
first

:::::::
return

:::::::::
statement

::
in

:::
its

:::::::
function

::::::
body

::
or

::
at

::::
the

::::
end

::
of

::::
the

::::::::
function

:::::
body

::
if

:::::
there

::
is

:::
no

:::::
such

:::::::
return,

::::
and

:::::
from

::::
that

::::::
point

:::::::
extends

::
to

::::
the

::::::
whole

::::::::::
translation

:::::
unit.

:
Any other identifier has scope that begins just after the

completion of its declarator.

8 As a special case, a type name (which is not a declaration of an identifier) is considered to have
a scope that begins just after the place within the type name where the omitted identifier would
appear were it not omitted.

Forward references: declarations (6.7), function calls (6.5.2.2), function definitions (6.9.1), identifiers
(6.4.2), macro replacement (6.10.3), name spaces of identifiers (6.2.3), source file inclusion (6.10.2),
statements and blocks (6.8).

6.2.2 Linkages of identifiers
1 An identifier declared in different scopes or in the same scope more than once can be made to refer to

the same object or function by a process called linkage.32) There are three kinds of linkage: external,
internal, and none.

2 In the set of translation units and libraries that constitutes an entire program, each declaration of a
particular identifier with external linkage denotes the same object or function. Within one translation
unit, each declaration of an identifier with internal linkage denotes the same object or function. Each
declaration of an identifier with no linkage denotes a unique entity.

3 If the declaration of a file scope identifier for an object or a function contains the storage-class
specifier static, the identifier has internal linkage.33)

4 For an identifier declared with the storage-class specifier extern in a scope in which a prior dec-
laration of that identifier is visible,34) if the prior declaration specifies internal or external linkage,
the linkage of the identifier at the later declaration is the same as the linkage specified at the prior
declaration. If no prior declaration is visible, or if the prior declaration specifies no linkage, then the
identifier has external linkage.

5 If the declaration of an identifier for a function has no storage-class specifier, its linkage is determined
exactly as if it were declared with the storage-class specifier extern. If the declaration of an identifier
for an object has file scope and no storage-class specifier

::
or

:::::
only

:::
the

::::::::
specifier

:::::
auto , its linkage is

external.

6 The following identifiers have no linkage: an identifier declared to be anything other than an object
or a function; an identifier declared to be a function parameter; a block scope identifier for an object
declared without the storage-class specifier extern.

7 If, within a translation unit, the same identifier appears with both internal and external linkage, the
behavior is undefined.

Forward references: declarations (6.7), expressions (6.5), external definitions (6.9), statements (6.8).

31)
:::
That

::::::
means,

:::
that

::
the

::::
outer

:::::::::
declaration

:
is
:::
not

:::::
visible

:::
for

::
the

::::::::
initializer.

32)There is no linkage between different identifiers.
33)A function declaration can contain the storage-class specifier static only if it is at file scope; see 6.7.1.
34)As specified in 6.2.1, the later declaration might hide the prior declaration.

Language modifications to ISO/IEC 9899:2018, § 6.2.2 page 29
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— A structure type describes a sequentially allocated nonempty set of member objects (and, in
certain circumstances, an incomplete array), each of which has an optionally specified name
and possibly distinct type.

— A union type describes an overlapping nonempty set of member objects, each of which has an
optionally specified name and possibly distinct type.

— A function type describes a function with specified return type. A function type is characterized
by its return type and the number and types of its parameters. A function type is said to
be derived from its return type, and if its return type is T, the function type is sometimes
called "function returning T". The construction of a function type from a return type is called
"function type derivation".

—
::
A

::::::
lambda

::::
type

:
is

:::
an

::::::
object

::::
type

::::
that

:::::::::
describes

:::
the

::::::
value

::
of

::
a

:::::::
lambda

:::::::::::
expression.

::
A

:::::::::
complete

:::::::
lambda

::::
type

::
is
:::::::::::::

characterized
::::
but

:::
not

:::::::::::
determined

:::
by

::
a

::::::
return

::::
type

::::
that

:::
is

:::::::
inferred

:::::
from

::::
the

:::::::
function

::::::
body

::
of

:::
the

::::::::
lambda

::::::::::
expression,

::::
and

:::
by

:::
the

::::::::
number,

::::::
order,

::::
and

:::::
type

::
of

:::::::::::
parameters

:::
that

::::
are

::::::::
expected

:::
for

::::::::
function

:::::
calls;

::::
the

::::::::
function

::::
type

:::::
that

:::
has

::::
the

:::::
same

::::::
return

::::
type

::::
and

::::
list

::
of

:::::::::
parameter

::::::
types

::
as

:::
the

::::::::
lambda

::
is

:::::
called

::::
the prototype

::
of

::::
the

:::::::
lambda.

:::
A

:::::::
lambda

::::::::::
expression

:::
that

::::
has

::::::::::::::
underspecified

::::::::::
parameters

::::
has

::
an

:::::::::::
incomplete

:::::::
lambda

::::
type

::::
that

::::
can

::
be

::::::::::
completed

:::
by

:::::::
function

::::
call

::::::::::
arguments.

:

— A pointer type may be derived from a function type or an object type, called the referenced type. A
pointer type describes an object whose value provides a reference to an entity of the referenced
type. A pointer type derived from the referenced type T is sometimes called "pointer to T".
The construction of a pointer type from a referenced type is called "pointer type derivation".
A pointer type is a complete object type.

— An atomic type describes the type designated by the construct _Atomic(type-name). (Atomic
types are a conditional feature that implementations need not support; see 6.10.8.3.)

These methods of constructing derived types can be applied recursively.

21 Arithmetic types and pointer types are collectively called scalar types. Array and structure types are
collectively called aggregate types.50)

22 An array type of unknown size is an incomplete type. It is completed, for an identifier of that type,
by specifying the size in a later declaration (with internal or external linkage). A structure or union
type of unknown content (as described in 6.7.2.3) is an incomplete type. It is completed, for all
declarations of that type, by declaring the same structure or union tag with its defining content later
in the same scope.

23 A type has known constant size if the type is not incomplete and is not a variable length array type.

24 Array, function, and pointer types are collectively called derived declarator types. A declarator type
derivation from a type T is the construction of a derived declarator type from T by the application of
an array-type, a function-type, or a pointer-type derivation to T.

25 A type is characterized by its type category, which is either the outermost derivation of a derived
type (as noted above in the construction of derived types), or the type itself if the type consists of no
derived types.

26 Any type so far mentioned is an unqualified type. Each unqualified type has several qualified versions
of its type,51) corresponding to the combinations of one, two, or all three of the const, volatile,
and restrict qualifiers. The qualified or unqualified versions of a type are distinct types that
belong to the same type category and have the same representation and alignment requirements.52)

A derived type is not qualified by the qualifiers (if any) of the type from which it is derived.

50)Note that aggregate type does not include union type because an object with union type can only contain one member at
a time.

51)See 6.7.3 regarding qualified array and function types.
52)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,

return values from functions, and members of unions.
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specified operands, each operand is converted, without change of type domain, to a type whose
corresponding real type is the common real type. Unless explicitly stated otherwise, the common
real type is also the corresponding real type of the result, whose type domain is the type domain of
the operands if they are the same, and complex otherwise. This pattern is called the usual arithmetic
conversions:

First, if the corresponding real type of either operand is long double, the other operand
is converted, without change of type domain, to a type whose corresponding real type is
long double.

Otherwise, if the corresponding real type of either operand is double, the other operand is
converted, without change of type domain, to a type whose corresponding real type is double.

Otherwise, if the corresponding real type of either operand is float, the other operand is
converted, without change of type domain, to a type whose corresponding real type is float.67)

Otherwise, the integer promotions are performed on both operands. Then the following rules
are applied to the promoted operands:

If both operands have the same type, then no further conversion is needed.

Otherwise, if both operands have signed integer types or both have unsigned integer
types, the operand with the type of lesser integer conversion rank is converted to the type
of the operand with greater rank.

Otherwise, if the operand that has unsigned integer type has rank greater or equal to
the rank of the type of the other operand, then the operand with signed integer type is
converted to the type of the operand with unsigned integer type.

Otherwise, if the type of the operand with signed integer type can represent all of the
values of the type of the operand with unsigned integer type, then the operand with
unsigned integer type is converted to the type of the operand with signed integer type.

Otherwise, both operands are converted to the unsigned integer type corresponding to
the type of the operand with signed integer type.

2 The values of floating operands and of the results of floating expressions may be represented in
greater range and precision than that required by the type; the types are not changed thereby.68)

6.3.2 Other operands
6.3.2.1 Lvalues, arrays, function designators and lambdas

1 An lvalue is an expression (with an object type other than void) that potentially designates an
object;69) if an lvalue does not designate an object when it is evaluated, the behavior is undefined.
When an object is said to have a particular type, the type is specified by the lvalue used to designate
the object. A modifiable lvalue is an lvalue that does not have array type, does not have an incomplete
type, does not have a const-qualified type, and if it is a structure or union, does not have any
member (including, recursively, any member or element of all contained aggregates or unions) with
a const-qualified type.

2 Except when it is the operand of the sizeof operator, the unary & operator, the++ operator, the--
operator, or the left operand of the . operator or an assignment operator, an lvalue that does not
have array type is converted to the value stored in the designated object (and is no longer an lvalue);
this is called lvalue conversion. If the lvalue has qualified type, the value has the unqualified version
of the type of the lvalue; additionally, if the lvalue has atomic type, the value has the non-atomic

67)For example, addition of a double _Complex and a float entails just the conversion of the float operand to double
(and yields a double _Complex result).

68)The cast and assignment operators are still required to remove extra range and precision.
69)The name "lvalue" comes originally from the assignment expression E1 = E2, in which the left operand E1 is required to

be a (modifiable) lvalue. It is perhaps better considered as representing an object "locator value". What is sometimes called
"rvalue" is in this document described as the "value of an expression".

An obvious example of an lvalue is an identifier of an object. As a further example, if E is a unary expression that is a
pointer to an object,*E is an lvalue that designates the object to which E points.

modifications to ISO/IEC 9899:2018, § 6.3.2.1 page 40 Language
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version of the type of the lvalue; otherwise, the value has the type of the lvalue. If the lvalue has an
incomplete type and does not have array type, the behavior is undefined. If the lvalue designates an
object of automatic storage duration that could have been declared with the register storage class
(never had its address taken), and that object is uninitialized (not declared with an initializer and no
assignment to it has been performed prior to use), the behavior is undefined.

3 Except when it is the operand of the sizeof operator, or the unary & operator, or is a string literal
used to initialize an array, an expression that has type "array of type" is converted to an expression
with type "pointer to type" that points to the initial element of the array object and is not an lvalue.
If the array object has register storage class, the behavior is undefined.

4 A function designator is an expression that has function type. Except when it is the operand of the
sizeof operator,70) or the unary & operator, a function designator with type "function returning
type" is converted to an expression that has type "pointer to function returning type".

5
:::::
Other

:::::
than

::::::::
specified

::
in

:::
the

::::::::::
following,

:::::::
lambda

:::::
types

:::::
shall

:::
not

:::
be

:::::::::
converted

:::
to

:::
any

::::::
other

:::::
object

:::::
type.

::
A

:::::::
function

::::::
literal

::::
with

::
a
::::
type

::::::::
"lambda

:::::
with

:::::::::
prototype

::::
type

:
"

:::
can

:::
be

:::::::::
converted

:::::::::
implicitly

::
or

:::::::::
explicitly

::
to

::
an

::::::::::
expression

::::
that

::::
has

::::
type

::::::::
"pointer

::
to

::::
type

:::::
".For

:
a
::::::::::::
type-generic

::::::::
lambda,

:::::
types

::
of

::::::::::::::
underspecified

::::::::::
parameters

:::::
shall

::::
first

::
be

::::::::::
completed

:::::::::
according

:::
to

:::
the

::::::::::
parameters

:::
of

:::
the

::::::
target

:::::::::
prototype;

::::
that

:::
is,

:::
for

::::
each

::::::::::::::
underspecified

::::::::::
parameter

:::::
there

:::::
shall

::
be

::
a
:::::
type

::::::::
specifier

::
as

:::::::::
described

:::
in

:::::
6.7.10

:::::
such

::::
that

::::
the

::::::::
adjusted

:::::::::
parameter

:::::
type

::
is

::::::::::
compatible

:::::
with

:::
the

::::::::::
parameter

:::::
type

::
of

:::
the

::::::
target

::::::::
function

:::::
type.

::::::
After

::::
that,

:::
the

::::::::
inferred

::::::
return

::::
type

::
of

:::
the

:::::
thus

:::::::::
completed

:::::::
lambda

:::::
shall

:::
be

::::::::::
compatible

::::
with

:::
the

::::::
return

:::::
type

::
of

:::
the

::::::
target

:::::::::
prototype.71)

:::
The

::::::::
function

:::::::
pointer

::::::
value

:::::::
behaves

:::
as

:
if
::
a
::::::::
function

::::
with

::::::::
internal

:::::::
linkage

::::
with

::::
the

:::::::::::
appropriate

::::::::::
prototype,

:
a
:::::::

unique
:::::::

name,
::::
and

:::
the

::::::
same

::::::::
function

:::::
body

:::
as

:::
for

::
λ

::::
had

:::::
been

::::::::
specified

::
in

::::
the

::::::::::
translation

::::
unit

::::
and

:::
the

::::::::
function

:::::::
pointer

::::
had

:::::
been

:::::::
formed

:::
by

::::::::::::::::::
function-to-pointer

::::::::::
conversion

::
of

::::
that

:::::::::
function.

:::::
The

::::
only

:::::::::::
differences

:::
are

:::::
that,

::
if

::
λ

::
is

:::
not

:::::::::::::
type-generic,

:::
the

:::::::::
resulting

:::::::
function

::::::::
pointer

::
is

::::
the

:::::
same

::::
for

:::
the

:::::::
whole

::::::::
program

::::::::::
execution

:::::::::
whenever

::
a
:::::::::::

conversion
::
of

::
λ
:::

is

:::
met72)

:::
and

::::
that

::::
the

:::::::
function

:::::::
pointer

::::::
needs

:::
not

:::::::::::
necessarily

::
to

:::
be

:::::::
distinct

::::
from

::::
any

:::::
other

:::::::::::
compatible

:::::::
function

:::::::
pointer

::::
that

:::::::::
provides

:::
the

:::::
same

::::::::::
observable

:::::::::
behavior.

Forward references:
::::::
lambda

:::::::::::
expressions

::::::::
(6.5.2.6) address and indirection operators (6.5.3.2), as-

signment operators (6.5.16), common definitions <stddef.h> (7.19), initialization (6.7.9), postfix
increment and decrement operators (6.5.2.4), prefix increment and decrement operators (6.5.3.1), the
sizeof and _Alignof operators (6.5.3.4), structure and union members (6.5.2.3).

:
,
::::
type

:::::::::
inference

:::::::
(6.7.10).

6.3.2.2 void

1 The (nonexistent) value of a void expression (an expression that has type void) shall not be used in any
way, and implicit or explicit conversions (except to void) shall not be applied to such an expression.
If an expression of any other type is evaluated as a void expression, its value or designator is
discarded. (A void expression is evaluated for its side effects.)

6.3.2.3 Pointers
1 A pointer to void may be converted to or from a pointer to any object type. A pointer to any object

type may be converted to a pointer to void and back again; the result shall compare equal to the
original pointer.

2 For any qualifier q, a pointer to a non-q-qualified type may be converted to a pointer to the q-qualified
version of the type; the values stored in the original and converted pointers shall compare equal.

3 An integer constant expression with the value 0, or such an expression cast to type void *, is called
a null pointer constant.73) If a null pointer constant is converted to a pointer type, the resulting
pointer, called a null pointer, is guaranteed to compare unequal to a pointer to any object or function.

70)Because this conversion does not occur, the operand of the sizeof operator remains a function designator and violates
the constraints in 6.5.3.4.

71)
:
It
::::::
follows

:::
that

::::::
lambdas

::
of

:::::::
different

:::
type

::::::
cannot

::
be

::::::
assigned

::
to

::::
each

::::
other.

:::::
Thus,

::
in

::
the

:::::::::
conversion

::
of

:
a
::::::
function

:::::
literal

:
to
::
a

::::::
function

::::::
pointer,

::
the

::::::::
prototype

:
of
:::

the
::::::::
originating

::::::
lambda

::::::::
expression

:::
can

::
be

::::::
assumed

::
to

::
be

::::::
known,

:::
and

:
a
::::::::
diagnostic

:::
can

::
be

:::::
issued

:
if
:::
the

::::::::
prototypes

::
do

:::
not

:::::
aggree.

72)
:::
Thus

::
a
::::::
function

:::::
literal

:::
that

::
is

::
not

::::::::::
type-generic

:::
has

:::::::
properties

::::
that

::
are

::::::
similar

:
to
::

a
::::::
function

:::::::
declared

:::
with

::::::
static

:::
and

:

::::::
inline.

:
A
:::::::
possible

:::::::::::
implementation

::
of

:::
the

:::::
lambda

::::
type

:
is
::

to
::
be

:::
the

:::
the

::::::
function

:::::
pointer

::::
type

::
to

:::::
which

:::
they

::::::
convert.

73)The macro NULL is defined in <stddef.h> (and other headers) as a null pointer constant; see 7.19.

Language modifications to ISO/IEC 9899:2018, § 6.3.2.3 page 41

5



CORE 202101 (E) § 6.5.2, working draft — January 10, 2021 C17.. N2638

default : assignment-expression

Constraints
2 A generic selection shall have no more than one default generic association. The type name in a

generic association shall specify a complete object type other than a variably modified type. No two
generic associations in the same generic selection shall specify compatible types. The type of the
controlling expression is the type of the expression as if it had undergone an lvalue conversion,100)

array to pointer conversion, or function to pointer conversion. That type shall be compatible with at
most one of the types named in the generic association list. If a generic selection has no default
generic association, its controlling expression shall have type compatible with exactly one of the
types named in its generic association list.

Semantics
3 The controlling expression of a generic selection is not evaluated. If a generic selection has a generic

association with a type name that is compatible with the type of the controlling expression, then the
result expression of the generic selection is the expression in that generic association. Otherwise, the
result expression of the generic selection is the expression in the default generic association. None
of the expressions from any other generic association of the generic selection is evaluated.

4 The type and value of a generic selection are identical to those of its result expression. It is an
lvalue, a function designator, or a void expression if its result expression is, respectively, an lvalue, a
function designator, or a void expression.

5 EXAMPLE The cbrt type-generic macro could be implemented as follows:

#define cbrt(X) _Generic((X), \
long double: cbrtl, \
default: cbrt, \
float: cbrtf \
)(X)

6.5.2 Postfix operators
Syntax

1 postfix-expression:
primary-expression
postfix-expression [ expression ]
postfix-expression ( argument-expression-listopt )
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression -
( type-name ) { initializer-list }
( type-name ) { initializer-list , }

::::::::::::::::
lambda-expression

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

6.5.2.1 Array subscripting
Constraints

1 One of the expressions shall have type "pointer to complete object type", the other expression shall
have integer type, and the result has type "type".

100)An lvalue conversion drops type qualifiers.

modifications to ISO/IEC 9899:2018, § 6.5.2.1 page 58 Language
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Semantics
2 A postfix expression followed by an expression in square brackets [] is a subscripted designation of

an element of an array object. The definition of the subscript operator [] is that E1[E2] is identical
to (*((E1)+(E2))). Because of the conversion rules that apply to the binary+ operator, if E1 is an
array object (equivalently, a pointer to the initial element of an array object) and E2 is an integer,
E1[E2] designates the E2 -th element of E1 (counting from zero).

3 Successive subscript operators designate an element of a multidimensional array object. If E is an
n-dimensional array (n ≥ 2) with dimensions i× j × · · · × k, then E (used as other than an lvalue) is
converted to a pointer to an (n− 1)-dimensional array with dimensions j × · · · × k. If the unary*
operator is applied to this pointer explicitly, or implicitly as a result of subscripting, the result is the
referenced (n− 1)-dimensional array, which itself is converted into a pointer if used as other than an
lvalue. It follows from this that arrays are stored in row-major order (last subscript varies fastest).

4 EXAMPLE Consider the array object defined by the declaration

int x[3][5];

Here x

is a 3× 5 array of

int s; more precisely, x is an array of three element objects, each of which is an array of five int s. In the expression x[i],
which is equivalent to (*((x)+(i))), x is first converted to a pointer to the initial array of five int s. Then i is adjusted
according to the type of x, which conceptually entails multiplying i by the size of the object to which the pointer points,
namely an array of five int objects. The results are added and indirection is applied to yield an array of five int s. When
used in the expression x[i][j], that array is in turn converted to a pointer to the first of the int s, so x[i][j] yields an int.

Forward references: additive operators (6.5.6), address and indirection operators (6.5.3.2), array
declarators (6.7.6.2).

6.5.2.2 Function calls
Constraints

1 The expression that denotes the called function
::::::
postfix

::::::::::
expression101) shall have type

::::::
lambda

:::::
type

::
or pointer to function

::::
type, returning void or returning a complete object type other than an array

type.

2 If the expression that denotes the called function has a type that
::::::
postfix

::::::::::
expression

::
is

::
a

:::::::
lambda

::
or

::
if

:::
the

::::
type

::
of

::::
the

::::::::
function includes a prototype, the number of arguments shall agree with the number

of parameters
::
of

:::
the

::::::::
function

::
or

:::::::
lambda

:::::
type. Each argument shall have a type such that its value

may be assigned to an object with the unqualified version of the type of its corresponding parameter.

Semantics
3 A postfix expression followed by parentheses () containing a possibly empty, comma-separated list

of expressions is a function call. The postfix expression denotes the called function
::
or

:::::::
lambda. The

list of expressions specifies the arguments to the function
::
or

:::::::
lambda.

4 An argument may be an expression of any complete object type. In preparing for the call to a
function, the arguments are evaluated, and each parameter is assigned the value of the corresponding
argument.102)

5 If the expression that denotes the called function has
:::::::
lambda

::::
type

:::
or

:
type pointer to function

returning an object type, the function call expression has the same type as that object type, and has
the value determined as specified in 6.8.6.4. Otherwise, the function call has type void.

6 If the expression that denotes the called function has a type that does not include a prototype, the
integer promotions are performed on each argument, and arguments that have type float are
promoted to double. These are called the default argument promotions. If the number of arguments
does not equal the number of parameters, the behavior is undefined. If the function is defined with

101)Most often, this is the result of converting an identifier that is a function designator.
102)A function

:
or

::::::
lambda can change the values of its parameters, but these changes cannot affect the values of the arguments.

On the other hand, it is possible to pass a pointer to an object, and the function
::
or

:::::
lambda

:
can then change the value of the

object pointed to. A parameter declared to have array or function type is adjusted to have a pointer type as described in 6.9.1.

Language modifications to ISO/IEC 9899:2018, § 6.5.2.2 page 59
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a type that includes a prototype, and either the prototype ends with an ellipsis (, ...) or the types
of the arguments after promotion are not compatible with the types of the parameters, the behavior
is undefined. If the function is defined with a type that does not include a prototype, and the types
of the arguments after promotion are not compatible with those of the parameters after promotion,
the behavior is undefined, except for the following cases:

— one promoted type is a signed integer type, the other promoted type is the corresponding
unsigned integer type, and the value is representable in both types;

— both types are pointers to qualified or unqualified versions of a character type or void.

7 If the expression that denotes the called function
::
is

:
a
:::::::
lambda

:::
or

::
is

:
a
::::::::
function

:
has a type that does

include a prototype, the arguments are implicitly converted, as if by assignment, to the types of
the corresponding parameters, taking the type of each parameter to be the unqualified version of
its declared type. The ellipsis notation in a function prototype declarator causes argument type
conversion to stop after the last declared parameter. The default argument promotions are performed
on trailing arguments.

8 No other conversions are performed implicitly; in particular, the number and types of arguments are
not compared with those of the parameters in a function definition that does not include a function
prototype declarator.

9 If the
::::::
lambda

:::
or function is defined with a type that is not compatible with the type (of the expression)

pointed to by the expression that denotes the called
:::::::
lambda

::
or function, the behavior is undefined.

10 There is a sequence point after the evaluations of the function designator and the actual arguments
but before the actual call. Every evaluation in the calling function (including other function calls) that
is not otherwise specifically sequenced before or after the execution of the body of the called function

::
or

:::::::
lambda

:
is indeterminately sequenced with respect to the execution of the called function.103)

11 Recursive function calls shall be permitted, both directly and indirectly through any chain of other
functions

::
or

::::::::
lambdas.

12 EXAMPLE In the function call

(*pf[f1()]) (f2(), f3() + f4())

the functions f1, f2, f3, and f4 can be called in any order. All side effects have to be completed before the function pointed
to by pf[f1()] is called.

Forward references: function declarators (including prototypes) (6.7.6.3), function definitions
(6.9.1), the return statement (6.8.6.4), simple assignment (6.5.16.1).

6.5.2.3 Structure and union members
Constraints

1 The first operand of the . operator shall have an atomic, qualified, or unqualified structure or union
type, and the second operand shall name a member of that type.

2 The first operand of the-> operator shall have type "pointer to atomic, qualified, or unqualified
structure" or "pointer to atomic, qualified, or unqualified union", and the second operand shall
name a member of the type pointed to.

Semantics
3 A postfix expression followed by the . operator and an identifier designates a member of a structure

or union object. The value is that of the named member,104) and is an lvalue if the first expression is
an lvalue. If the first expression has qualified type, the result has the so-qualified version of the type
of the designated member.

103)In other words, function executions do not "interleave" with each other.
104)If the member used to read the contents of a union object is not the same as the member last used to store a value in the

object, the appropriate part of the object representation of the value is reinterpreted as an object representation in the new
type as described in 6.2.6 (a process sometimes called "type punning"). This might be a trap representation.

modifications to ISO/IEC 9899:2018, § 6.5.2.3 page 60 Language
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13 EXAMPLE 6 Like string literals, const-qualified compound literals can be placed into read-only memory and can even be
shared. For example,

(const char []){"abc"} == "abc"

might yield 1 if the literals’ storage is shared.

14 EXAMPLE 7 Since compound literals are unnamed, a single compound literal cannot specify a circularly linked object. For
example, there is no way to write a self-referential compound literal that could be used as the function argument in place of
the named object endless_zeros below:

struct int_list { int car; struct int_list *cdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval(endless_zeros);

15 EXAMPLE 8 Each compound literal creates only a single object in a given scope:

struct s { int i; };

int f (void)
{

struct s *p = 0, *q;
int j = 0;

again:
q = p, p = &((struct s){ j++ });
if (j < 2) goto again;

return p == q && q->i == 1;
}

The function f() always returns the value 1.

16 Note that if an iteration statement were used instead of an explicit goto and a labeled statement, the lifetime of the unnamed
object would be the body of the loop only, and on entry next time around p would have an indeterminate value, which would
result in undefined behavior.

Forward references: type names (6.7.7), initialization (6.7.9).

6.5.2.6 Lambda expressions
Syntax

1 lambda-expression:
::::::::::::::::

capture-clause parameter-clauseopt attribute-specifier-sequenceopt function-body

capture-clause:
::::::::::::::::

[ capture-listopt ]

capture-list:
::::::::::::::::

capture-default
::::::::::::::::

capture-list-element
::::::::::::::::

capture-list , capture-list-element

capture-default:
::::::::::::::::

=

::::::::::::::::
&

capture-list-element:
::::::::::::::::

value-capture
::::::::::::::::

lvalue-capture

value-capture:
::::::::::::::::

capture

modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 64 Language
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::::::::::::::::
capture = assignment-expression

lvalue-capture:
::::::::::::::::

& capture

capture:
::::::::::::::::

identifier

parameter-clause:
::::::::::::::::

( parameter-type-listopt )

Constraints

2
::
A

:::::::
lambda

::::::::::
expression

::::
shall

::::
not

::
be

::::::::
operand

:::
of

:::
the

::::::
unary

:
&
:::::::::
operator.111)

3
::
A

:::::::
capture

::::
that

::
is

:::::
listed

::
in

:::
the

::::::::
capture

:::
list

::
is

::
an

:
explicit capture .

::
If

:::
the

::::
first

::::::::
element

::
in

:::
the

::::::::
capture

:::
list

:
is
::
a
:::::::
capture

::::::::
default,

::
id

::
is
::::
the

:::::
name

::
of

:::
an

::::::
object

::::
with

::::::::::
automatic

:::::::
storage

::::::::
duration

::
in

::
a
::::::::::::
surrounding

:::::
scope,

:::
id

::
is
:::::

used
:::::::
within

:::
the

::::::::
function

:::::
body

:::
of

:::
the

::::::::
lambda

:::::::
without

::::::::::::
redeclaration

::::
and

:::
id

::
is
::::

not
:::
an

::::::
explicit

::::::::
capture

:::
or

:
a
:::::::::::

parameter,
:::
the

::::::
effect

::
is

::
as

::
if
:::
id

:::::
were

::
a
::::::
value

:::::::
capture

::::
(for

:::
an

::
=
::::::
token)

:::
or

::
a

::::::::
reference

:::::::
capture

::::
(for

:::
an

::
&

::::::
token).

:::::
Such

::
a
:::::::
capture

::
is
:::
an

:
implicit capture

:
.
::
If

:::
the

::::
first

::::::::
element

::
in

::::
the

:::::::
capture

:::
list

::
is

:::
an

:
=
::::::
token,

:::
all

:::::
other

:::::::::
elements

::::
shall

:::
be

::::::
lvalue

:::::::::
captures;

:
if
::

it
::
is

:::
an

::
&

::::::
token,

::
all

:::::
shall

:::
be

:::::
value

::::::::
captures.

:

4
:::::
Value

::::::::
captures

:::::::
without

:::::::::::
assignment

::::::::::
expression

::
or

::::::
lvalue

::::::::
captures

::::
shall

:::
be

::::::
names

::
of

::::::::
complete

:::::::
objects

::::
with

:::::::::
automatic

::::::::
storage

::::::::
duration

::
in

::
a

:::::
scope

::::::::::::
surrounding

:::
the

::::::::
lambda

::::::::::
expression

::::
that

:::
are

::::::
visible

:::
at

:::
the

:::::
point

:::
of

::::::::::
evaluation

::
of

:::
the

::::::::
lambda

::::::::::
expression.

:::::::::::::
Additionally,

:::::
value

:::::::::
captures

::::
shall

::::
not

:::::
have

:::
an

:::::
array

:::::
type.

:::
An

:::::::::
identifier

:::::
shall

::::::
appear

:::
at

::::
most

::::::
once;

:::::
either

:::
as

::
an

:::::::
explicit

::::::::
capture

::
or

:::
as

:
a
::::::::::
parameter

:::::
name

::
in

:::
the

::::::::::
parameter

::::
type

::::
list.

:

5
::::::
Within

:::
the

:::::::::
function

:::::
body,

::::::::::
identifiers

:::::::::
(including

::::::::
explicit

::::
and

:::::::
implicit

:::::::::
captures,

::::
and

::::::::::
parameters

:::
of

:::
the

::::::::
lambda)

:::::
shall

:::
be

:::::
used

:::::::::
according

:::
to

::::
the

:::::
usual

::::::::
scoping

::::::
rules,

:::
but

::::::::::
identifiers

:::
of

::
a

:::::
scope

:::::
that

:::::::
includes

::::
the

:::::::
lambda

:::::::::::
expression,

::::
that

:::
are

:::
not

::::::
lvalue

::::::::
captures

::::
and

::::
that

::::
are

::::::::
declared

::::
with

::::::::::
automatic

::::::
storage

:::::::::
duration

::::
shall

:::::
only

::
be

::::::::::
evaluated

::::::
within

:::
the

:::::::::::
assignment

::::::::::
expression

::
of

:
a
::::::
value

:::::::
capture.112)

6
::
A

::::::
closure

::::
that

::::
has

:::
an

:::::::
explicit

::
or

:::::::
implicit

::::::
lvalue

::::::::
capture

::
id

:::::
shall

:::
not

:::
be

:::::
used

::
as

:::
the

::::::::::
expression

:::
of

:
a
:

:::::::
return

:::::::::
statement,

::::::
unless

::::
that

:::::::
return

:::::::::
statement

::
is
:::::
itself

::::::::::
associated

::
to

:::::::
another

:::::::
closure

:::
for

::::::
which

:::
id

:
is
:::
an

::::::
lvalue

:::::::
capture

::::
that

::::::
refers

::
to

:::
the

:::::
same

::::::
object.113)

7
:::::
After

:::::::::::
determining

::::
the

::::
type

:::
of

::
all

:::::::::
captures

::::
and

::::::::::
parameters

::::
the

::::::::
function

:::::
body

:::::
shall

::
be

:::::
such

::::
that

::
a

::::::
return

::::
type

::::
type

:::::::::
according

::
to

:::
the

:::::
rules

::
in

::::::
6.8.6.4

:::
can

:::
be

::::::::
inferred.

::
If

:::
the

:::::::
lambda

::::::
occurs

::
in

::
a

::::::::::
conversion

::
to

:
a
::::::::
function

:::::::
pointer,

::::
the

:::::::
inferred

::::::
return

:::::
type

::::
shall

:::
be

::::::::::
compatible

::
to

::::
the

::::::::
specified

::::::
return

::::
type

::
of

::::
the

:::::::
function

::::::::
pointer.

Semantics
8

:
If
::::
the

:::::::::
parameter

::::::
clause

::
is

::::::::
omitted,

:
a
::::::
clause

::
of

:::
the

:::::
form

:::
()

:
is
:::::::::
assumed.

::
A
:::::::
lambda

::::::::::
expression

::::::::
without

:::::::
capture

:::
list

::
is

:::::
called

::
a function literal expression ,

::::::::::
otherwise

:
it
::
is

::::::
called

:
a
:
closure expression .

:::
A

:::::::
lambda

:::::
value

::::::::::
originating

:::::
from

:
a
::::::::
function

::::::
literal

::::::::::
expression

::
is

:::::
called

::
a function literal

:
,
:::::::::
otherwise

::
it

::
is

:::::
called

::
a

closure
:
.
::
A

:::::::
closure

::::
that

:::
has

:::
an

::::::
lvalue

:::::::
capture

::
is

:::::
called

:::
an

:
lvalue closure

:
,
:::::::::
otherwise

:
it
::
is
::
a value closure

:
.

9
::::::
Similar

:::
to

:
a
::::::::
function

::::::::::
definition,

:
a
::::::::
lambda

::::::::::
expression

:::::
forms

::
a
::::::
single

:::::
block

::::::
scope

::::
that

:::::::::
comprises

:::
its

111)
:::::
Objects

::::
with

:::::
lambda

::::
type

:::
that

:::
can

::
be

::::::
operand

::
of

::
the

:::::
unary

:
&
:::::::
operator

::
can

::
be

::::::
formed

::
by

::::
type

::::::
inference

:::
and

::::::::::
initialization

:::
with

:
a
::::::

lambda
:::::
value.

112)
:::::::
Identifiers

::
of

:::::
visible

:::::::
automatic

::::::
objects

:::
that

:::
are

::
not

:::::::
captures,

::::
may

:::
still

::
be

::::
used

:
if
:::
they

:::
are

:::
not

::::::::
evaluated,

::
for

::::::
example

::
in
:

:::::
sizeof

:::::::::
expressions

::
(if

:::
they

:::
are

:::
not

:::
VM

::::
types)

::
or

::
as

::::::::
controlling

::::::::
expression

::
of

:
a
::::::
generic

::::::
primary

::::::::
expression.

113)
::::
Since

:::
each

::::::
closure

::::::::
expression

:::
may

::::
have

:
a
::::::
unique

::::
type,

:
it
::
is

:::::::
generally

::
not

:::::::
possible

:
to
:::::

assign
::
it

::
to

::
an

::::
object

::::
with

::::::
lambda

::::
value

::
or

::
to

:
a
::::::
function

::::::
pointer

:::
that

::
is

::::::
declared

::::::
outside

::
of

::
its

::::::
defining

::::
scope

::
or

::
to

:::
use

::
it,

::::
even

:::::::
indirectly,

::::::
through

:
a
::::::
pointer

::
to

:::::
lambda

:::::
value.

:::::::
Therefore

:::
the

::::::
present

:::::::
constraint

::::::
inhibits

::
the

:::
use

::
of

::
an

:::::
lvalue

:::::
closure

::::::
outside

::
of

::
the

:::::
widest

::::::::
enclosing

::::
scope

::
of

::
its

::::::
defining

:::::
closure

::::::::
expression

::
in
:::::
which

::
all

::
its

:::::
lvalue

::::::
captures

:::
are

:::::
visible.

:
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:::::::
capture

::::::
clause,

:::
its

::::::::::
parameter

::::::
clause

::::
and

:::
its

::::::::
function

::::::
body.

:::::
Each

:::::::
explicit

::::::::
capture

::::
and

::::::::::
parameter

:::
has

::
a

::::::
scope

::
of

:::::::::
visibility

::::
that

:::::
starts

::::::::::::
immediately

:::::
after

:::
its

:::::::::
definition

::
is
:::::::::::

completed
::::
and

:::::::
extends

:::
to

:::
the

::::
end

::
of

::::
the

::::::::
function

:::::
body.

::::
The

::::::
scope

::
of

:::::::::
visibility

::
of

::::::::
implicit

::::::::
captures

::
is

:::
the

::::::::
function

::::::
body.

:::
In

:::::::::
particular,

::::::::
captures

::::
and

:::::::::::
parameters

:::
are

:::::::
visible

:::::::::::
throughout

:::
the

::::::
whole

::::::::
function

::::::
body,

::::::
unless

:::::
they

:::
are

::::::::::
redeclared

::
in

::
a
::::::::::
depending

::::::
block

::::::
within

:::::
that

::::::::
function

:::::
body.

:::::::
Value

::::::::
captures

::::
and

:::::::::::
parameters

::::
have

::::::::::
automatic

:::::::
storage

::::::::
duration;

:::
in

::::
each

::::::::
function

::::
call

::
to

:::
the

:::::::
formed

:::::::
lambda

::::::
value,

::
a

::::
new

::::::::
instance

::
of

::::
each

::::::
value

:::::::
capture

::::
and

::::::::::
parameter

::
is
::::::::

created
::::
and

:::::::::
initialized

:::
in

:::::
order

:::
of

::::::::::
declaration

::::
and

::::
has

::
a

:::::::
lifetime

::::
until

::::
the

::::
end

::
of

:::
the

::::
call,

:::::
only

::::
that

:::
the

:::::::
address

::
of

::::::
value

::::::::
captures

::
is

:::
not

::::::::::
necessarily

::::::::
unique.

10
::
A

:::::::
lambda

::::::::::
expression

::::
for

::::::
which

::
at

:::::
least

::::
one

::::::::::
parameter

:::::::::::
declaration

::
in

::::
the

:::::::::
parameter

::::
list

::::
has

:::
no

::::
type

::::::::
specifier

::
is

::
a
:
type-generic lambda

::::
with

:::
an

:::::::::::
imcomplete

::::::::
lambda

:::::
type.

::
It
:::::

shall
:::::

only
::::::
occur

::
in

::
a

::::
void

:::::::::::
expression,

::
as

::::
the

::::::
postfix

:::::::::::
expression

::
of

::
a

::::::::
function

::::
call

::
or,

::
if
::::

the
:::::::
capture

::::::
clause

:::
is

::::::
empty,

:::
in

:
a
::::::::::
conversion

:::
to

:
a
:::::::
pointer

:::
to

::::::::
function

::::
with

:::::
fully

:::::::::
specified

::::::::::
parameter

:::::
types,

::::
see

::::::
6.3.2.1.

::::
For

::
a
:::::
void

::::::::::
expression,

::
it

:::
has

:::
no

::::
side

::::::
effects

::::
and

:::::
shall

::
be

::::::::
ignored.

:

11
:::
For

::
a

::::::::
function

::::
call,

:::
the

:::::
type

:::
of

::
an

::::::::::
argument

:::::
(after

:::::::
lvalue,

:::::::::::::::
array-to-pointer

::
or

::::::::::::::::::
function-to-pointer

::::::::::
conversion)

:::
to

::
an

::::::::::::::
underspecified

:::::::::
parameter

:::::
shall

::
be

:::::
such

::::
that

::
it

:::
can

:::
be

::::
used

::
to

:::::::::
complete

:::
the

:::::
type

::
of

:::
that

::::::::::
parameter

::::::::::
analogous

::
to

::::::
6.7.10,

::::
only

::::
that

:::
the

::::::::
inferred

::::
type

:::
for

:::
an

:::::::::
parameter

::
of

::::::
array

::
or

::::::::
function

::::
type

::
is

::::::::
adjusted

:::::::::::
analogously

:::
to

::::::::
function

::::::::::
declarators

::::::::
(6.7.6.3)

::
to

::
a

::::::::
possibly

::::::::
qualified

::::::
object

:::::::
pointer

::::
type

::::
(for

::
an

::::::
array)

:::
or

::
to

:
a
::::::::
function

:::::::
pointer

:::::
type

:::
(for

::
a

::::::::
function)

:::
to

::::::
match

::::
type

::
of

::::
the

:::::::::
argument.

::::
For

:
a
::::::::::
conversion

::
of

::::
any

:::::::::::
arguments,

:::
the

::::::::::
parameter

:::::
types

:::::
shall

::
be

:::::
those

:::
of

:::
the

::::::::
function

:::::
type.

12
:
If
::

a
::::::
value

:::::::
capture

:::
id

::
is

:::::::
defined

::::::::
without

:::
an

:::::::::::
assignment

::::::::::
expression,

::::
the

::::::::::
assignment

:::::::::::
expression

::
is

::::::::
assumed

::
to

:::
be

:::
id

:::::
itself,

:::::::::
referring

::
to

::::
the

::::::
object

::
of

:::::::::
automatic

::::::::
storage

::::::::
duration

::
of

::::
the

::::::::::::
surrounding

:::::
scope

::::
that

:::::
exists

::::::::::
according

::
to

:::
the

:::::::::::
constraints.114)

13
:::
The

::::::::
implicit

:::
or

:::::::
explicit

:::::::::::
assignment

::::::::::
expression

::
E

::
in

::::
the

:::::::::
definition

::
of

::
a
::::::
value

:::::::
capture

:::::::::::
determines

:
a
::::::
value

::
E0:::::

with
:::::
type

::
T0,:::::::

which
::
is

::
E

:::::
after

::::::::
possible

::::::
lvalue,

:::::::::::::::
array-to-pointer

:::
or

::::::::::::::::::
function-to-pointer

::::::::::
conversion.

::::
The

:::::
type

::
of

:::
the

:::::::
capture

::
is

:::::::::
T0 const :::

and
:::
its

:::::
value

::
is
::
E0::::

for
::
all

:::::::::::
evaluations

::
in

:::
all

::::::::
function

::::
calls

::
to

::::
the

:::::::
lambda

::::::
value.

::::
If,

::::::
within

::::
the

::::::::
function

:::::
body,

::::
the

:::::::
address

:::
of

:::
the

::::::::
capture

:::
id

::
or

::::
one

:::
of

::
its

:::::::::
members

::
is

::::::
taken,

::::::
either

:::::::::
explicitly

:::
by

:::::::::
applying

:
a
::::::
unary

::
&
::::::::
operator

:::
or

:::
by

:::
an

:::::
array

:::
to

:::::::
pointer

::::::::::
conversion,115)

::::
and

::::
that

:::::::
address

::
is

:::::
used

::
to

:::::::
modify

:::
the

::::::::::
underlying

:::::::
object,

:::
the

::::::::
behavior

::
is

::::::::::
undefined.

:::
The

::::::::::
evaluation

:::
of

::
E

:::::
takes

::::::
place

::::::
during

::::
the

::::::::::
evaluation

:::
of

:::
the

:::::::
lambda

:::::::::::
expression;

::::
for

::
an

::::::::
explicit

:::::::
capture

:::::
when

:::
the

::::::
value

:::::::
capture

:
is
::::
met

::::
and

:::
for

:::
an

:::::::
implicit

:::::::
capture

::
at

:::
the

::::::::::
beginning

::
of

:::
the

::::::::::
evaluation

::
of

:::
the

::::::::
function

:::::
body.

:

14
:::
The

::::::
object

::
of

:::::::::
automatic

:::::::
storage

:::::::::
duration

::
id

::
of

::::
the

:::::::::::
surrounding

::::::
scope

::::
that

:::::::::::
corresponds

::
to

:::
an

::::::
lvalue

:::::::
capture

::::
shall

:::
be

::::::
visible

:::::::
within

:::
the

::::::::
function

:::::
body

:::::::::
according

::
to

::::
the

:::::
usual

::::::::
scoping

::::
rules

::::
and

:::::
shall

:::
be

:::::::::
accessible

::::::
within

:::
the

::::::::
function

:::::
body

:::::::::::
throughout

::::
each

::::
call

::
to

:::
the

::::::::
lambda.

::::::
Access

:::
to

:::
the

:::::
object

:::::::
within

:
a
::::
call

::
to

:::
the

::::::::
lambda

:::::::
follows

:::
the

:::::::::::::::
happens-before

::::::::
relation,

::
in

:::::::::
particular

:::::::::::::
modifications

:::
to

:::
the

::::::
object

:::
that

::::::::
happen

::::::
before

:::
the

:::
call

::::
are

::::::
visible

::::::
within

:::
the

::::
call,

::::
and

:::::::::::::
modifications

::
to

:::
the

::::::
object

::::::
within

:::
the

::::
call

:::
are

::::::
visible

:::
for

:::
all

::::::::::
evaluations

::::
that

::::::::
happen

::::
after

:::
the

::::
call.116)

15
:::
For

:::::
each

:::::::
lambda

:::::::::::
expression,

::::
the

::::::
return

:::::
type

::::
type

:
is

::::::::
inferred

:::
as

:::::::::
indicated

::
in

::::
the

:::::::::::
constraints.

:::
A

:::::::
lambda

::::::::::
expression

:
λ

::::
that

::
is

::::
not

:::::::::::
type-generic

::::
has

:::
an

:::::::::::
unspecified

:::::::
lambda

:::::
type

::
L

::::
that

::
is

:::
the

::::::
same

:::
for

:::::
every

::::::::::
evaluation

::
of

:
λ
:
.
::
If

:
λ

:::::::
appears

:::
in

:
a
:::::::
context

::::
that

:::
is

:::
not

::
a

::::::::
function

::::
call,

::
a

:::::
value

::
of

:::::
type

::
L

::
is

::::::
formed

::::
that

:::::::::
identifies

:
λ

::::
and

:::
the

:::::::
specific

:::
set

::
of

:::::::
values

::
of

:::
the

::::::::::
identifiers

::
in

:::
the

:::::::
capture

::::::
clause

:::
for

::::
the

::::::::::
evaluation,

::
if

::::
any.

::::
This

::
is

::::::
called

:
a
:
lambda value

:
.
::
It

::
is

:::::::::::
unspecified,

::::::::
whether

::::
two

:::::::
lambda

:::::::::::
expressions

λ
:::
and

:
κ

:::::
share

:::
the

:::::
same

::::::::
lambda

::::
type

:::::
even

::
if

::::
they

::::
are

::::::::
lexically

:::::
equal

:::
but

:::::::
appear

::
at

:::::::::
different

::::::
points

::
of

:::
the

:::::::::
program.

:::::::
Objects

::
of

:::::::
lambda

:::::
type

::::
shall

::::
not

::
be

:::::::::
modified.

:

Recommended practice
16

::
To

::::::
avoid

::::
their

::::::::::
accidental

::::::::::::
modification,

::
it

::
is

:::::::::::::
recommended

::::
that

:::::::::::
declarations

:::
of

:::::::
lambda

::::
type

:::::::
objects

:::
are

::::::
const

::::::::
qualified.

::::::::::
Whenever

::::::::
possible,

::::::::::::::::
implementations

:::
are

:::::::::::
encouraged

::
to

:::::::::
diagnose

:::
any

::::::::
attempt

114)
:::
The

:::::::
evaluation

::
in

::::
rules

::
in

::
the

::::
next

::::::::
paragraph

:::
then

:::::::
stipulates

:::
that

::
it

:
is
::::::::
evaluated

:
at
:::
the

::::
point

::
of

::::::::
evaluation

:
of
:::
the

::::::
lambda

::::::::
expression,

:::
and

:::
that

::::::
within

::
the

::::
body

::
of
:::
the

::::::
lambda

::
an

::::::::
unmutable

::::
auto

:::::
object

::
of

::
the

:::::
same

::::
name,

:::::
value

:::
and

::::
type

:
is
:::::
made

::::::::
accesssible.
115)

:::
The

:::::
capture

::::
does

:::
not

::::
have

::::
array

::::
type,

::
but

::
if

:
it
:::
has

:
a
:::::
union

::
or

::::::
structure

::::
type,

:::
one

::
of

::
its

:::::::
members

::::
may

:::
have

::::
such

:
a
::::
type.

116)
:::
That

::
is,

:::::
lvalue

::::::::
conversion

::
of

::
id

:::::
results

::
in

::
the

::::
same

:::::
lvalue

::::
with

:::
the

::::
same

:::
type

:::
and

::::::
address

::
as

::
for

:::
the

::::
scope

::::::::::
surrounding

::
the

::::::
lambda.
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::
to

:::::::
modify

:
a
:::::::
lambda

:::::
type

::::::
object.

:

17 EXAMPLE 1
::
The

:::::
usual

::::::
scoping

::::
rules

:::::
extend

:
to
::::::

lambda
:::::::::
expressions;

:::
the

::::::
concept

:
of
:::::::

captures
:::
only

::::::
restricts

:::::
which

::::::::
identifiers

:::
may

::
be

::::::::
evaluated

:
or
::::

not.

:
#
:::::::
include

::
<

:::::
stdio

:
.

:
h>

::::::
static

:::::
long

::::
var

:
;

:::
int

:::::
main

:
(

::::
void

:
)

::
{

:::
[
:::::

](
::::
void

:
)

:
{

::::::
printf

:::
("%

::
ld

:
\
:
n
::
",

::::
var

:
)
:
;
::::
}()

:
;
:::::::::::::::::::

//
::::::
valid

:
,
:::::::
prints

::
0

:::
[
:::
var

::
](

::::
void

:
)

:
{

::::::
printf

:::
("%

::
ld

:
\
:
n
::
",

::::
var

:
)
:
;
::::
}()

:
;
:::::::::::::::::::

//
::::::::
invalid

:
,
::::
var

:::
is

:::::::
static

:::::
int

::::
var

::
=

:::
5;

::::::
auto

::::::
const

::
λ
: :
=

:
[
:::
var

::
](

::::
void

:
)
:
{
:::::::
printf

:::
("%

:
d
:
\
:
n
::
",

::::
var

:
)

:
;

:::
};

:::::::
//

:::::::
freeze

::::
var

::::
[&

:::
var

::
](

::::
void

:
)

:
{

:::
var

::
=
:::
7;

:::::::
printf

:::
("%

:
d
:
\
:
n
::
",

::::
var

:
)

:
;

::::
}()

:
;

:::::::::::
//

::::::
valid

:
,
:::::::
prints

::
7

:::
λ
::
()

:
;
::::::::::::::::::::::::::::::::::::::::::::::::::::::

//
::::::
valid

:
,
:::::::
prints

::
5

:::
[
::::
var

::
](

::::
void

:
)

:
{

::::::
printf

:::
("%

:
d
:
\
:
n
::
",

::::
var

:
)
:
;
::::
}()

:
;
::::::::::::::::::::

//
::::::
valid

:
,
:::::::
prints

::
7

:::
[
::::::

](
::::
void

:
)

:
{

::::::
printf

:::
("%

:
d
:
\
:
n
::
",

::::
var

:
)
:
;
::::
}()

:
;
::::::::::::::::::::

//
::::::::
invalid

:::
[
::::
var

::
](

::::
void

:
)

:
{

::::::
printf

:::
("%

::
zu

:
\
:
n
::
",

:::::::
sizeof

::::
var

:
)
:
;

::::
}()

:
;

::::::::::::
//

::::::
valid

:
,
:::::::
prints

:::::::
sizeof

:
(

:::
int

:
)

:::
[
::::::

](
::::
void

:
)

:
{

::::::
printf

:::
("%

::
zu

:
\
:
n
::
",

:::::::
sizeof

::::
var

:
)
:
;

::::
}()

:
;

::::::::::::
//

::::::
valid

:
,
:::::::
prints

:::::::
sizeof

:
(

:::
int

:
)

:::
[
::::::

](
::::
void

:
)

:
{

::::::
extern

:::::
long

::::
var

:
;
:::::::
printf

:::
("%

::
ld

:
\

:
n

::
",

::::
var

:
;

:::
}()

:
;
:::
//

::::::
valid

:
,
:::::::
prints

::
0

:
}

18 EXAMPLE 2
:::
The

:::::::
following

:::
uses

:
a
:::::::

function
::::
literal

::
as

:
a
:::::::::
comparison

::::::
function

::::::::
argument

::
for

:::::
qsort.

:

:
#
::::::
define

:::::::::
SORTFUNC

:
(

:::
TYPE

:
)
::::
[](

::::::
size_t

::::::
nmemb

:
,
:::::
TYPE

::
A

:
[

:::::
nmemb

:
])

::
{
: :::::::::::::::::: :

\

:::::::
qsort

:
(
:
A

:
,

::::::
nmemb

:
,

::::::
sizeof

:
(
:
A
::::
[0])

:
,
:::::::::::::::::::::::::::::::::::::::::::::

\

:::::::::::
[](

::::
void

:::::
const

:*::
x
:
,
:::::
void

::::::
const

:*::
y
:
)
:
{
::::::::::::

/* ::::::::::
comparison

:::::::
lambda

::::*/::
\

::::::::::::::
TYPE

::
X

:
=
:::*(::::

TYPE
::::::
const

::*):x:;:::::::::::::::::::::::::::::::::::::::::
\

::::::::::::::
TYPE

::
Y

:
=
:::*(::::

TYPE
::::::
const

::*):y:;:::::::::::::::::::::::::::::::::::::::::
\

::::::::::::::::
return

:
(
:
X
::
<
::
Y
:
)
::
?
:::
-1

::
:
:::
((

:
X
::
>
::
Y
:
)
::
?
::
1

::
:

:::
0)

:
;

:::
/* ::::::

return
:::
of

:::::
type

::::
int

:::*/::
\

:::::::::
}

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
\

:::::::::
)

:
;

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :
\

::::::::
return

::
A

:
;

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :
\

:::
}

:::::
...

::::::
long

::
C
:::
[5]

::
=

::
{

::
4,

:::
3,

:::
2,

:::
1,

:::
0,

:::
};

::::::::::
SORTFUNC

:
(

::::
long

:
)

::
(5,

::
C
:
)
:
;
: :::::::::::::::::::::: ::

//
::::::
lambda

::
→

::
(
:::::::
pointer

::
→

:
)
:::::::::
function

:::::
call

:::::
...

::::::
auto

::::::
const

::::::::::
sortDouble

::
=
:::::::::
SORTFUNC

:
(
::::::
double

:
)
:
;
::::::

//
::::::
lambda

::::::
value

::
→

:::::::
lambda

:::::::
object

::::::::
double

:*:::
(* ::
sF

:
)

:
(

:::::
size_t

::::::
nmemb

:
,
:::::::
double

:
[
:::::
nmemb

::
])

::
=

::::::::::
sortDouble

:
;
: ::::

//
:::::::::::
conversion

:::::
...

::::::::
double

:*:::
ap

::
=

::::::::::
sortDouble

:::
(4,

::
(
::::::
double

:::
[])

:
{
:::
5,

:::::
8.9,

:::::
0.1,

:::
99,

:::
})

:
;

::::::::
double

::
B

::::
[27]

::
=

:
{
:::
/*:::::

some
:::::::
values

::::
...

:::*/:::
};

::::
sF

::::
(27,

::
B

:
)

:
;

::::::::::::::::::::::::::::::::: ::
//

::::::
reuses

::::
the

:::::
same

:::::::::
function

:::::
...

::::::::
double

:*:::
(* ::
sG

:
)

:
(

:::::
size_t

::::::
nmemb

:
,
:::::::
double

:
[
:::::
nmemb

::
])

::
=

::::::::
SORTFUNC

:
(
::::::
double

:
)
:
;
:::
//

:::::::::::
conversion

:::
This

::::
code

:::::::
evaluates

::
the

:::::
macro

::::::::
SORTFUNC

::::
twice,

:::::::
therefore

::
in

:::
total

::::
four

:::::
lambda

:::::::::
expressions

:::
are

::::::
formed.

:::
The

::::::
function

:::::
literals

::
of
:::

the
::::::::::
"comparison

:::::::
lambdas"

:::
are

::
not

::::::::
operands

:
of
::

a
::::::
function

:::
call

:::::::::
expression,

:::
and

::
so

::
by

::::::::
conversion

::
a

:::::
pointer

::
to

::::::
function

::
is
::::::
formed

:::
and

:::::
passed

::
to
:::
the

:::::::::::
corresponding

:::
call

::
of

:::::
qsort.

::::
Since

:::
the

::::::::
respective

::::::
captures

:::
are

:::::
empty,

:::
the

::::
effect

:
is
::
as

:
if
::
to

:::::
define

:::
two

:::::::::
comparison

:::::::
functions,

:::
that

::::
could

::::::
equally

:::
well

::
be

::::::::::
implemented

::
as

::::::
static

:::::::
functions

:::
with

:::::::
auxiliary

:::::
names

:::
and

::::
these

:::::
names

::::
could

::
be

::::
used

::
to

:::
pass

:::
the

::::::
function

::::::
pointers

::
to
:::::
qsort.

:

:::
The

::::
outer

::::::
lambdas

:::
are

::::
again

::::::
without

:::::::
capture.

::
In

::
the

::::
first

:::
case,

:::
for

::::
long,

:::
the

::::::
lambda

::::
value

:
is
::::::

subject
::
to

:
a
::::::
function

::::
call,

:::
and

:
it
::
is

::::::::
unspecified

::
if

::
the

:::::::
function

:::
call

:::
uses

::
a
:::::
specific

::::::
lambda

::::
type

::
or

::::::
directly

:::
uses

::
a

::::::
function

::::::
pointer.

:::
For

:::
the

::::::
second,

:
a
::::
copy

:
of
:::

the
::::::
lambda

::::
value

::
is

:::::
stored

::
in

::
the

:::::::
variable

:::::::::
sortDouble

:::
and

::::
then

:::::::
converted

::
to

:
a
:::::::

function
:::::
pointer

:::
sF.

:::::
Other

::::
than

::
for

:::
the

:::::::
difference

::
in

::
the

:::::::
function

::::::::
arguments,

:::
the

::::
effect

:
of
:::::
calling

:::
the

::::::
lambda

::::
value

:::
(for

::
the

:::::::::
compound

:::::
literal)

:
or
:::
the

::::::
function

::::::
pointer

:::
(for

::::
array

::
B)

:
is
:::
the

::::
same.

:

::
For

::::::::::
optimization

:::::::
purposes,

::
an

::::::::::::
implementation

:::
may

:::
fold

::::::
lambda

:::::
values

:::
that

:::
are

:::::::
expanded

::
at

::::::
different

:::::
points

::
of

::
the

:::::::
program

:::
such

::::
that

:::::::
effectively

::::
only

:::
one

::::::
function

::
is

::::::::
generated.

:::
For

::::::
example

::::
here

:::
the

::::::
function

::::::
pointers

::
sF

::::
and

::
sG

:::
may

::
or

::::
may

:::
not

::
be

Language modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 67
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::::
equal.

:

19 EXAMPLE 3
::::::
Consider

:::
the

:::::::
following

::::::::::
type-generic

::::::
function

:::::
literal

:::
that

:::::::
computes

:::
the

::::::::
maximum

::::
value

::
of

:::
two

::::::::
parameters

::
X

:::
and

:
Y.
:

:
#
::::::
define

::::::::
MAXIMUM

:
(

:
X,

::
Y
:
)
: ::::::::::::::::::::::::::::: :

\

:::::::
[](

::::
auto

::
a

:
,

::::
auto

::
b
:
)
:
{
: ::::::::::::::::::::::::::: :

\

::::::::::::
return

::
(

:
a

::
<

::
0)

: :::::::::::::::::::::::::::::: :
\

::::::::::::::
?

:::
((b

::
<
: :::

0)
::
?
:::
((

:
a
::
<
::
b
:
)
::
?
::
b
::
:
::
a
:
)

::
:

::
b

:
)

::::
\

::::::::::::::
:

:::
((b

:::
>=

:::
0)

::
?
:::
((

:
a
::
<
::
b
:
)
::
?
::
b
::
:
::
a
:
)

::
:

::
a

:
)

:
;

:::
\

::::::
}(

:
X
::
,

::
Y

:
)

::::::::
auto

::
R

::
=

:::::::
MAXIMUM

::::
(-1,

:::
-1

:
U
:
)
:
;

::::::::
auto

::
S

::
=

:::::::
MAXIMUM

:::
(-1

:
U
:
,
:::
-1

:
L
:
)
:
;

::::
After

::::::::::
preprocessing,

:::
the

:::::::
definition

::
of

::
R,

::::::
becomes

:

::::
auto

::
R
::
=
::::
[](

::::
auto

:
a
:
,
:::::
auto

::
b
:
)
:
{

::::::::
return

::
(

:
a

::
<

:::
0)

::::::
?
:::
((

:
b

::
<

:: ::
0)

:
?
:::
((

:
a
::
<
::
b
:
)
::
?
::
b
::
:
::
a
:
)
::
:
::
b
:
)

::::::
:
:::
((

:
b

:::
>=

:::
0)

:
?
:::
((

:
a
::
<
::
b
:
)
::
?
::
b
::
:
::
a
:
)
::
:
::
a
:
)
:
;

:::::::
}(-1,

:::
-1

:
U

:
)

:
;

::
To

:::::::
determine

::::
type

:::
and

:::::
value

::
of

:
R,
::::

first
::
the

::::
type

::
of

:::
the

::::::::
parameters

::
in

:::
the

::::::
function

:::
call

:::
are

::::::
inferred

::
to

::
be

:::::::::
signed int

:::
and

:

:::::::::::
unsigned int,

:::::::::
respectively.

::::
With

:::
this

:::::::::
information,

:::
the

:::
type

::
of

::
the

::::::
return

::::::::
expression

::::::
becomes

:::
the

:::::::
common

:::::::
arithmetic

::::
type

:
of
:::

the
::::
two,

::::
which

::
is
:::::::::::
unsigned int.

::::
Thus

:::
the

:::::
return

:::
type

::
of

:::
the

::::::
lambda

:
is
:::
that

::::
type.

::::
The

::::::
resulting

::::::
lambda

::::
value

::
is

:::
the

:::
first

::::::
operand

::
to

::
the

:::::::
function

:::
call

::::::
operator

:::
().

::
So

:
R
:::
has

::
the

::::
type

:::::::::::
unsigned int

:::
and

:
a
::::
value

::
of

::::::::
UINT_MAX.

::
For

::
S,

:
a
::::::
similar

:::::::
deduction

:::::
shows

:::
that

:::
the

::::
value

:::
still

::
is

:::::::
UINT_MAX

:::
but

::
the

::::
type

::::
could

::
be

:::::::::::
unsigned int

::
(if

:::
int

:::
and

::::
long

::::
have

::
the

::::
same

:::::
width)

::
or
::::
long

::
(if

::::
long

::
is

::::
wider

::::
than

::::
int).

::
As

::::
long

:
as
::::

they
:::
are

::::::
integers,

::::::::
regardless

:
of
:::

the
::::::
specific

:::
type

::
of

:::
the

::::::::
arguments,

:::
the

:::
type

::
of
:::
the

::::::::
expression

:
is
::::::

always
::::
such

:::
that

::
the

::::::::::
mathematical

::::::::
maximum

::
of

:::
the

:::::
values

:::
fits.

::
So

::::::
MAXIMUM

:::::::::
implements

::
a

:::::::::
type-generic

::::::::
maximum

::::
macro

::::
that

:
is
::::::
suitable

:::
for

:::
any

:::::::::
combination

::
of

:::::
integer

:::::
types.

20 EXAMPLE 4

::::
void

::::::::
matmult

:
(

:::::
size_t

::
k
:
,
:::::::
size_t

::
l
:
,
:::::::
size_t

::
m
:
,

::::::::::::::::::
double

::::::
const

::
A
:
[
:
k
::
][

:
l
::
],

:::::::
double

::::::
const

::
B

:
[

:
l

::
][m

::
],

:::::::
double

::::::
const

::
C
:
[
:
k
::
][

:
m
::
])

::
{

::::
//

::::
dot

::::::::
product

::::
with

:::::::
stride

:::
of

::
m
::::
for

::
B

::::
//

:::::::
ensure

::::::::
constant

::::::::::::
propagation

:::
of

::
l
::::
and

::
m

::::::
auto

::::::
const

::
λ

:
δ
: :
=

:
[
:
l
:
,
:
m
::
](

::::::
double

::::::
const

::
v
:
[
:
l
::
],

:::::::
double

:::::
const

::
B
:
[
:
l
::
][

:
m
::
],

:::::::
size_t

:::
m0

:
)
::
{

::::::::::
double

::::
ret

::
=

::::
0.0;

:::::::
for

::
(

::::::
size_t

::
i

:
=
:::
0;

::
i
::
<
::
l
:
;
:::
++

:
i
:
)
::
{

:::::::::
ret

:::
+=

::
v

:
[

:
i

:
]*:B:[:i::

][
::
m0

::
];

:::::
}

::::::::::
return

::::
ret

:
;

::::
};

::::
//

:::::::
vector

::::::
matrix

::::::::
product

::::
//

:::::::
ensure

::::::::
constant

::::::::::::
propagation

:::
of

::
l
::::
and

::
m
:
,

::::
and

:::::::::::::
accessibility

:::
of

::
λ
:
δ

::::::
auto

::::::
const

::
λ

:
µ
: :
=

:
[
:
l
:
,
::
m
:
,
::
&
:
λ
:
δ
::
](

::::::
double

::::::
const

::
v

:
[

:
l

::
],

::::::
double

::::::
const

::
B
:
[
:
l
::
][

:
m
::
],

:::::::
double

::::
res

:
[

:
m

::
])

::
{

:::::::
for

::
(

::::::
size_t

::
m0

::
=
:::
0;

:::
m0

::
<
::
m
:
;
:::
++

::
m0

:
)
::
{

:::::::::
res

:
[

::
m0

:
]

::
=

::
λδ

:
(
:
v
:
,
::
B
:
,
:::
m0

:
)
:
;

:::::
}

::::
};

:::::
for

::
(
::::::
size_t

:::
k0

:
=
:::
0;

:::
k0

::
<
::
k
:
;
:::
++

::
k0

:
)
::
{

::::::::::
double

::::::
const

::
(*::
Ap

:
)
:
[
:
l
:
]
::
=
::
A
:
[
::
k0

::
];

::::::::::
double

:::
(* ::
Cp

:
)

:
[m

:
]
::
=
::
C
:
[
::
k0

::
];

:::::
λ
:
µ

::
(*::
Ap

:
,

::
B

:
,

::* :
Cp

:
)
:
;

:::
}

:
}

:::
This

::::::
function

::::::::
evaluates

:::
two

::::::
closures;

:
λδ

:::
has

:
a
:::::
return

:::
type

::
of

::::::
double,

:
λµ

::
of

::::
void.

::::
Both

::::::
lambda

:::::
values

::::
serve

::::::::
repeatedly

::
as

:::
first

::::::
operand

::
to

:::::::
function

::::::::
evaluation

::
but

:::
the

::::::::
evaluation

::
of

:::
the

::::::
captures

::
is

::::
only

::::
done

:::
once

:::
for

::::
each

:
of
:::

the
:::::::
closures.

:::
For

:::
the
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6.7.1 Storage-class specifiers
Syntax

1 storage-class-specifier:
typedef
extern
static
_Thread_local
auto
register

Constraints
2 At most, one storage-class specifier may be given in the declaration specifiers in a declaration, except

that _Thread_local may appear with static or extern ,
::::
and

::::
that

:::::
auto

::::
may

:::::::
appear

::::
with

:::
all

::::::
others

:::
but

:::::
with

::::::::
typedef .134)

3 In the declaration of an object with block scope, if the declaration specifiers include _Thread_local,
they shall also include either static or extern. If _Thread_local appears in any declaration of an
object, it shall be present in every declaration of that object.

4 _Thread_local shall not appear in the declaration specifiers of a function declaration.
::::
auto

:::::
shall

::::
only

:::::::
appear

::
in

::::
the

::::::::::
declaration

:::::::::
specifiers

::
of

::
a
::::::::
function

:::::::::::
declaration

::
if

:
it
::

is
::::

the
::::::::::
declaration

:::::
part

::
of

::
a

:::::::
function

::::::::::
definition

::
or

::
if

:::
the

:::::::::::::
corresponding

::::::::
function

::::
has

:::::::
already

:::::
been

:::::::
defined.

:

Semantics
5 The typedef specifier is called a "storage-class specifier" for syntactic convenience only; it is

discussed in 6.7.8. The meanings of the various linkages and storage durations were discussed in
6.2.2 and 6.2.4.

6 A declaration of an identifier for an object with storage-class specifier register suggests that
access to the object be as fast as possible. The extent to which such suggestions are effective is
implementation-defined.135)

7 The declaration of an identifier for a function that has block scope shall have no explicit storage-class
specifier other than extern.

8 If an aggregate or union object is declared with a storage-class specifier other than typedef, the
properties resulting from the storage-class specifier, except with respect to linkage, also apply to the
members of the object, and so on recursively for any aggregate or union member objects.

9
:
If
:::::
auto

::::::::
appears

::::
with

::::::::
another

::::::::::::
storage-class

::::::::
specifier,

::
or

::
if
::
it

::::::::
appears

::
in

:
a
:::::::::::
declaration

::
at

:::
file

::::::
scope

::
it

:
is
::::::::
ignored

:::
for

:::
the

::::::::
purpose

::
of

::::::::::::
determining

:
a
:::::::
storage

:::::
class

::
or

::::::::
linkage.

::
It

:::::
then

::::
only

::::::::
indicates

::::
that

::::
the

::::::::
declared

::::
type

::::
may

:::
be

::::::::
inferred

::::
from

:::
an

:::::::::
initializer

::::
(for

::::::
objects

::::
see

::::::
6.7.10),

:::
or

:::::
from

:::
the

::::::::
function

:::::
body

:::
(for

:::::::::
functions

:::
see

:::::::
6.8.6.4).

:

Forward references: type definitions (6.7.8)
:
,
::::
type

:::::::::
inference

:::::::
(6.7.10),

::::::::
function

::::::::::
definitions

::::::
(6.9.1).

6.7.2 Type specifiers
Syntax

1 type-specifier:
void
char
short
int

134)See "future language directions" (6.11.5).
135)The implementation can treat any register declaration simply as an auto declaration. However, whether or not

addressable storage is actually used, the address of any part of an object declared with storage-class specifier register
cannot be computed, either explicitly (by use of the unary & operator as discussed in 6.5.3.2) or implicitly (by converting
an array name to a pointer as discussed in 6.3.2.1). Thus, the only operator that can be applied to an array declared with
storage-class specifier register is sizeof.
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long
float
double
signed
unsigned
_Bool
_Complex
atomic-type-specifier
struct-or-union-specifier
enum-specifier
typedef-name

Constraints
2 At

::::::
Unless

:::::
stated

::::::::::
otherwise,

::
at

:
least one type specifier shall be given in the declaration specifiers in

each declaration, and in the specifier-qualifier list in each struct declaration and type name. Each list
of type specifiers shall be one of the following multisets (delimited by commas, when there is more
than one multiset per item); the type specifiers may occur in any order, possibly intermixed with the
other declaration specifiers.

— void

— char

— signed char

— unsigned char

— short, signed short, short int, or signed short int

— unsigned short, or unsigned short int

— int, signed, or signed int

— unsigned, or unsigned int

— long, signed long, long int, or signed long int

— unsigned long, or unsigned long int

— long long, signed long long, long long int, or signed long long int

— unsigned long long, or unsigned long long int

— float

— double

— long double

— _Bool

— float _Complex

— double _Complex

— long double _Complex

— atomic type specifier

— struct or union specifier

— enum specifier

— typedef name

3 The type specifier _Complex shall not be used if the implementation does not support complex types
(see 6.10.8.3).
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Semantics
4 Specifiers for structures, unions, enumerations, and atomic types are discussed in 6.7.2.1 through

6.7.2.4. Declarations of typedef names are discussed in 6.7.8. The characteristics of the other types
are discussed in 6.2.5.

:::::::::::
Declarations

:::
for

::::::
which

:::
the

:::::
type

:::::::::
specifiers

:::
are

::::::::
inferred

:::::
from

:::::::::
initializers

::::
are

:::::::::
discussed

::
in

::::::
6.7.10.

5 Each of the comma-separated multisets designates the same type, except that for bit-fields, it is
implementation-defined whether the specifier int designates the same type as signed int or the
same type as unsigned int.

6
::
A

::::::::::
declaration

::::
that

::::::::
contains

:::
no

:::::
type

::::::::
specifier

::
is

::::
said

:::
to

:::
be

::::::::::::
underspecified.

::::::::::
Identifiers

:::::
that

:::
are

:::::
such

::::::::
declared

::::
have

:::::::::::
incomplete

::::
type.

::::::
Their

::::
type

::::
can

::
be

::::::::::
completed

::
by

:::::
type

::::::::
inference

:::::
from

:::
an

:::::::::::
intialization

:::
(for

:::::::
objects)

:::
or

:::::
from

:::::::
return

::::::::::
statements

::
in

:
a
::::::::
function

:::::
body

::::
(for

::::::
return

:::::
types

:::
of

:::::::::
functions).

:

Forward references: atomic type specifiers (6.7.2.4), enumeration specifiers (6.7.2.2), structure and
union specifiers (6.7.2.1), tags (6.7.2.3), type definitions (6.7.8).

:
,
::::
type

:::::::::
inference

:::::::
(6.7.10).

:

6.7.2.1 Structure and union specifiers
Syntax

1 struct-or-union-specifier:
struct-or-union identifieropt { struct-declaration-list }
struct-or-union identifier

struct-or-union:
struct
union

struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

struct-declaration:
specifier-qualifier-list struct-declarator-listopt ;
static_assert-declaration

specifier-qualifier-list:
type-specifier specifier-qualifier-listopt
type-qualifier specifier-qualifier-listopt
alignment-specifier specifier-qualifier-listopt

struct-declarator-list:
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator:
declarator
declaratoropt : constant-expression

Constraints
2 A struct-declaration that does not declare an anonymous structure or anonymous union shall contain

a struct-declarator-list.

3 A structure or union shall not contain a member with incomplete or function type (hence, a structure
shall not contain an instance of itself, but may contain a pointer to an instance of itself), except that
the last member of a structure with more than one named member may have incomplete array type;
such a structure (and any union containing, possibly recursively, a member that is such a structure)
shall not be a member of a structure or an element of an array.

4 The expression that specifies the width of a bit-field shall be an integer constant expression with a
nonnegative value that does not exceed the width of an object of the type that would be specified
were the colon and expression omitted.136) If the value is zero, the declaration shall have no
declarator.
136)While the number of bits in a _Bool object is at least CHAR_BIT, the width (number of sign and value bits) of a _Bool can

be just 1 bit.
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* type-qualifier-listopt pointer
type-qualifier-list:

type-qualifier
type-qualifier-list type-qualifier

parameter-type-list:
parameter-list
parameter-list , ...

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declaratoropt

identifier-list:
identifier
identifier-list , identifier

Semantics
2 Each declarator declares one identifier, and asserts that when an operand of the same form as

the declarator appears in an expression, it designates a function or object with the scope, storage
duration, and type indicated by the declaration specifiers.

3 A full declarator is a declarator that is not part of another declarator. If, in the nested sequence of
declarators in a full declarator, there is a declarator specifying a variable length array type, the type
specified by the full declarator is said to be variably modified. Furthermore, any type derived by
declarator type derivation from a variably modified type is itself variably modified.

4 In the following subclauses, consider a declaration

T D1

where T contains the declaration specifiers that specify a type T (such as int) and D1 is a declarator
that contains an identifier ident. The type specified for the identifier ident in the various forms of
declarator is described inductively using this notation.

5 If, in the declaration "T D1", D1 has the form

identifier

then the type specified for ident is T.

6 If, in the declaration "T D1", D1 has the form

( D )

then ident has the type specified by the declaration "T D". Thus, a declarator in parentheses is
identical to the unparenthesized declarator, but the binding of complicated declarators may be
altered by parentheses.

Implementation limits
7 As discussed in 5.2.4.1, an implementation may limit the number of pointer, array, and function

declarators that modify an arithmetic, structure, union, or void type, either directly or via one or
more typedef s.

Forward references: array declarators (6.7.6.2), type definitions (6.7.8). ,
:::::
type

::::::::
inference

::::::::
(6.7.10).

6.7.6.1 Pointer declarators
Semantics

1 If, in the declaration "T D1", D1 has the form

* type-qualifier-listopt D

and the type specified for ident in the declaration "T D" is "derived-declarator-type-list T", then the

modifications to ISO/IEC 9899:2018, § 6.7.6.1 page 100 Language
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}

Forward references: function declarators (6.7.6.3), function definitions (6.9.1), initialization (6.7.9).

6.7.6.3 Function declarators (including prototypes)
Constraints

1 A function declarator shall not specify a return type that is a function type or an array type.

2 The only storage-class specifier
::::::::
specifiers that shall occur in a parameter declaration is

:::
are

:::::
auto

::::
and

register.

3 An identifier list in a function declarator that is not part of a definition of that function shall be
empty.

::
A

:::::::::
parameter

:::::::::::
declaration

:::::::
without

:::::
type

::::::::
specifier

:::::
shall

:::
not

:::
be

:::::::
formed,

:::::::
unless

:
it
::::::::
includes

::::
the

::::::
storage

:::::
class

::::::::
specifier

:::::
auto

::::
and

::::::
unless

::
it

:::::::
appears

::
in

::::
the

:::::::::
parameter

:::
list

:::
of

:
a
:::::::
lambda

:::::::::::
expression.

4 After adjustment, the parameters in a parameter type list in a function declarator that is part of a
definition of that function shall not have incomplete type.

Semantics
5 If, in the declaration "T D1", D1 has the form

D ( parameter-type-list )
or

D ( identifier-listopt )

and the type specified for ident in the declaration "T D" is "derived-declarator-type-list T", then the
type specified for ident is "derived-declarator-type-list function returning the unqualified version of T".

6 A parameter type list specifies the types of, and may declare identifiers for, the parameters of the
function.

7 A
:::::
After

:::
the

:::::::::
declared

:::::
types

:::
of

:::
all

::::::::::
parameters

:::::
have

:::::
been

:::::::::::
determined

:::
in

:::::
order

:::
of

:::::::::::
declaration,

::::
any

declaration of a parameter as "array of type" shall be adjusted to "qualified pointer to type", where
the type qualifiers (if any) are those specified within the [ and ] of the array type derivation. If the
keyword static also appears within the [ and ] of the array type derivation, then for each call to
the function, the value of the corresponding actual argument shall provide access to the first element
of an array with at least as many elements as specified by the size expression.

8 A declaration of a parameter as "function returning type" shall be adjusted to "pointer to function
returning type", as in 6.3.2.1.

9 If the list terminates with an ellipsis (, ...), no information about the number or types of the
parameters after the comma is supplied.158)

10 The special case of an unnamed parameter of type void as the only item in the list specifies that the
function has no parameters.

11 If, in a parameter declaration, an identifier can be treated either as a typedef name or as a parameter
name, it shall be taken as a typedef name.

12 If the function declarator is not part of a definition of that function, parameters may have incomplete
type and may use the [*] notation in their sequences of declarator specifiers to specify variable
length array types.

13 The storage-class specifier in the declaration specifiers for a parameter declaration, if present, is
ignored unless the declared parameter is one of the members of the parameter type list for a function
definition.

14 An identifier list declares only the identifiers of the parameters of the function. An empty list in
a function declarator that is part of a definition of that function specifies that the function has no
parameters. The empty list in a function declarator that is not part of a definition of that function

158)The macros defined in the <stdarg.h> header (7.16) can be used to access arguments that correspond to the ellipsis.

Language modifications to ISO/IEC 9899:2018, § 6.7.6.3 page 103
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struct S {
int i;
struct T t;

};

struct T x = {.l = 43, .k = 42, };

void f(void)
{

struct S l = { 1, .t = x, .t.l = 41, };
}

The value of l.t.k is 42, because implicit initialization does not override explicit initialization.

37 EXAMPLE 13 Space can be "allocated" from both ends of an array by using a single designator:

int a[MAX] = {
1, 3, 5, 7, 9, [MAX-5] = 8, 6, 4, 2, 0

};

38 In the above, if MAX is greater than ten, there will be some zero-valued elements in the middle; if it is less than ten, some of
the values provided by the first five initializers will be overridden by the second five.

39 EXAMPLE 14 Any member of a union can be initialized:

union { /* ... */ } u = {.any_member = 42 };

Forward references: common definitions <stddef.h> (7.19).

6.7.10 Type inference
Constraints

1
:::
An

:::::::::::::
underspecified

:::::::::::
declaration

:::::
shall

:::::::
contain

:::
the

:::::::
storage

::::
class

::::::::
specifier

::::::
auto.

2
:::
For

:::
an

::::::::::::::
underspecified

::::::::::
declaration

:::
of

::
a

::::::::
function

::::
that

::
is

::::
also

::
a
::::::::::
definition,

:::
the

::::::
return

:::::
type

:::::
shall

:::
be

:::::::::
completed

:::
as

::
of

:::::
6.9.1.

:::
For

:::
an

::::::::::::::
underspecified

::::::::::
declaration

::
of

::
a

::::::::
function

::::
that

:
is
::::
not

:
a
:::::::::
definition

::
a
:::::
prior

:::::::::
definition

::
of

:::
the

::::::::
declared

::::::::
function

:::::
shall

::
be

:::::::
visible.

:

3
:::
An

:::::::::::::
underspecified

:::::::::::
declaration

::
of

:::
an

:::::
object

::::
that

::
is

::::
also

::
a

:::::::::
definition

::::
and

::::
that

:
is
::::
not

:::
the

::::::::::
declaration

:::
of

:
a
::::::::::
parameter

::::
shall

:::
be

::
of

::::
one

::
of

:::
the

::::::
forms

:

::::::::
declarator = assignment-expression

::::::::
declarator = { assignment-expression }

::::::::
declarator = { assignment-expression , }

::::
such

::::
that

:::
the

::::::::::
declarator

::::
does

::::
not

:::::::
declare

::
an

::::::
array.

4
:::
For

:::
an

:::::::::::::
underspecified

:::::::::::
declaration

::::
such

::::
that

::::
the

::::::::::
assignment

::::::::::
expression

:::::
does

:::
not

:::::
have

:::::::
lambda

:::::
type

::::
there

:::::
shall

:::
be

:
a
:::::
type

::::::::
specifier

::::
type

::::
that

:::
can

:::
be

::::::::
inserted

::
in

:::
the

:::::::::::
declaration

:::::::::::
immediately

:::::
after

:::
the

::::
last

::::::
storage

:::::
class

::::::::
specifier

:::::
that

::::::
makes

::::
the

::::::::
adjusted

:::::::::::
declaration

:
a
:::::
valid

:::::::::::
declaration

::::
and

:::::
such

::::
that

::::
the

::::::::::
assignment

:::::::::::
expression,

:::::
after

::::::::
possible

:::::::
lvalue,

:::::::::::::::
array-to-pointer

::
or

::::::::::::::::::
function-to-pointer

:::::::::::
conversion,

:::
has

::::
the

:::::::::::
non-atomic,

:::::::::::
unqualified

:::::
type

::
of

::::
the

::::::::
declared

::::::
object.167)

:
if
::::

the
:::::::::::
assignment

::::::::::
expression

::::
has

:::::::
lambda

:::::
type,

:::
the

::::::::
lambda

::::
type

:::::
shall

:::
be

:::::::::
complete

::::
and

:::
the

::::::::::
declarator

:::::
shall

::::
only

:::::::
consist

:::
of

:::::::
storage

::::
class

:::::::::
specifiers,

:::::::::
qualifiers

::::
and

:::
the

:::::::::
identifier

::::
that

::
is

::
to

::
be

:::::::::
declared.

::
A

::::::::
function

:::::::::::
declaration

:::
that

::
is
::::
not

:
a
:::::::::
definition

:::::
shall

:::::
have

:
a
::::
type

::::
that

::
is
:::::::::::
compatible

::::
with

::::
the

::::
type

::
of

:::
the

::::::::::::::
corresponding

:::::::::
definition.

:

Description
5

:::::::::
Although

:::::
there

::
is

::
no

:::::::
syntax

:::::::::
derivation

:::
to

:::::
form

::::::::::
declarators

::
of

:::::::
lambda

:::::
type,

:::::::
values

::
of

:::::::
lambda

:::::
type

:::
can

:::
be

::::
used

:::
as

::::::::::
assignment

::::::::::
expression

::::
and

:::
the

::::::::
inferred

::::
type

::
is
::::
that

:::::::
lambda

:::::
type,

::::::::
possibly

:::::::::
qualified.

::::::::::
Otherwise,

::::::::
provided

::::
the

::::::::::
constraints

::::::
above

:::
are

:::::::::
respected,

::
in

:::
an

::::::::::::::
underspecified

::::::::::
declaration

:::
the

:::::
type

167)
::
For

::::
most

:::::::::
assignment

:::::::::
expressions

:
of
::::::

integer
::
or

::::::
floating

::::
point

::::
type,

::::
there

:::
are

::::::
several

::::
types

:::
type

::
that

::::::
would

::::
make

::::
such

:
a
::::::::
declaration

:::::
valid.

:::
The

:::::
second

::::
part

::
of

::
the

::::::::
constraint

::::::
ensures

:::
that

:::::
among

::::
these

::
a
:::::
unique

::::
type

:
is
:::::::::
determined

:::
that

::::
does

:::
not

:::
need

::::::
further

::::::::
conversion

::
to

::
be

:
a
::::
valid

:::::::
initializer

:::
for

::
the

:::::
object.
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::
of

:::
the

::::::::
declared

::::::::::
identifiers

::
is

:::
the

:::::
type

:::::
after

:::
the

:::::::::::
declaration

:::
has

:::::
been

::::::::
adjusted

:::
by

::::
type

:
.
::::
The

::::
type

:::
of

::::
each

:::::::::
identifier

::::
that

:::::::
declares

:::
an

::::::
object

::
is

::::::::::
incomplete

:::::
until

:::
the

::::
end

::
of

:::
the

:::::::::::
assignment

::::::::::
expression

::::
that

:::::::::
initializes

::
it.

6 NOTE
:::
The

::::
scope

::
of

:::
the

:::::::
identifier

:::
for

::::
which

:::
the

::::
type

::
is

::::::
inferred

:::
only

:::::
starts

::::
after

::
the

::::
end

::
of

::
the

::::::::
initializer

:::::
(6.2.1),

::
so

:::
the

::::::::
assignment

::::::::
expression

:::::
cannot

:::
use

:::
the

:::::::
identifier

::
to

::::
refer

::
to

:::
the

::::
object

::
or
:::::::

function
:::
that

::
is

:::::::
declared,

:::
for

::::::
example

::
to

::::
take

::
its

::::::
address.

:::
Any

:::
use

::
of

:::
the

:::::::
identifier

:
in
:::
the

:::::::
initializer

::
is

::::::
invalid,

:::
even

::
if

::
an

::::
entity

::::
with

:::
the

::::
same

::::
name

::::
exists

::
in

::
an

::::
outer

:::::
scope.

:

:::::
{

::::::::::::
double

::
a

::
=

::
7;

::::::::::::
double

::
b

::
=

::
9;

:::::::
{

::::::::::::::
double

::
b

:
=
::
b
::*::

b
:
;
::::::

//
::::::
error

:
,
::::
RHS

:::::
uses

:::::::::::::
uninitialized

:::::::::
variable

::::::::::::::
printf

:::
("%g

:
\
:
n
::
",

::
a
:
)
:
;
:::::

//
::::::
valid

:
,
:::::
uses

::
"

:
a

:
"

:::::
from

:::::
outer

::::::
scope

:
,
:::::::
prints

::
7

::::::::::::
auto

::
a

:::
=
::
a
::*::

a
:
;
::::::

//
::::::
error

:
,
::
"
:
a
:
"
:::::
from

::::::
outer

:::::
scope

:::
is

::::::::
already

:::::::::
shadowed

:::::::
}

:::::::
{

::::::::::::
auto

::
b

:::
=
::
a
::*::

a
:
;
::::::

//
::::::
valid

:
,
:::::
uses

::
"

:
a

:
"

:::::
from

:::::
outer

::::::
scope

::::::::::::
auto

::
a

:::
=
::
b
:
;
: :::::::::

//
::::::
valid

:
,
::::::::
shadows

::
"

:
a

:
"

::::
from

::::::
outer

::::::
scope

:::::::::::
...

::::::::::::::
printf

:::
("%g

:
\
:
n
::
",

::
a
:
)
:
;
:::::

//
::::::
valid

:
,
:::::
uses

::
"

:
a

:
"

:::::
from

:::::
inner

::::::
scope

:
,
:::::::
prints

:::
49

:::::::
}

:::::::::
...

:::::
}

7 EXAMPLE 1
::::::
Consider

:::
the

:::::::
following

:::::::::
definitions:

::::::
static

:::::
auto

::
a

::
=

::::
3.5;

::::
auto

::*::
p
::
=

::
&

:
a

:
;

::::
They

::
are

::::::::
interpreted

::
as
::
if

:::
they

:::
had

::::
been

::::::
written

::
as:

::::::
static

:::::
auto

::::::
double

::
a
::
=
:::::
3.5;

::::
auto

:::::::
double

::* ::
p

::
=

:
&
:
a
:
;

::::
which

:::::
again

:
is
::::::::
equivalent

::
to

::::::
static

:::::::
double

::
a

::
=

::::
3.5;

::::::
double

::*::
p

::
=

::
&

:
a

:
;

::
So

:::::::
effectively

::
a
:
is
:
a
::::::
double

:::
and

:
p
::
is

:
a
:::::::
double*.

:

8 EXAMPLE 2
:
In
:::
the

:::::::
following,

:::
pA

:
is
::::
valid

::::::
because

:::
the

:::
type

::
of

:
A
::::
after

::::::::::::
array-to-pointer

::::::::
conversion

:
is
::
a

:::::
pointer

::::
type,

:::
and

::
qA

::
is

::::
valid

::::::
because

:
it
::::
does

::
not

::::::
declare

::
an

::::
array

:::
but

:
a
::::::
pointer

:
to
:::

an
::::
array.

::::::
double

::
A
:::
[3]

::
=

::
{

::
0

::
};

::::
auto

::::::
const

::* :::
pA

::
=

:
A
:
;

::::
auto

::::::
const

:::
(* ::
qA

:
)

::
[3]

::
=
::
&
:
A
:
;

9 EXAMPLE 3
:::
Type

:::::::
inference

:::
can

::
be

::::
used

::
to

::::::
capture

::
the

::::
type

::
of

:
a
:::
call

::
to

:
a
:::::::::
type-generic

:::::::
function

:::
and

:::
can

::
be

::::
used

::
to

:::::
ensure

:::
that

::
the

::::
same

::::
type

::
as

::
the

::::::::
argument

:
x
::
is

::::
used.

:
#
:::::::
include

::
<

::::::
tgmath

:
.h

:
>

::::
auto

::
y
::
=
::::
cos

:
(

:
x

:
)

:
;

:
If
::::::
instead

::
the

::::
type

::
of

:
y
:
is
:::::::
explicitly

:::::::
specified

::
to

:
a
::::::
different

::::
type

::::
than

:
x,
:
a
::::::::

diagnosis
:
of
:::

the
:::::::
mismatch

::
is

:::
not

:::::::
enforced.

10 EXAMPLE 4
:
A
:::::::::
type-generic

:::::
macro

:::
that

:::::::::
generalizes

::
the

:::
div

:::::::
functions

:::::::
(7.22.6.2)

:
is
::::::

defined
:::
and

::::
used

::
as

::::::
follows.

:
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6.8 Statements and blocks
Syntax

1 statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

Semantics
2 A statement specifies an action to be performed. Except as indicated, statements are executed in

sequence.

3 A block allows a set of declarations and statements to be grouped into one syntactic unit. The
initializers of objects that have automatic storage duration, and the variable length array declarators
of ordinary identifiers with block scope, are evaluated and the values are stored in the objects
(including storing an indeterminate value in objects without an initializer) each time the declaration
is reached in the order of execution, as if it were a statement, and within each declaration in the
order that declarators appear.

4 A full expression is an expression that is not part of another expression, nor part of a declarator
or abstract declarator. There is also an implicit full expression in which the non-constant size
expressions for a variably modified type are evaluated; within that full expression, the evaluation of
different size expressions are unsequenced with respect to one another. There is a sequence point
between the evaluation of a full expression and the evaluation of the next full expression to be
evaluated.

5 NOTE Each of the following is a full expression:

— a full declarator for a variably modified type,

— an initializer that is not part of a compound literal,

— the expression in an expression statement,

— the controlling expression of a selection statement (if or switch),

— the controlling expression of a while or do statement,

— each of the (optional) expressions of a for statement,

— the (optional) expression in a return statement.

While a constant expression satisfies the definition of a full expression, evaluating it does not depend on nor produce any
side effects, so the sequencing implications of being a full expression are not relevant to a constant expression.

Forward references: expression and null statements (6.8.3), selection statements (6.8.4), iteration
statements (6.8.5), the return statement (6.8.6.4).

6.8.1 Labeled statements
Syntax

1 labeled-statement:
identifier : statement
case constant-expression : statement
default : statement

Constraints
2 A case or default label shall appear only in a switch statement .

:::
that

::
is

::::::::::
associated

::::
with

::::
the

:::::
same

:::::::
function

:::::
body

:::
as

:::
the

:::::::::
statement

::
to

::::::
which

::::
the

::::
label

::
is
:::::::::
attached.168) Further constraints on such labels

are discussed under the switch statement.
168)

::::
Thus,

:
a
::::
label

:::
that

::::::
appears

:::::
within

:
a
::::::
lambda

::::::::
expression

::::
may

:::
only

::
be

::::::::
associated

::
to

:
a
:::::
switch

:::::::
statement

:::::
within

:::
the

::::
body

::
of

::
the

::::::
lambda.
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6.8.5.3 The for statement
1 The statement

for (clause-1; expression-2; expression-3) statement

behaves as follows: The expression expression-2 is the controlling expression that is evaluated before
each execution of the loop body. The expression expression-3 is evaluated as a void expression after
each execution of the loop body. If clause-1 is a declaration, the scope of any identifiers it declares
is the remainder of the declaration and the entire loop, including the other two expressions; it is
reached in the order of execution before the first evaluation of the controlling expression. If clause-1
is an expression, it is evaluated as a void expression before the first evaluation of the controlling
expression.174)

2 Both clause-1 and expression-3 can be omitted. An omitted expression-2 is replaced by a nonzero
constant.

6.8.6 Jump statements
Syntax

1 jump-statement:
goto identifier ;
continue ;
break ;
return expressionopt ;

Constraints

2
:::
No

:::::
jump

:::::::::
statement

:::::
other

:::::
than

:::::::
return

::::
shall

:::::
have

:
a
::::::
target

::::
that

::
is

::::::
found

::
in

:::::::
another

::::::::
function

:::::
body.175)

Semantics
3 A jump statement causes an unconditional jump to another place.

6.8.6.1 The goto statement
Constraints

1 The identifier in a goto statement shall name a label located somewhere in the enclosing function

:::::
body. A goto statement shall not jump from outside the scope of an identifier having a variably
modified type to inside the scope of that identifier.176)

Semantics
2 A goto statement causes an unconditional jump to the statement prefixed by the named label in the

enclosing function.
3 EXAMPLE 1 It is sometimes convenient to jump into the middle of a complicated set of statements. The following outline

presents one possible approach to a problem based on these three assumptions:

1. The general initialization code accesses objects only visible to the current function.

2. The general initialization code is too large to warrant duplication.

3. The code to determine the next operation is at the head of the loop. (To allow it to be reached by continue statements,
for example.)

/* ... */
goto first_time;
for (;;) {

174)Thus, clause-1 specifies initialization for the loop, possibly declaring one or more variables for use in the loop; the
controlling expression, expression-2, specifies an evaluation made before each iteration, such that execution of the loop
continues until the expression compares equal to 0; and expression-3 specifies an operation (such as incrementing) that is
performed after each iteration.

175)
:::
Thus

::::
jump

::::::::
statements

:::::
other

:::
than

::::::
return

:::
may

:::
not

::::
jump

::::::
between

:::::::
different

::::::
functions

::
or
::::
cross

:::
the

::::::::
boundaries

::
of

:
a
::::::
lambda

::::::::
expression,

:::
that

::
is,

:::
they

::::
may

:::
not

::::
jump

:::
into

::
or

::
out

::
of

:::
the

::::::
function

::::
body

::
of

:
a
::::::
lambda.

:::::
Other

::::::
features

:::
such

::
as

:::::
signals

:::::
(7.14)

:::
and

:::
long

:::::
jumps

::::
(7.13)

::::
may

::::::
delegate

:::::
control

::
to
:::::
points

::
of

:::
the

::::::
program

:::
that

:::
do

::
not

:::
fall

:::::
under

::::
these

::::::::
constraints.

176)
:::
The

::::::
visibility

::
of

:::::
labels

:
is
:::::::
restricted

::::
such

:::
that

:
a
::::
goto

::::::::
statement

:::
that

:::::
jumps

:::
into

::
or

:::
out

::
of

:
a
::::::
different

:::::::
function

::::
body,

::::
even

:
if
:
it
::
is

:::::
nested

:::::
within

:
a
::::::
lambda,

::
is

:
a
::::::::
constraint

:::::::
violation.
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// determine next operation
/* ... */
if (need to reinitialize) {

// reinitialize-only code
/* ... */

first_time:
// general initialization code
/* ... */
continue;

}
// handle other operations
/* ... */

}

4 EXAMPLE 2 A goto statement is not allowed to jump past any declarations of objects with variably modified types. A jump
within the scope, however, is permitted.

goto lab3; // invalid: going INTO scope of VLA.
{

double a[n];
a[j] = 4.4;

lab3:
a[j] = 3.3;
goto lab4; // valid: going WITHIN scope of VLA.
a[j] = 5.5;

lab4:
a[j] = 6.6;

}
goto lab4; // invalid: going INTO scope of VLA.

6.8.6.2 The continue statement
Constraints

1 A continue statement shall appear only in or as a loop body .
:::
that

::
is

:::::::::
associated

:::
to

:::
the

:::::
same

::::::::
function

:::::
body.177)

Semantics
2 A continue statement causes a jump to the loop-continuation portion of the smallest enclosing

iteration statement; that is, to the end of the loop body. More precisely, in each of the statements

while (/* ... */) {
/* ... */
continue;
/* ... */

contin:;
}

do {
/* ... */
continue;
/* ... */

contin:;
} while (/* ... */);

for (/* ... */) {
/* ... */
continue;
/* ... */

contin:;
}

unless the continue statement shown is in an enclosed iteration statement (in which case it is
interpreted within that statement), it is equivalent to goto contin;.178)

6.8.6.3 The break statement
Constraints

1 A break statement shall appear only in or as a switch body or loop body .
::::
that

::
is

:::::::::
associated

::
to

::::
the

:::::
same

:::::::
function

::::::
body.179)

177)
:::
Thus

::
a
:::::::
continue

:::::::
statement

::
by

::::
itself

::::
may

:::
not

::
be

:::
used

::
to

:::::::
terminate

:::
the

:::::::
execution

::
of

:::
the

::::
body

:
of
::

a
:::::
lambda

:::::::::
expresssion.

178)Following the contin: label is a null statement.
179)

:::
Thus

::
a
::::
break

::::::::
statement

::
by

::::
itself

:::
may

:::
not

::
be

::::
used

:::::::
terminate

:::
the

:::::::
execution

::
of

::
the

::::
body

::
of

:
a
::::::
lambda

:::::::::
expresssion.
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Semantics
2 A break statement terminates execution of the smallest enclosing switch or iteration statement.

6.8.6.4 The return statement
Constraints

1 A return statement with an expression shall not appear in a function
::::
body

:
whose return type is

void. A return statement without an expression shall only appear in a function
:::::
body whose return

type is void.

2
:::
For

::
a

::::::::
function

:::::
body

::::
that

::::
has

:::
an

::::::::::::::
underspecified

::::::
return

:::::
type,

:::
all

:::::::
return

::::::::::
statements

:::::
shall

::::::::
provide

::::::::::
expressions

:::::
with

:
a
:::::::::
consistent

:::::
type

::
or

:::::
none

::
at

:::
all.

:::::
That

::
is,

::
if

::::
any

::::::
return

::::::::::
statement

:::
has

:::
an

::::::::::
expression,

::
all

:::::::
return

::::::::::
statements

:::::
shall

::::
have

:::
an

::::::::::
expression

:::::
(after

::::::
lvalue,

:::::::::::::::
array-to-pointer

::
or

::::::::::::::::::
function-to-pointer

::::::::::
conversion)

:::::
with

:::
the

:::::
same

:::::
type;

:::::::::
otherwise

:::
all

:::::::
return

:::::::::::
expressions

:::::
shall

::::
have

:::
no

::::::::::
expression.

:

Semantics
3 A return statement terminates execution of the current function

:
is

::::::::::
associated

::
to

::::
the

::::::::::
innermost

:::::::
function

:::::
body

:::
in

::::::
which

:::::::
appears.

::
It
:::::::::
evaluates

:::
the

:::::::::::
expression,

::
if

::::
any,

:::::::::
terminates

::::
the

:::::::::
execution

::
of

::::
that

:::::::
function

:::::
body

:
and returns control to its caller. A function ;

::
if
::
it

:::
has

:::
an

::::::::::
expression,

::::
the

:::::
value

::
of

::::
the

:::::::::
expression

:::
is

::::::::
returned

::
to

::::
the

:::::
caller

:::
as

:::
the

::::::
value

::
of

::::
the

::::::::
function

:::
call

:::::::::::
expression.

:::
A

::::::::
function

:::::
body

may have any number of return statements.

4 If a return statement with an expression is executed, the value of the expression is returned to the
caller as the value of the function call expression. If the expression has a type different from the
return type of the function in which it appears, the value is converted as if by assignment to an
object having the return type of the function.180)

5
:::
For

:
a
::::::::
lambda

::
or

:
a
::::::::
function

::::
that

::::
has

::
an

::::::::::::::
underspecified

::::::
return

:::::
type,

:::
the

::::::
return

::::
type

::
is
:::::::::::
determined

:::
by

:::
the

::::::::
lexically

::::
first

:::::::
return

::::::::::
statement,

:
if
:::::

any,
::::
that

::
is

:::::::::
associated

:::
to

:::
the

::::::::
function

:::::
body

::::
and

::
is
:::::::::
specified

::
as

:::
the

:::::
type

::
of

::::
that

::::::::::
expression,

::
if
::::
any,

:::::
after

:::::::
lvalue,

:::::::::::::::
array-to-pointer,

:::::::::::::::::
function-to-pointer

:::::::::::
conversion,

::
or

::
as

:::::
void

::
if

:::::
there

::
is

::
no

:::::::::::
expression.

:

6 EXAMPLE In:

struct s { double i; } f(void);
union {

struct {
int f1;
struct s f2;

} u1;
struct {

struct s f3;
int f4;

} u2;
} g;

struct s f(void)
{

return g.u1.f2;
}

/* ... */
g.u2.f3 = f();

there is no undefined behavior, although there would be if the assignment were done directly (without using a function call
to fetch the value).

180)The return statement is not an assignment. The overlap restriction of 6.5.16.1 does not apply to the case of function
return. The representation of floating-point values can have wider range or precision than implied by the type; a cast can be
used to remove this extra range and precision.
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6.9 External definitions
Syntax

1 translation-unit:
external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

Constraints
2 The storage-class specifiers auto and

::::::::
specifier register shall not appear in the declaration specifiers

in an external declaration.

3 There shall be no more than one external definition for each identifier declared with internal linkage
in a translation unit. Moreover, if an identifier declared with internal linkage is used in an expression
(other than as a part of the operand of a sizeof or _Alignof operator whose result is an integer
constant), there shall be exactly one external definition for the identifier in the translation unit.

Semantics
4 As discussed in 5.1.1.1, the unit of program text after preprocessing is a translation unit, which

consists of a sequence of external declarations. These are described as "external" because they
appear outside any function (and hence have file scope). As discussed in 6.7, a declaration that also
causes storage to be reserved for an object or a function named by the identifier is a definition.

5 An external definition is an external declaration that is also a definition of a function (other than an
inline definition) or an object. If an identifier declared with external linkage is used in an expression
(other than as part of the operand of a sizeof or _Alignof operator whose result is an integer
constant), somewhere in the entire program there shall be exactly one external definition for the
identifier; otherwise, there shall be no more than one.181)

6.9.1 Function definitions
Syntax

1 function-definition:
declaration-specifiers declarator declaration-listopt compound-statement

declaration-list:
declaration
declaration-list declaration

Constraints
2 The identifier declared in a function definition (which is the name of the function) shall have a

function type, as specified by the declarator portion of the function definition.182)

3 The return type of a function shall be void or a complete object type other than array type.

4 The storage-class specifier, if any, in the declaration specifiers shall be either extern or static
:
,

:::::::
possibly

::::::::::
combined

::::
with

::::::
auto .

5 If the declarator includes a parameter type list, the declaration of each parameter shall include an
identifier, except for the special case of a parameter list consisting of a single parameter of type void,
in which case there shall not be an identifier. No declaration list shall follow.

181)Thus, if an identifier declared with external linkage is not used in an expression, there need be no external definition for
it.
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6 If the declarator includes an identifier list, each declaration in the declaration list shall have at least
one declarator, those declarators shall declare only identifiers from the identifier list, and every
identifier in the identifier list shall be declared. An identifier declared as a typedef name shall not
be redeclared as a parameter. The declarations in the declaration list shall contain no storage-class
specifier other than register and no initializations.

7
:::
An

:::::::::::::
underspecified

::::::::
function

:::::::::
definition

:::::
shall

:::::::
contain

:::
an

:::::
auto

::::::
storage

:::::
class

::::::::
specifier.

::::
The

::::::
return

:::::
type

:::
for

::::
such

::
a

:::::::
function

::
is

:::::::::::
determined

::
as

:::::::::
described

:::
for

:::
the

:::::::
return

:::::::::
statement

::::::::
(6.8.6.4)

:::
and

:::::
shall

:::
be

::::::
visible

::::
prior

:::
to

:::
the

::::::::
function

::::::::::
definition.

Semantics
8

:
If
:::::
auto

::::::::
appears

::
as

::
a
::::::::::::
storage-class

::::::::
specifier

::
it

::
is

::::::::
ignored

:::
for

:::
the

::::::::
purpose

::
of

::::::::::::
determining

::
a

:::::::
storage

::::
class

:::
or

:::::::
linkage

::
of

:::
the

:::::::::
function.

::
It
:::::
then

::::
only

:::::::::
indicates

::::
that

:::
the

::::::
return

:::::
type

::
of

::::
the

::::::::
function

::::
may

:::
be

:::::::
inferred

:::::
from

:::::::
return

::::::::::
statements

::
or

::::
the

::::
lack

:::::::
thereof,

:::
see

:::::::
6.8.6.4.

9 The declarator in a function definition specifies the name of the function being defined and the
identifiers of its parameters. If the declarator includes a parameter type list, the list also specifies the
types of all the parameters; such a declarator

::::::::
(possibly

::::::::
adjusted

::
by

:::
an

::::::::
inferred

::::
type

:::::::::
specifier) also

serves as a function prototype for later calls to the same function in the same translation unit. If the
declarator includes an identifier list,183) the types of the parameters shall be declared in a following
declaration list. In either case, the type of each parameter is adjusted as described in 6.7.6.3 for a
parameter type list; the resulting type shall be a complete object type.

10 If a function that accepts a variable number of arguments is defined without a parameter type list
that ends with the ellipsis notation, the behavior is undefined.

11 Each parameter has automatic storage duration; its identifier is an lvalue.184) The layout of the
storage for parameters is unspecified.

12 On entry to the function, the size expressions of each variably modified parameter are evaluated
and the value of each argument expression is converted to the type of the corresponding parameter
as if by assignment. (Array expressions and function designators as arguments were converted to
pointers before the call.)

13 After all parameters have been assigned, the compound statement that constitutes the body of the
function definition is executed.

14 Unless otherwise specified, if the } that terminates a function is reached, and the value of the
function call is used by the caller, the behavior is undefined.

15
::::::::
Provided

::::
the

:::::::::::
constraints

::::::
above

::::
are

::::::::::
respected,

::::
the

::::::
return

:::::
type

:::
of

:::
an

::::::::::::::
underspecified

:::::::::
function

:::::::::
definition

::
is

::::::::
adjusted

:::
as

::
if

:::
the

::::::::::::::
corresponding

:::::
type

::::::::
specifier

::::
had

:::::
been

::::::::
inserted

:::
in

:::
the

::::::::::
definition.

:::
The

:::::
type

::
of

:::::
such

:
a
::::::::
function

::
is
:::::::::::
incomplete

::::::
within

::::
the

::::::::
function

:::::
body

::::
until

::::
the

::::::::
lexically

::::
first

:::::::
return

:::::::::
statement

::::
that

:
it
:::::::::
contains,

:
if
:::::
any,

::
or

:::::
until

:::
the

::::
end

::
of

:::
the

::::::::
function

:::::
body,

::::::::::
otherwise.185)

16 NOTE
:
In
::
a

::::::
function

::::::::
definition,

::
the

::::
type

::
of

::
the

:::::::
function

:::
and

::
its

:::::::
prototype

:::::
cannot

::
be

:::::::
inherited

::::
from

:
a
::::::
typedef:

:

:: ::: :::::::
typedef

::::
int

:
F
:
(
::::
void

:
)
:
;
::::::::::::

// type
:
F is "function with no parameters

:::::::::::::::::::::::::::::::::::::
// returning

:::
int"

:: ::: :
F
::
f

:
,

::
g

:
;

::::::::::::::::::::::::
//

:
f and

:
g both have type compatible with

:
F

:: ::: :
F
::
f

::
{

:::
/* :::

...
:::*/::

}
: ::::::::::::::

// WRONG: syntax/constraint error

:: ::: :
F
::
g

::
()

::
{

:::
/* :::

...
:::*/::

}
:::::::::::::

// WRONG: declares that
:
g returns a function

:: ::: :::
int

::
f

:
(

::::
void

:
)

:
{
:::
/*::::

...
:::*/::

}
:::::::

// RIGHT:
:
f has type compatible with

:
F

:: ::: :::
int

::
g

::
()

::
{

::
/*::::

...
:::*/::

}
:::::::::::

// RIGHT:
:
g has type compatible with

:
F

:: ::: :
F
::*:
e

:
(

::::
void

:
)

:
{
:::
/*::::

...
:::*/::

}
::::::::

//
:
e returns a pointer to a function

:: ::: :
F
::::*(( :

e
:
)

:
)

:
(

:::
void

:
)
::
{
:::
/*::::

...
:::*/::

}
::::

// same: parentheses irrelevant

:: ::: :::
int

:::
(* ::
fp

:
)

:
(

:::
void

:
)
:
;
: :::::::::::::::

//
::
fp points to a function that has type

:
F

:: ::: :
F
::*::
Fp

:
;

:::::::::::::::::::::::::
//

::
Fp points to a function that has type

:
F

182)The intent is that the type category in a function definition cannot be inherited from a typedef:
183)See "future language directions" (6.11.7).
184)A parameter identifier cannot be redeclared in the function body except in an enclosed block.
185)

:::
This

:::::
means

:::
that

::::
such

:
a
::::::
function

:::::
cannot

:::
be

:::
used

:::
for

::::
direct

:::::::
recursion

:::::
before

::
or

:::::
within

:::
the

:::
first

:::::
return

:::::::
statement.
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17 EXAMPLE 1 In the following:

extern int max(int a, int b)
{

return a > b ? a: b;
}

extern is the storage-class specifier and int is the type specifier; max(int a, int b) is the function declarator; and

{ return a > b ? a: b; }

is the function body. The following similar definition uses the identifier-list form for the parameter declarations:

extern int max(a, b)
int a, b;
{

return a > b ? a: b;
}

Here int a, b; is the declaration list for the parameters. The difference between these two definitions is that the first form acts
as a prototype declaration that forces conversion of the arguments of subsequent calls to the function, whereas the second
form does not.

18 EXAMPLE 2 To pass one function to another, one might say

int f(void);
/* ... */
g(f);

Then the definition of g might read

void g(int (*funcp)(void))
{

/* ... */
(*funcp)(); /* or funcp(); ...*/

}

or, equivalently,

void g(int func(void))
{

/* ... */
func(); /* or (*func)(); ...*/

}

19 EXAMPLE 3
::::::
Consider

:::
the

:::::::
following

::::::
function

:::
that

::::::::
computes

::
the

::::::::
maximum

::::
value

::
of

:::
two

::::::::
parameters

:::
that

::::
have

::::::
integer

::::
types

:
T
:::
and

::
S.

::::::::::
inline

:::::
auto

:::
max

:
(
:
T
:
,
::
S
:
)
:
;
:::
//

::::::::
invalid

:
:
:::
no

:::::::::::
definition

:::::::
visible

:::::::
...

::::::::::
inline

:::::
auto

:::
max

:
(
:
T
::
a
:
,
::
S
::
b
:
)
:
{

::::::::::::
return

::
(

:
a

::
<

::
0)

::::::::::::::
?

:::
((b

::
<
: :::

0)
::
?
:::
((

:
a
::
<
::
b
:
)
::
?
::
b
::
:
::
a
:
)

::
:

::
b

:
)

::::::::::::::
:

:::
((b

:::
>=

:::
0)

::
?
:::
((

:
a
::
<
::
b
:
)
::
?
::
b
::
:
::
a
:
)

::
:

::
a

:
)

:
;

:::::
}

:::::::
...

::::::
//

::::::
valid

:
:

::::::::::
definition

::::::::
visible

::::::::::
extern

:::::
auto

:::
max

:
(
:
T
:
,
::
S
:
)
:
;
:::
//

:::::::
forces

:::::::::::
definition

:::
to

:::
be

::::::::
external

::::::::
auto

::::
max

:
(

:
T

:
,

::
S)

:
;
: :::::::::

//
:::::
same

::::::::
auto

::::
max

::
()

:
;

::::::::::::::
//

:::::
same
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:::
The

:::::
return

::::::::
expression

:::::::
performs

::::::
default

:::::::
arithmetic

:::::::::
conversion

:
to
::::::::

determine
:
a
::::

type
:::
that

:::
can

::::
hold

::
the

::::::::
maximum

:::::
value

:::
and

:
is
::
at

::::
least

::
as

::::
wide

::
as

:::
int.

:::
The

:::::::
function

:::::::
definition

::
is

::::::
adjusted

::
to

:::
that

:::::
return

::::
type.

::::
This

:::::::
property

::::
holds

::::::::
regardless

:
if
::::
types

::
T

:::
and

:
S
::::
have

::
the

::::
same

::
or
:::::::
different

::::::::
signedness.

:

::
The

::::
first

::::::
forward

::::::::
declaration

::
of
:::

the
:::::::
function

:
is
::::::
invalid,

::::::
because

:::
an

::::
auto

:::
type

:::::::
function

::::::::
declaration

:::
that

::
is
:::
not

:
a
::::::::

definition

:
is
::::
only

::::
valid

:
if
:::

the
::::::::
definition

::
of

::
the

:::::::
function

:
is
::::::

visible.
::

In
:::::::

contrast
:
to
::::

that,
:::
the

::::::
extern

::::::::
declaration

:::
and

:::
the

:::
two

::::::::
following

:::::::
equivalent

::::
ones

:::
are

::::
valid

::::::
because

::::
they

:::::
follow

:::
the

::::::::
definition

:::
and

::::
thus

::
the

:::::::
inferred

:::::
return

:::
type

::
is
::::::
known.

:::::::
Thereby

::
in

::
is

::::::
ensured

:::
that

::
the

:::::::::
translation

:::
unit

::::::
provides

:::
an

::::::
external

:::::::
definition

::
of

::
the

:::::::
function.

:

20 EXAMPLE 4
:::
The

:::::::
following

:::::::
function

:::::::
computes

:::
the

:::
sum

::::
over

::
an

:::::
array

::
of

::::::
integers

::
of

:::
type

::
T
:::
and

::::::
returns

::
the

:::::
value

::
as

:::
the

:::::::
promoted

::::
type

:
of
::
T.

::::::::::
inline

::::::::
auto

::::
sum

:
(

:::::
size_t

::
n
:
,
::
T
::
A
:
[
:
n
::
])

:
{

::::::::::::
switch

:
(

:
n

:
)

::
{

::::::::::::
case

:::
0:

:::::::::::::::::
return

:::
+((

:
T
:
)
::
0)

:
;
:::::::::::::::::::::::::::::::

//
:::::::
return

::::
the

:::::::::
promoted

:::::
type

::::::::::::
case

:::
1:

:::::::::::::::::
return

:
+
:
A
::::
[0];

: ::::::::::::::::::::::::::::::::
//

:::::::
return

::::
the

:::::::::
promoted

:::::
type

:::::::::::::::
default

:
:

:::::::::::::::::
return

:::
sum

:
(
:
n
:::
/2,

::
A
:
)
::
+
::::
sum

:
(
:
n
::
-
::
n
:::
/2,

::
&

:
A

:
[

:
n

::::
/2]);

: :::
//

::::::
valid

::::::::::
recursion

:::::::
}

:::::
}

:
If
::::::
instead

:::
sum

:::::
would

:::
have

:::
bee

::::::
defined

::::
with

:
a
:::::::
prototype

::
as

::::::
follows

:::::
T
::::
sum

:
(

::::::
size_t

:
n
:
,
::
T
::
A
:
[
:
n
::
])

:
;

::
for

:
a
::::::
narrow

:::
type

::
T
:::
such

::
as
::::::::::::
unsigned char,

:::
the

:::::
return

::::
type

:::
and

::::
result

:::::
would

::
be

:::::::
different

::::
from

::
the

:::::::
previous.

::
In

::::::::
particular,

::
the

:::::
result

:
of
:::
the

::::::
addition

:::::
would

::::
have

::::
been

:::::::
converted

::::
back

:::
from

:::
the

:::::::
promoted

::::
type

:
to
::
T

::::
before

::::
each

::::::
return,

::::::
possibly

::::::
leading

:
to
::

a
:::::::
surprising

::::::
overall

:::::
results.

::::
Also,

::::::::
specifying

:::
the

:::::::
promoted

::::
type

:
of
::

a
:::::
narrow

::::
type

:
T
:::::::
explicitly

:::
can

::
be

::::::
tedious

::::::
because

:::
that

:::
type

:::::::
depends

::
on

:::::::
properties

::
of
:::
the

:::::::
execution

:::::::
platform.

:

6.9.2 External object definitions
Semantics

1 If the declaration of an identifier for an object has file scope and an initializer, the declaration is an
external definition for the identifier.

2 A declaration of an identifier for an object that has file scope without an initializer, and without a
storage-class specifier or with the storage-class specifier static, constitutes a tentative definition. If a
translation unit contains one or more tentative definitions for an identifier, and the translation unit
contains no external definition for that identifier, then the behavior is exactly as if the translation
unit contains a file scope declaration of that identifier, with the composite type as of the end of the
translation unit, with an initializer equal to 0.

3 If the declaration of an identifier for an object is a tentative definition and has internal linkage, the
declared type shall not be an incomplete type.

4 EXAMPLE 1

int i1 = 1; // definition, external linkage
static int i2 = 2; // definition, internal linkage
extern int i3 = 3; // definition, external linkage
int i4; // tentative definition, external linkage
static int i5; // tentative definition, internal linkage

int i1; // valid tentative definition, refers to previous
int i2; // 6.2.2 renders undefined, linkage disagreement
int i3; // valid tentative definition, refers to previous
int i4; // valid tentative definition, refers to previous
int i5; // 6.2.2 renders undefined, linkage disagreement

extern int i1; // refers to previous, whose linkage is external
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