
N2575 

                      ISO/IEC 9899:       Proposed enhancement for C2X  

Allowing the programmer to define the type to be used to represent an enum  
 

Introduction 

 

This paper is an update of N2533, which itself was an update of N2008. N2533 was discussed 

during the August virtual meeting (Freiburg). In summary, it proposed: 

1. Allowing the programmer to specify the type to be used to represent an enum. These 

‘new style’ enums being referred to as ‘enumeration with fixed underlying type’, to 

distinguish them from traditional C-style enums ‘enumeration without fixed 

underlying type’ 

2. During declaration, a member of an enumeration with fixed underlying type could 

only be specified with a value representable in that type (assuming infinite arithmetic, 

i.e. ignoring overflow and wraparound for the indicated type in the assumed abstract 

machine) 

3. Only a value of the correct enum type may be assigned to a value of enumeration with 

fixed underlying type without an explicit cast 

4. In all other way an enumeration with fixed underlying type behaves as an enumeration 

without fixed underlying type. 

 

Note that these change don’t impact legacy code, and are consistent with recent additions to 

C++. Also, Clang already supports this feature for C, so there is evidence of ‘prior art’. 

 

During the August virtual meeting there was: 

• general support for adding ‘enumerations with fixed underlying type’ 

• some disquiet about not using normal C integer arithmetic when initialising members 

• there was discussion on the desirability of preventing the assignment of integers to a 

value of enumeration with fixed underlying type without an explicit cast.  

A vote was taken on “whether it was desirable to allow an implicit cast of integer to 

enum” (i.e. not the aim of the N2533). The results were yes=4  no=7  abstain=8, i.e. a small 

majority in favour of the N2533 proposal in this area.  

However, in discussion after the meeting it was suggested that there may not be an 

easy way to achieve this, as the idea that an enum is an integer is widely dispersed in 

the standard, and modifying behaviour in some places but not others may lead to 

contractions in the standard 

 

A number of more detailed comments and questions were discussed 

1. the proposal says the underlying type must be an integer,  enums and _Bool are integers, 

are they allowed?  That wasn’t the intention. 

2. the proposal says const & volatile qualifiers on the underlying type are ignored, what 

about _Atomic?   _Atomic should be ignored as well  

3. are attributes allowed on the type?  They should be 

4. a macro or similar to get the underlying type from an enum would be useful 



5. How does an enumeration with fixed underlying type work with a generic selection – 

are the enumeration with fixed underlying type and the underlying type treated as 

different types or the same?  

   

The aim of this update is to address the discussion by restricting the proposed changes to just 

those required to allow the programmer to define the integer type used to represent an enum, 

and taking in the first three comments above.  I’d agree that bullet 4 would be useful, but is 

essentially a separate issue.  Bullet 5 is a good question, but as there already seems to be a 

complex relationship between enumeration types and the integer type the compiler chooses to 

represent them with, with respect to generic selection, I don’t believe this proposal makes the 

position worse. 

 

A future proposal may revisit the prevention of assigning an integer to an enum without a 

cast. 

 

 

Required changes to current working draft N2478 

 

6.4.4.3 Enumeration constants 

Syntax 

      enumeration-constant: 

                                          identifier 

 

Semantics 

An identifier declared as an enumeration constant for an enumeration without fixed 

underlying type has type int.  

An identifier declared as an enumeration constant for an enumeration with fixed underlying 

type  has that underlying type during the specification of the enumeration type (i.e. until the 

closing brace in enum-specifier). When used in an integer context, it is treated as if it had 

the underlying type. 

 

Forward references: enumeration specifiers (6.7.2.2). 

 

 

6.7.2.2 Enumeration specifiers 

 

Syntax1 

 

enum-specifier: 

                 enum   attribute-specifier-sequenceopt    identifieropt   enum-type-specifieropt { 

enumerator-list } 

 
1  For drafting – some of the syntax lines may wrap 



                 enum   attribute-specifier-sequenceopt    identifieropt  enum-type-specifieropt  { 

enumerator-list , } 

                 enum   identifier enum-type-specifieropt   

 

enumerator-list: 

                enumerator 

                enumerator-list , enumerator 

 

enumerator: 

                enumeration-constant   attribute-specifier-sequenceopt 

                enumeration-constant   attribute-specifier-sequenceopt  =  constant-expression 

 

enum-type-specifier: 

                :  specifier-qualifier-list 

 

All enumerations have an <new term>underlying type</new term>. The underlying type can 

be explicitly specified using an enum-type-specifier and such an underlying type is said to be 

<new term>fixed</new term>. 
 

Constraints 

 

The type specifiers in the specifier-qualifier-list shall specify an integer type that is not an 

enumerated type or _Bool.  No alignment specifiers shall appear in the specifier-qualifier-

list.  The underlying type of the enumeration is the unqualified, non-atomic version of the 

type specified by the type specifiers in the specifier-qualifier-list. 

 

For an enumeration without a fixed underlying type, the underlying type of the 

enumeration is int.The expression that defines the value of an enumeration constant shall 

be an integer constant expression that has a value representable as an int. 

 

An enumeration with a fixed underlying type may be redeclared, provided both declarations 

have enum-type-specifiers that resolve to the same integer type. 

 

Semantics 

 

The optional attribute specifier sequence in the enum specifier appertains to the 

enumeration; the attributes in that attribute specifier sequence are thereafter considered 

attributes of the enumeration whenever it is named. The optional attribute specifier 

sequence in the enumerator appertains to that enumerator. 

 

 

The identifiers in an enumerator list are declared as constants that have the underlying type 

of the enumeration,that have type int ), and may appear wherever such are permitted.133 



An enumerator with = defines its enumeration constant as the value of the constant 

expression. If the first enumerator has no =, the value of its enumeration constant is 0. Each 

subsequent enumerator with no = defines its enumeration constant as the value of the 

constant expression obtained by adding 1 to the value of the previous enumeration 

constant. (The use of enumerators with = may produce enumeration constants with values 

that duplicate other values in the same enumeration.) The enumerators of an enumeration 

are also known as its members.  

 

For all enumerations without fixed underlying type, eEach enumerated type shall be 

compatible with char, a signed integer type, or an unsigned integer type. The choice of type 

is implementation-defined,134 but shall be capable of representing the values of all the 

members of the enumeration.  

 
For an enumeration with a fixed underlying type, the enumerated type shall be compatible 
with the underlying type of the enumeration. 
 

AnThe enumerated type declaration with an enumerator-list is an incomplete type until 

immediately after the } that terminates the list of enumerator declarations, and complete 

thereafter. A declaration of an enumeration with fixed underlying type without an 

enumerator-list declares a complete type. 

 

EXAMPLE The following fragment:    

        < unchanged + new example> 

 
       enum E1: short;                  /* Forward reference */ 

       enum E2: short; 

 

       enum E1: short { m11, m12 }; 

       enum E2: long  { m21, m22 };  /* Constraint violation */ 

 

   enum E1 x = m11;    /* enum-type-specifier not needed */ 

 

 

 

  



6.7.2.3 Tags 

Constraints 

 

< paras 1 & 2 unchanged > 

 

3   A type specifier of the form 

 enum identifier 

without an enumerator list shall only appear after the type it specifies is completeits 

underlying type is determined. For an enum without fixed underlying type, this is after the 

closing ‘}’ of the enumerator list.   

 

< paras 4..6 unchanged > 

 

7   A type specifier of the form 

 

struct-or-union attribute-specifier-sequenceopt identifieropt  { member-declaration-list } 

or 

enum attribute-specifier-sequenceopt identifieropt enum-type-specifieropt { enumerator-list } 

or 

enum attribute-specifier-sequenceopt identifieropt enum-type-specifieropt { enumerator-list , } 

 

declares a structure, union, or enumerated type. The list defines the structure content, union 

content, or enumeration content. If an identifier is provided,137) the type specifier also 

declares the identifier to be the tag of that type. The optional attribute specifier sequence 

appertains to the structure, union, or enumeration type being declared; the attributes in that 

attribute specifier sequence are thereafter considered attributes of the structure, union, or 

enumeration type whenever it is named. 
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