
C23 proposal: formatted input/output of binary integer numbers

Title: Formatted input/output of binary integer numbers
Author: Jörg Wunsch <j.gnu@uriah.heep.sax.de>

Date: 2020-11-10
Proposal category: New feature
Reference: N2473 C2x Working Draft

Abstract:

As a logical counterpart to allowing for binary constants in source code (N2549), it seems a logical consequence
to also provide a method for formatted input/output of binary integer numbers.

While there is not much prior art known in this respect for C (or C++) implementations, other languages (Python,
Rust, Perl) already offer this feature.

1

WG14 N2612

Background

When adopting N2549 (binary integer constants in C source code), a request arose to also consider the ability to
allow for formatted input/output of binary integer numbers in the C language. So, in particular, printf should
be able to e.g. output 101010 for an integer constant 42, and scanf is supposed to be able to parse 0b11 as
number 3.

State of the Art

There are no major C (or C++) implementations known (as the time of this writing) that implement these
features.

However, other languages implement it. There appears to be an agreement to use the format specifier b for it.

$ python -c ’print("{:b}".format(42))’

101010

$ perl -e ’printf("%b\n", 42);’

101010

$ cat main.rs

fn main() {

println!("{:b}", 42);

}

$ rustc main.rs

$./main

101010

printf- and scanf-like functions

In addition to the standard number formatting, printf and relatives offer an alternate formatting option, desig-
nated by the modifier #. This causes the resulting string to be preceded by 0x (for hexadecimal output), or 0b

(in the binary case).

If the value to be printed is 0, the hexadecimal formatting does not print the prefix though. Python and Rust
handle that differently, and always print the prefix, which might seem more useful. For C, it is too late to change
this behaviour as it would cause existing code to break – at least for hexadecimal output. For binary output,
it could be handled differently, but that would make it inconsistent with the hexadecimal option. Thus, it is
proposed to have the #b formatting behave similar to #x, and do not print the prefix.

Likewise, using an uppercase #X instead of #x causes the prefix (and, in the hexadecimal case, the digits A through
F) to be printed in uppercase letters.

Ideally, the same would be done for an uppercase #B specifier for binary numbers. However, §7.31.13 only reserves
lowercase letters for future library use; thus, an implementation could have been using uppercase B for their own
extension already right now.

It is therefore proposed to suggest that an uppercase B format specifier can either be used for printing binary
numbers, where the prefix in the alternate form becomes 0B, or it can be handled in an implementation-defined
manner. That way, any existing implementation already using it would not need to be changed. As a consequence,
portable code could not rely on #B printing a 0B prefix, but that seems to be tolerable. Portable code could always
use a standard b specifier, and manually prepend 0B if desired:

2

printf("0B%08b\n", some_number);

For scanf-like functions, there is no need to add the uppercase B specifier. Prefixes like 0x or 0B are always
allowed (for the respective formats), without distinguishing whether the format specifier is given in lower or
upper case.

strto* functions

It is proposed to extend these functions in a similar way. That is, if the conversion base is 0, an initial 0b or 0B

prefix causes the number to be interpreted as a binary format. If the conversion base is 2, the prefix is allowed
but not necessary. For any base of 12 or above, an initial 0b or 0B string would be interpreted as digit 0, followed
by digit B (with value 11).

Suggested changes:

Additions are marked in green.

§7.21.6.1 The fprintf function

(4) third list item

An optional precision that gives the minimum number of digits to appear for the b, B, d, i, o, u, x, and X

conversions, . . .

(6) item #

The result is converted to an ”alternative form”. For o conversion, it increases the precision, if and only if
necessary, to force the first digit of the result to be a zero (if the value and precision are both 0, a single 0 is
printed). For b (or B) conversion, a nonzero result has 0b (or 0B) prefixed to it. For x (or X) conversion, a nonzero
result has 0x (or 0X) prefixed to it. . . .

(6) item 0

For b, B, d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversions, leading zeros (following any indication of sign or
base) are used to pad to the field width rather than performing space padding, except when converting an infinity
or NaN. If the 0 and - flags both appear, the 0 flag is ignored. For b, B, d, i, o, u, x, and X conversions, if a
precision is specified, the 0 flag is ignored. For other conversions, the behavior is undefined.

(7) items hh, h, l, ll, j, z, t

Specifies that a following b, B, d, i, o, u, x, or X conversion . . .

3

(8) second item

b, B, o, u, x, X The unsigned int argument is converted to unsigned bi-
nary (b or B), unsigned octal (o), unsigned decimal (u), or
unsigned hexadecimal notation (x or X) in the style dddd ;
the letters abcdef are used for x conversion and the letters
ABCDEF for X conversion. . . .
Alternatively, conversion specifier B might be handled in
an implementation-defined manner, differently from the de-
scription in the paragraphs above.

New (14) (in Recommended practice)

The option to handle a B conversion specifier in an implementation-defined manner allows for implementations
that have implemented their own extension for it according to the rules of previous versions of this standard to
continue using it the way they have been using it before. Implementations that did not historically use conversion
specifier B should implement it as described in this standard.

§7.21.6.2 The fscanf function

(11) items hh, h, l, ll, j, z, t

Specifies that a following b, d, i, o, u, x, X, or n conversion . . .

(12) new first item

b Matches an optionally signed hexadecimal integer, whose
format is the same as expected for the subject sequence of
the strtoul function with the value 2 for the base argu-
ment. The corresponding argument shall be a pointer to
unsigned integer.

§7.22.1.7 The strtol, strtoll, strtoul, and strtoull functions

(3)

. . . The letters from a (or A) through z (or Z) are ascribed the values 10 through 35; only letters and digits whose
ascribed values are less than that of base are permitted. If the value of base is 2, the characters 0b or 0B may
optionally precede the sequence of letters and digits, following the sign if present. If the value of base is 16, the
characters 0x or 0X may optionally precede the sequence of letters and digits, following the sign if present.

4

§7.29.4.1.3 The wcstol, wcstoll, wcstoul, and wcstoull functions

(3)

. . . The letters from a (or A) through z (or Z) are ascribed the values 10 through 35; only letters and digits whose
ascribed values are less than that of base are permitted. If the value of base is 2, the characters 0b or 0B may
optionally precede the sequence of letters and digits, following the sign if present. If the value of base is 16, the
characters 0x or 0X may optionally precede the sequence of letters and digits, following the sign if present.

5

