
ISO/IEC JTC 1/SC 22/WG 14 N2566 Austin Group Document 1056

C2X Liaison: Removal of Deprecated
Functions
Title: Removal of Deprecated Functions
Author: Nick Stoughton / The Austin Group
Date: 2020-08-17

As stated in N2528, The Austin Group is currently in the process of revising the POSIX (ISO/IEC
Std 9945), and is trying to keep aligned with C17 and C2X changes as necessary.

There are several functions that are marked as "Obsolescent" in the current version of the
POSIX standard that we would typically remove during this revision process. However, we note
that in the current working draft for C2X the two obsolete functions "asctime_r()" and "ctime_r()"
have been added.

During the August 2020 WG 14 meeting, there was general agreement to seek a paper that
more closely aligned the C2X functions with POSIX, noting that it was at very least odd that C2X
should be adding functions already marked as obsolete.

However, there was also concern that strftime, the proposed alternative to use for these new
“asctime_r()” and “ctime_r()” , would “pull in locale baggage not wanted in small embedded
programs”.

Locale Free Alternatives

It should be noted that asctime_r() is currently defined to be equivalent to a simple snprintf()
call, and anyone who really wants a locale free way to print the date and time could use this.

As an experiment, three equivalent simple programs were constructed:

date1.c

#include <stdio.h>
#include <time.h>

char *
date1(const struct tm * timeptr , char * buf)
{
 static const char wday_name[7][3] = {
 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
 };

1

ISO/IEC JTC 1/SC 22/WG 14 N2566 Austin Group Document 1056

 static const char mon_name[12][3] = {
 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
 };
 snprintf (buf , 26, "%.3s %.3s%3d %.2d:%.2d:%2d %d\n",
 wday_name[timeptr->tm_wday],
 mon_name[timeptr->tm_mon],
 timeptr->tm_mday, timeptr->tm_hour,
 timeptr->tm_min, timeptr->tm_sec,
 1900 + timeptr->tm_year);
 return buf ;
}

int
main(int argc, const char *argv[])
{
 char buf[26];
 time_t t = time(NULL);

 printf("%s", date1(localtime(&t), buf));
 return 0;
}

date2.c

#include <stdio.h>
#include <time.h>

int
main(int argc, const char *argv[])
{
 char buf[26];
 time_t t = time(NULL);

 printf("%s", asctime_r(localtime(&t), buf));
 return 0;
}

date3.c

2

ISO/IEC JTC 1/SC 22/WG 14 N2566 Austin Group Document 1056

#include <stdio.h>
#include <time.h>

int
main(int argc, const char *argv[])
{
 char buf[26];
 time_t t = time(NULL);
 struct tm *tm = localtime(&t);

 strftime(buf, sizeof(buf), "%a %b %e %T %Y\n", tm);
 printf("%s", buf);
 return 0;
}

These three examples were then compiled with gcc 9.3.0 at -O3 optimization on an Ubuntu
Linux platform.

Using the “size” utility, we see:
 text data bss dec hex filename
 2377 632 8 3017 bc9 date1
 2063 632 8 2703 a8f date2
 2102 632 8 2742 ab6 date3
Interestingly, the “snprintf” variant was the largest (and generated some “Note” level
messages that the string could overflow if the year was out of normal range). The strftime()
version is only about 40 bytes (1.4%) larger than the asctime_r() version.

The original functions, asctime() and ctime(), were never marked as obsolete in C (though they
have been marked as such in POSIX since Issue 7 in 2008), so it seems wrong to simply
remove them both from the C standard. Instead they should be marked as obsolescent.

The new functions (asctime_r() and ctime_r()) do offer a safer API, with guarantees of data
race safety etc.

Therefore this proposal offers two alternatives. The first version simply keeps what is there in
the current draft, but makes it obsolete. Since it does seem unusual to ask implementations to
provide these functions but simultaneously recommending that nobody uses them, a second
version is offered that returns to the C17 wording, and marks those as obsolete.

Proposed Wording Changes, Version 1
Change “7.27.3.1 The asctime functions”:

Replace the Synopsis with:

Synopsis

#include <time.h>

3

ISO/IEC JTC 1/SC 22/WG 14 N2566 Austin Group Document 1056

[[deprecated]] char * asctime(const struct tm *timeptr);
[[deprecated]] char * asctime_r(const struct tm *timeptr, char *buf);

Before paragraph 2, insert a new paragraph:

These functions are obsolescent and should be avoided in new code.

Similarly for “7.27.3.2 The ctime functions”, replace the Synopsis with:

Synopsis

#include <time.h>
[[deprecated]] char * ctime(const time_t *timer);
[[deprecated]] char * ctime_r(const time_t *timer, char *buf);

Add a new paragraph before paragraph 2:

These functions are obsolescent and should be avoided in new code.

Proposed Wording Changes, Version 2
Change 7.27.3.1 in its entirety (note this is the wording from C17, plus the deprecated attribute
and obsolescent warning):

7.27.3.1 The asctime function

Synopsis

#include <time.h>
[[deprecated]] char * asctime(const struct tm *timeptr);

Description

This function is obsolescent and should be avoided in new code.

The asctime function converts the broken-down time in the structure pointed to by
timeptr into a string in the form

Sun Sep 16 01:03:52 1973\n\0

4

ISO/IEC JTC 1/SC 22/WG 14 N2566 Austin Group Document 1056

using the equivalent of the following algorithm.

[[deprecated]] char * asctime(const struct tm *timeptr)
{
 static const char wday_name[7][3] = {
 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
 };
 static const char mon_name[12][3] = {
 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
 };
 static char result[26];

 sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
 wday_name[timeptr->tm_wday],
 mon_name[timeptr->tm_mon],
 timeptr->tm_mday, timeptr->tm_hour,
 timeptr->tm_min, timeptr->tm_sec,
 1900 + timeptr->tm_year);
 return result;
}

If any of the members of the broken-down time contain values that are outside their
normal ranges*, the behavior of the asctime function is undefined. Likewise, if the
calculated year exceeds four digits or is less than the year 1000, the behavior is
undefined.

Returns

The asctime function returns a pointer to the string.

*) See 7.27.1

Change 7.27.3.2 in its entirety (note this is the wording from C17, plus the deprecated attribute
and obsolescent warning):

7.27.3.2 The ctime function

Synopsis

#include <time.h>
[[deprecated]] char * ctime(const time_t *timer);

Description

5

ISO/IEC JTC 1/SC 22/WG 14 N2566 Austin Group Document 1056

This function is obsolescent and should be avoided in new code.

The ctime function converts the calendar time pointed to by timer to local time in the form
of a string. It is equivalent to

asctime(localtime(timer))

Returns

The ctime function returns the pointer returned by the asctime function with that
broken-down time as argument.

Acknowledgements

I would like to thank the core Austin Group for reviewing this, and especially to Geoff Clare.

6

