
Proposal for C2x

WG14 n2542

Title: Defer Mechanism for C

Author, affiliation: Aaron Ballman, Self
Alex Gilding, Perforce
Jens Gustedt, Inria, France
Tom Scogland, Lawrence Livermore National Laboratory
Robert C. Seacord, NCC Group
Martin Uecker, University Medical Center Göttingen
Freek Wiedijk, Radboud Universiteit Nijmegen

Date: 2020-09-08

Proposal category: Feature

Target audience: Implementers

Abstract: Add a defer mechanism to C language to aid in resource management

Prior art: C, Go

Defer Mechanism for C

Reply-to: Robert C. Seacord (rcseacord@gmail.com)

Document No: n2542

Date: 2020-09-08

Defer Mechanism for C
The defer mechanism can restore a previously known property or invariant that is altered during
the processing of a code block. The defer mechanism is useful for paired operations, where one
operation is performed at the start of a code block and the paired operation is performed before
exiting the block. Because blocks can be exited using a variety of mechanisms, operations are
frequently paired incorrectly. The defer mechanism in C is intended to help ensure the proper
pairing of these operations. This pattern is common in resource management, synchronization,
and outputting balanced strings (e.g., parenthesis or HTML).

A separable feature of the defer mechanism is a panic/recover mechanism that allows error
handling at a distance.

Table of Contents

Defer Mechanism for C 2

Table of Contents 2
Resource Management 4

Acquiring Resources 5
Releasing Resources 5

Synchronization Primitives 7
Security Concerns 9
Error Handling 9
Non-critical Failure Performance 11

Do we want a defer statement? 12

Should defer statements be static or dynamic? 13

Should object values be captured? 14

Do we want the guard keyword? 16

Do we want a panic/recover mechanism? 18

Summary 22

Appendix A: Resource Management and Error Handling in C 23
GCC and Clang Dialects 25

Appendix B: Resource Management and Error Handling in C++ 27
Boost.ScopeGuard 30

Appendix C: Resource Management and Error Handling in D 31
Scope Guard Statement 33
A scope(exit) or scope(success) statement may not exit with a throw, goto, break, continue,
or return; nor may it be entered with a goto. 34

Appendix D: Resource Management and Error Handling in Java 35

Appendix E: Resource Management and Error Handling in Go 36

Appendix F: Examples 39
Kernel 39
Mutexes 41

Appendix G: Issues and Limitations 43
Developer Preference 43
C++ 44
Partially Rewritten Code 44

Appendix H: Reference Implementation 45
Defer Statements 46
Local Variables 46

Appendix I: Stack Unwinding 47
Appendix J: Interaction with Signals 48

Appendix J: Performance Considerations 49

Appendix K: Modifications to Existing Features 51
The break statement 51

Constraints 51
Semantics 51
EXAMPLE 1 Exit a guarded statement using a break statement as the result of an
unrecoverable error: 51
EXAMPLE 2 The deferred break statement in the following code segment serves no
purpose and can be omitted without changing the behavior of the program: 51
Rationale 52

Terminating functions 53

The exit function 53
The thrd_exit function 53
Rationale 53

C Library Augmentations 53

Appendix J: Panic Handler 54
Defer <stddefer.h> 54

Synopsis 54
Description 54
Rationale 55

References 55

Resource Management

A resource is a physical or virtual component with limited availability. Resources include
memory, persistent storage, file handles, network connections, timers, and anything that exists
in limited quantities. Resources also includes anything that itself contains or holds a limited
resource. These resources need to be managed, meaning that they must be acquired and
released. Because resources exist in limited quantities, it is always possible that a resource
cannot be acquired because the supply of that resource has been exhausted.

Examples of C standard library functions that acquire resources include:

● allocated storage: malloc, calloc, realloc, aligned_alloc, strdup, strndup
● streams: fopen, freopen
● temporary file: tmpfile
● threads: thrd_create
● thread specific storage: tss_create
● condition variable: cnd_init
● condition variable: cnd_wait
● mutexes: mtx_init, mtx_lock, mtx_timedlock, mtx_trylock

Examples of C standard library functions that release resources include:

● allocated storage: free
● streams: fclose
● temporary file: fclose
● threads: thrd_join, thrd_detach
● thread specific storage: tss_delete
● condition variable: cnd_destroy

● condition variable: cnd_signal, cnd_broadcast
● mutexes: mtx_destroy, mtx_unlock

Annex K also contains many functions that parallel these functions and acquire/release
resources. Matching acquire/release functions may also be defined by other standards such as
POSIX or in user code. Functions that acquire and release resources may potentially be
identified using attributes.

Acquiring Resources

Because acquiring a resource can fail when the supply of that resource has been exhausted,
acquisition failures can and do happen. Consequently, safety-critical systems typically cannot
depend on acquired resources that may not be available. In some systems, resources can be
acquired during initialization and before any safety-critical operations commence (e.g., airplanes
before takeoff). Security-critical systems may respond differently to resource acquisition failures,
depending on their threat model. Some security-critical systems may treat any error as a
potential attack and choose to abruptly terminate execution. Other systems that must remain
available, may attempt to remain resilient to resource acquisition failures.

Acquiring resources can introduce potential failure points. Robust, reliable, and high-availability
software systems require that these potential failures be managed in a consistent manner that
minimally guarantees that the system terminates or continues execution in a known state. As a
result, the dual problems of resource management and error handling are closely related, and
both need to be considered in concert to produce usable solutions to both problems. Resource
acquisition failures are recoverable, as resources may be released allowing execution to
continue, but this approach often requires an extensive amount of forethought and effort and the
system may continue execution in a degraded mode of operation [16]. Significant complexity
can result in systems that attempt to recover from and continue execution following the failure of
a resource acquisition.

Releasing Resources

Some resources are automatically released, while other resources must be manually released.
For resources that are manually released, the programmer acquires the resource and explicitly
releases the resource when it is no longer needed. Frequently, releasing a resource more than
once without an intervening reacquisition will result in a defect. Resources, particularly storage,
can be automatically released through various techniques. In C, each object has a storage
duration that determines its lifetime. The following table shows when storage is released:

Storage Duration Released When

Automatic Block with definition is left (often only effective when function exits)

Thread Thread exits

Static Program exits

Allocated Program exits, or memory is explicitly deallocated

Of these storage durations, allocated storage is of the greatest concern as this storage is
typically acquired and released as required by the programmer. In these cases, the programmer
cannot wait until the program exits because this resource may be exhausted. Other
programming languages such as Java, C#, and Go use garbage collection to reclaim allocated
storage that is no longer being used. Consequently, garbage collection is a specialized
mechanism used to release one particular type of resource. Garbage collection eliminates some
problems with manually releasing resources, but can have a suboptimal impact on performance.
For example, garbage can accumulate in application and increase the memory usage high
water mark. Collection can occur at unpredictable times, resulting in high CPU usage and the
application appearing nonresponsive to the user. In particular, when garbage collection has five
times as much memory as required, its runtime performance matches or slightly exceeds that of
explicit memory management. However, garbage collection’s performance degrades
substantially when using a smaller heap. With three times as much memory, garbage collection
runs 17% slower on average, and with twice as much memory, it runs 70% slower. Garbage
collection is more susceptible to paging when physical memory is scarce. In such conditions,
garbage collectors may suffer order-of-magnitude performance penalties relative to explicit
memory management [6].

Other resources may corrupt the persistent execution environment such as a lock file, database,
or file system. The C library also offers means to release resources at the end of a program
(atexit and at_quick_exit handlers) and thread (tss_t destructors) execution.

For many resource types, the developer must explicitly release each resource when it is no
longer required. In general, each acquired resource must be released once and only once.
Resource release can sometimes fail. For example, it’s possible for the C Standard fclose
function to fail. When fclose writes the remaining buffered output, for example, it might return
an error because the disk is full. Even if the user knows that the buffer is empty, errors can still
occur when closing a file using the Network File System (NFS) protocol. On the other hand, the
C Standard free function returns no value and has no way of indicating an error, but has
undefined behavior if the argument does not match a pointer earlier returned by a memory
management function, or if the space has already been deallocated by another call to free or
realloc. All of these undefined behaviors can result in a corruption of heap structures that can
be potentially exploited, and in general leave the execution in an undefined state.

The following tables show some resource types that can be managed by a C program, if they
can fail on release, if this failure is reported, and if the resource is automatically released on
thread exit or program exit.

Resource Can
Fail

Reports
Failure

Released on
Thread Exit

Released on
Program Exit

Allocated storage: free ✔ ✗ ✗ ✔

Thread-specific storage key: tss_delete ✔ ✔ ✗ ✔

Thread-specific storage: destructor ✔ ✗ ✔ ✔

File pointer: fclose ✔ ✔ ✗ ✔

File: remove ✔ ✔ ✗ ✗

For thread specific storage, we distinguish the acquire and release (that is, create and delete) of
the key itself, which is per program execution, and the acquire and release of the individual
thread specific data stored through that key, where a key-specific destructor is implicitly called
when a thread exists.

The fclose and remove functions fail in a fundamentally different way from the free and
tss_delete functions. The free and tss_delete functions have preconditions that can be
satisfied by construction. A well constructed program could theoretically prevent these failures,
although defects are common. The fclose and remove functions can fail as a result of
resources not being available. Those are preconditions that can't be checked in a race-free
manner through software alone.

Synchronization Primitives

The C language supports multiple threads of execution starting with C11. Threads themselves
are resources that are created using thrd_create and disposed using thrd_join and
thrd_detach. More important to this proposal, C11 also introduced condition variables and
mutexes to act as synchronization primitives to help eliminate data races in concurrent code.
There are numerous APIs that implement these or similar interfaces, including POSIX which
specifies a set of interfaces for threaded programming commonly known as POSIX threads, or
Pthreads.

The C Standard provides the mtx_init function which creates a mutex object. The mtx_init
function returns thrd_success on success, or thrd_error if the request could not be
honored. The mtx_destroy function releases any resources used by the mutex pointed to by
mtx. The mtx_destroy function returns no value, and consequently cannot fail in a manner
that can be programmatically detected. These functions behave as paired acquire / release
functions that might be managed by a defer mechanism in a similar fashion to allocated storage
or streams.

The C Standard also defines functions such as the mtx_lock function that blocks until it locks a
specified mutex and the mtx_unlock function that unlocks a specified mutex. Both functions
return thrd_success on success, or thrd_error if the request could not be honored. The
following example illustrates how these functions are normally paired:

int do_work(void *dummy) {

 if (thrd_success != mtx_lock(&lock)) {

 return -1;

 }

 /* Critical section */

 if (thrd_success != mtx_unlock(&lock)) {

 return -2;

 }

 return 0;

}

It is critical for the proper functioning of a system that locked mutexes are properly unlocked. A
common error is to return from the critical section without calling mtx_unlock. This error can
result in a deadlock because the lock can no longer be acquired.

While these functions do not necessarily create nor destroy the resource, they do acquire and
release the locks in a paired manner. Acquiring and releasing mutexes is a strong use case for
a defer mechanism which can help ensure that locking and unlocking are properly paired.

Resources may be allocated for mutexes, depending on the backing implementation for
mtx_lock. Objects of type pthread_mutex_t can be initialized with
PTHREAD_MUTEX_INITIALIZER. On Linux, mutexes are often backed by a futex. When a futex is
contended, there is an allocation for a hash table entry in the kernel and other resources are 1

being created in the kernel. For older versions of Windows, acquiring a CRITICAL_SECTION
could result in the allocation of a Windows event object (similar to a semaphore). 2

The C Standard provides the cnd_init function to create a condition variable and the
cnd_destroy function releases all resources used by the specified condition variable. The
cnd_init function returns thrd_success on success, or thrd_nomem if no memory could be
allocated for the newly created condition, or thrd_error if the request could not be
honored.The cnd_destroy function returns no value. These functions behave as paired
acquire / release functions that might be managed by a defer mechanism in a similar fashion to
mutexes.

1 A futex overview and update
2 https://devblogs.microsoft.com/oldnewthing/20140911-00/?p=44103

https://lwn.net/Articles/360699/
https://devblogs.microsoft.com/oldnewthing/20140911-00/?p=44103

Security Concerns

Software security typically assumes an intelligent adversary that is working to compromise the
security or possibly the availability of a system. A denial-of-service (DoS) attack occurs when
legitimate users are unable to access information systems, devices, or other network resources
resulting from the actions of an adversary [1]. DoS attacks attempts frequently take the form of a
resource-exhaustion attack that makes a computer resource unavailable or insufficiently
available to the application. For example, if an attacker can identify an external action that
causes memory to be allocated but not freed, memory can eventually be exhausted. Once
memory is exhausted, additional allocations fail, and the application is unable to process valid
user requests. MITRE maintains a list of common software and hardware weakness types called
the common weakness enumeration (CWE) [2]. This general class of vulnerability is classified
by MITRE as CWE-400: Uncontrolled Resource Consumption: “The software does not properly
control the allocation and maintenance of a limited resource thereby enabling an actor to
influence the amount of resources consumed, eventually leading to the exhaustion of available
resources.” [3] In 2019, CWE-400 was ranked 20th of the 2019 CWE Top 25 Most Dangerous
Software Errors [4]. This ranking represents the frequency of the issue as measured by the
number of times a CWE is mapped to a CVE (common vulnerabilities and exposures) within
NIST’s National Vulnerability Database (NVD). Another factor is a weakness severity, which is
represented by the average common vulnerability scoring system (CVSS) score of all CVEs that
map to a particular CVE.

A common error associated with manual memory management is deallocated memory more
than once without an intervening allocation. This vulnerability class is described by CWE-415:
Double Free [5] and can be exploited to execute arbitrary code with the permissions of a
vulnerable process. A common source of this error are developers who deallocate memory
while handling an error condition but then deallocate it again during normal cleanup procedures.
The NVD contains 210 instances of CWE-415 reported in the period from August 2011 to June
2020. This is likely grossly underreported since before 2016, because NVD only used ~19
different CWEs.

Error Handling
The separable panic/recover mechanism is used to perform error handling at a distance and is
consequently similar to exception handling in C++ (see Appendix B for more information).

Exception-safety is a concept developed primarily by David Abrahams [11] where a component
exhibits reasonable behavior when an exception is thrown during its execution. Exception-safety
evolved from the development of STLport, a multiplatform ANSI C++ Standard Library

implementation . Consequently, the concept originally evolved around C++ exceptions but can 3

be generalized to a variety of languages and error handling mechanisms.

Reasonable behavior for error handling means that resources are not leaked, and that the
program remains in a well-defined state so that execution can continue. In most cases, it also
includes the expectation that when an error is encountered, it is reported to the caller.

A software component might provide one of the following safety guarantees:

1. The basic guarantee: that the invariants of the component are preserved, and no
resources are leaked.

2. The strong guarantee: that the operation has either completed successfully or indicated
an error, leaving the program state exactly as it was before the operation started.

3. Failure transparency: operations are guaranteed to succeed and satisfy all requirements
even in exceptional situations. If an error occurs, it will be handled internally and not
observed by clients.

The basic guarantee is a simple minimum standard for error handling. It says simply that after
an error, the component can still be used as before. Importantly, the preservation of invariants
allows the component to be destroyed, potentially as part of stack-unwinding. This guarantee is
actually less useful than it might at first appear. If a component has many valid states, after an
exception we have no idea what state the component is in; only that the state is valid. The
options for recovery in this case are limited: either destruction or resetting the component to
some known state before further use.

The strong guarantee provides full commit-or-rollback semantics. In the case of C++ standard
containers, this means, for example, that if an exception is thrown all iterators remain valid. We
also know that the container has exactly the same elements as before the exception was
thrown. A transaction that has no effects if it fails has obvious benefits: the program state is
simple and predictable in case of an exception. Providing the strong guarantee can often have
substantial performance implications. In C++98, the dynamic array class, std::vector, was
specified to have the strong exception guarantee when performing push_back. At the time, the
strong guarantee could be provided for free. Move semantics were added to C++11, and the
strong guarantee came at a cost for important push_back use cases.

Failure transparency is the strongest guarantee of all, and it says that an operation is
guaranteed not to fail: it always completes successfully. In C++, this guarantee is necessary for
most destructors, and indeed the destructors of C++ standard library components are all
guaranteed not to throw exceptions. No-fail guarantees are also important for move and swap
operations, which are often used to commit a transaction. To provide failure transparency, you
often need some number of no-fail building blocks. Move and swap operations are often used to
commit a transaction. To provide failure transparency, no-fail building blocks are required.

3 http://www.stlport.org/doc/exception_safety.html

http://www.stlport.org/doc/exception_safety.html

One goal of this proposal is to allow developers to provide all three levels of safety guarantees
using the defer mechanism.

Non-critical Failure Performance

There are a great many applications where the performance on the failure path is of low
importance.

In many interactive applications, a user interaction will often cause some operation to take
place, and if that operation fails, then a dialog, or some other kind of user interaction is shown
(e.g., opening a document of some kind). The value of the program is the same whether the
dialog shows up in 1 millisecond or 50 milliseconds.

There are non-interactive applications that care a great deal about latency on the success path,
but don’t care about performance on the failure path. In the failure cases, no transaction needs
to happen, so it is acceptable to take a longer amount of time, so long as the latency of the next
success path operation is unaffected.

There are non-interactive simulation and modeling applications (e.g. high-performance
computing) where no errors occur during a successful simulation, and errors only occur during
an unsuccessful run. When these errors happen, it normally indicates some kind of failure that
requires human intervention, like adjusting the starting parameters, or freeing up hard disk
space, or plugging a network cable back in. A few extra milliseconds is perfectly acceptable in
these circumstances.

Some non-interactive HPC applications have specific code to handle run-time failures, namely
they produce snapshots of the whole application, such that it may then be restarted later. Such
snapshots usually take at least several seconds, and so spending some milliseconds for
launching such a mechanism is neglectable.

Conversely, there are safety-critical systems where the failure path is the important one to be
optimized for. For instance, when recovering from a failure that sends the elevator hurtling
towards the ground, the success path's performance isn't nearly as concerning as the failure
path which arrests the fall.

 The N+1 Problem

There is no shortage of error handling mechanisms in the standard library and in the wild today.
The "N" is already a large number. C uses integer error codes and errno.

Even if the C standard does not add new error handling mechanisms, the community will likely
do so.

It is commonplace for users to need to translate the results of various error handling
mechanisms into the error handling mechanism that their program uses. The translation is not
difficult, though it is verbose and can be error prone.

Creating a new error handling mechanism does not make the old mechanisms go away. If you
had N mechanisms before, a new mechanism, no matter how superior a choice, will leave you
with N+1 mechanisms.

A new error handling mechanism could change how we teach error handling, and how we write
error handling in new code. This has happened in the past, and could happen again. There is
very little educational effort spent on errno best practices, and little new C code is written with
errno as the primary error handling mechanism. The main interaction with errno is in handling
the errors and translating them to newer mechanisms. A new error handling mechanism can
aspire to replace other mechanisms as well as errno has been replaced.

Do we want a defer statement?
A defer statement defers the execution of a deferred statement until the containing guarded
block terminates. A defer statement is associated with its nearest enclosing guarded block or
function body. Its deferred statement is sequenced in last-in-first out (LIFO) order after all
statements that are contained in that guarded block and before the guarded block itself
terminates. The primary use of a defer statement is to release acquired resources independent
of how a block exits. Consequently, deferred statements should avoid allocating new resources
and must provide failure transparency.

The defer statement may be introduced into the grammar as follows:

statement:

attribute-specifier-sequenceopt defer-statement

defer-statement:

defer statement

In the presence of deferred statements, the C library functions exit and thrd_exit gain
additional behavior. Before the normal processing of the termination event, they trigger an
execution of all deferred statements for the current thread by unwinding the stack (see Appendix
I). This processing of the deferred statements cannot be stopped by calling recover.

Deferred statements shall not

● include return statements.

● call functions that may result in termination of the current thread or the whole program
execution other than by calling the panic or abort functions. 4

● contain a goto or longjmp that targets a location outside the deferred statement
● contain a label or call to setjmp that are the target of a goto statement or longjmp

call, respectively, outside the deferred statement.

Deferred statements can include a continue statement that is associated with an iteration
statement that is a substatement of the deferred statement.
There has been some discussion about disallowing guard and defer statements within defer
statements to limit complexity. However, these are simply control structures and because they
may be used within library functions called from deferred statements, violations would be
difficult to diagnose.

The deferred statement is executed as often as the defer statement is encountered, but there
are open questions on some aspects of the proposal such as whether deferred statements
require storing state at runtime or not, whether there should be improved error handling
capabilities added or not, whether to use implicit or explicit markings to denote when deferred
statements are executed, etc.

Should defer statements be static or dynamic?
A guarded block can contain multiple defer statements. While deferred statements are
generally intended to be sequenced in the reverse order in which the defer statements are
encountered during execution, there are some open design questions that can be broadly
categorized as the static or dynamic approach.

The goal of the dynamic approach is to match programmer expectations based on control flow.
In the following code, for example:

guard {

 if (x) defer whatever(x);

 int i;

 for (i = 0; i < n; i++) {

 printf("up: %d\n", i);

 defer printf("down: %d\n", i--);

 }

}

4 Calling abort may be preferred in high security situations where the risk of triggering remote
code execution must be reduced. Any negative interactions with thread local destructors should
be avoided.

The dynamic approach suggests that whatever(x) is deferred only if x evaluates to a
non-zero value at runtime. For iteration statements, the deferred statement is pushed for each
iteration of the loop in which the defer statements are encountered. For this example, n
separate deferred calls to printf are pushed on the deferred execution stack. Note that the
declaration of i has to be on the same level as the guard block, because otherwise it would be
out of scope when these deferred statements are executed, and that we have to decrement that
variable within the deferred statement to see it decreasing.

As the name implies, the dynamic approach suggests that resources need to be allocated at
runtime which implies additional runtime overhead and creates the possibility that these
operations might fail.

Loops may also be constructed with goto statements and labels, as long as they do not break
out of a deferred or guarded block.

The goal of the static approach is to statically allocate the required resources at compile time,
eliminate the possibility that deferred statements may fail at runtime, and to be optimally
efficient.

For the if, the compiler provides a slot in the same way that it would for an unconditional defer.
Loops are similar. The static approach can provide one static slot for the defer statement that
appears inside the loop.

A defer statement could merely record whether it has been triggered or not. One bit of
information per defer statement in the activation record. If it has been triggered, the code is
executed once at the end of the corresponding guarded block. If the loop is not entered, the
deferred statement is not executed.

It is possible that the defer statement may be evaluated in something other than the lexical
order because of a goto statement, for example. We could simply specify that defer
statements are executed in reverse lexical order.

Should object values be captured?
An open question if the values of objects accessed in deferred statements should be captured
when the deferred statement is encountered or their latest values read when the deferred
statements are evaluated?

Any identifier that is accessed in the deferred statement has to be visible for the defer
statement and its scope must extend to at least the end of the nearest enclosing guarded block
or function body if there is no guarded block. One perspective is that these objects will have
their current values at the point the deferred statements are executed. Identifiers of object type
that are visible by the defer statement and for which the underlying objects are alive at the end

of the execution of the guarded block remain accessible, and the objects have their most
recently written values.

A prominent example why access to local variables with their value at deferred execution may
be desired is reallocating the storage by using realloc:

{

 char *ptr = malloc(SZ);

 defer free(ptr);

 // ...

 ptr = realloc(ptr, SZ * 2);

 // ...

}

However, if the programmer assumes that the values are captured, it is easy to write incorrect
code such as the following:

{
 struct s *ptr = malloc(sizeof(struct s) * 10);

 defer free(ptr);

 for (int i = 0; i < 10; ++i) {

 whatever(ptr++);

 }

}

The use of errno in the following code snippet is also problematic:

if (function_which_sets_errno())

 defer printf("%d", errno);

The value of errno must be examined before a subsequent call that may set the global errno
is invoked.

We created a simple Twitter poll to test programmer expectations:

If C added "deferred statements" that execute just before the block exits, what would you expect
the output of this code block to be?

{

 int i = 0;

 defer printf("%d", ++i);

 i = 12;

}

The results from 387 responses show a 2:1 preference for the value being read at the time the
deferred statements are executed (66.9%) rather than when the defer statement encountered
(33.1%). One interesting thing to note is that of respondents who gave a rationale for their vote,
respondents known to have a strong C++ background seemed to gravitate towards using the
value when the defer statement is encountered, which suggests there may be some interesting
implicit bias.

A general solution to this problem is the introduction of lambdas to the C language [13] with both
copy and reference semantics. A more specific solution is to use a second defer statement
syntax which supplies an identifier list of variables to capture by value.

Go's main use case also captures object values in a similar manner to lambdas and as
described in Appendix E.

Do we want the guard keyword?
Deferred statements appear in guarded blocks, but it is an open design question if these
guarded blocks need to be explicitly indicated by a guard keyword. If we don’t want a guard
keyword there is a language design choice to make where to attach the execution of deferred
statements. One option is to execute the deferred statements at the end of the closest enclosing
scope of the defer statement. Another option would be to execute the deferred statements only
at the end of the function body (as Go does). Using explicit guard blocks or the second option
allows for dynamic collection of deferred statements during the execution of a function (see
above), while the first option imposes a strictly static execution at the end of each scope.

In the keyword approach, the compound statement of a guard statement is called a guarded
block. A guard statement indicates that any deferred statements within the guarded block will
be executed just before the guarded block terminates.

guard-statement:

guard compound-statement

Guarded statements may contain zero or more defer statements. Deferred statements are
executed just before the guarded block terminates. Blocks may terminate as the result of normal
control flow execution or because a call to exit, _Exit, quick_exit, thrd_exit or panic
is issued, or because an abnormal runtime condition is met that triggers a panic.

Guarded blocks shall not call functions that call longjmp to jump to a location outside the
guarded block and the state of any jmp_buf that has been last set by a call to the setjmp
macro within the guarded block is indeterminate, once the guarded block has been left.

An alternative to the guard statement is to execute deferred statements at the termination of
the current scope. For if and switch statements, the selection statement is a block whose
scope is a strict subset of the scope of its enclosing block. Each associated substatement is
also a block whose scope is a strict subset of the scope of the selection statement. For for, do,
and while loops, the iteration statement is a block whose scope is a strict subset of the scope
of its enclosing block. The loop body is also a block whose scope is a strict subset of the scope
of the iteration statement. Using scope to determine when to execute deferred statements is a
similar design to how Resource Acquisition Is Initialization (RAII) works in C++. Consequently,
C++ programmers seem more likely to assume deferred statements execute at the end of the
current scope.

The guard statement allows for a library implementation. Foregoing the possibility of a library
implementation, a possible design choice could be to eliminate the guard statement as it would
eliminate the need for an additional reserved keyword and the requirement for programmers to
create guarded blocks around deferred statements. If the guard statement is not used, the
proposed changes to the behavior of the break statement would likely be eliminated as well
(see Appendix K).

Following is a simple example of using the defer statement without the guard keyword and an
attachment of the deferred statement to the end of the surrounding compound statement:

void *ptr = 0;

if (ptr = malloc(12)) {

 defer free(ptr);

 // Use ptr

} // free ptr here

An explicit guard keyword allows the following code to be written:

guard {

 void *ptr = malloc(12);

 if (ptr) {

 defer free(ptr);

 // Use ptr

 }

 // Use ptr some more

} // free ptr here

Without the guard keyword, and in a model where all scopes would be guarded, this would execute
the defer directly at the end of the scope of the if statement, and the use of ptr after that would
be undefined. The previous example can be rewritten without the guard keyword as follows:

{

 void *ptr = malloc(12);

 defer { if (ptr) free(ptr); }

 if (ptr) {

 // Use ptr

 }

 // Use ptr some more

} // free ptr here

The guard keyword allows the programmer to write code with lifetime issues that would be
impossible with the scope model. Consider this contrived example where the defer statement
uses a local variable i which is outside of its lifetime when the deferred statement executes:

guard {

 if (something) {

 int i = 0;

 ...

 defer printf("%d", i);

 }

} // uses i outside of its lifetime

But such a usage of variables that will be out-of-scope when the deferred statement is executed
can be made a constraint violation, and so we expect that compilers will be able to diagnose
such situations.

The guard keyword is not particularly useful for the following code:

if (whatever) guard {

 defer whatever_else();

}

However, the guard keyword may be required to express the following code because a
compound statement as a loop body is its own scope, so using the scope of the for loop body
would result in executing the deferred statement on each iteration of the loop:

guard {

 int i;

 for (i = 0; i < 10; ++i) {

 defer whatever(i);

 }

} // all deferred statements get run here

Making the guarded block explicit is strictly more expressive and allows the programmer more
control over when the deferred statements are evaluated. However, the explicit syntax adds an
additional keyword. Eliminating the guard keyword provides a more terse syntax and eliminates
any issues with introducing a new keyword, but at the cost of a grammatical ambiguity where
deferred statements would be attached.

Do we want a panic/recover mechanism?
The primary purpose of a defer mechanism is to manage the release of resources. The primary
purpose of a panic/recover mechanism is error handling. Panic/recover depend on the defer
mechanism to release resources, but defer is separable from panic/recover. Panic/recover are
similar to throw/catch in C++ while defer is similar to RAII.

A panic may potentially be the result of a trap, such as an invalid arithmetic operation or the
result of invoking either of the following forms of the panic macro:

#include <stddefer.h>

typedef int (*panic_handler_t)(int);

_Noreturn void panic(int code);

_Noreturn void panic(int code, panic_handler_t handler);

The panic macro is called to indicate an abnormal execution condition. It triggers the execution
of all active deferred statements of the current thread in the reverse order they are encountered,
until either a deferred call to recover is executed or all deferred statements have been
executed.

If no recover statement is encountered, the function stack will unwind the caller's stack (see
Appendix I) and execute all deferred statements registered in that stack frame. It will execute
until a recover expression is encountered or all deferred statements have executed.

In the latter case, the handler handler is called as if by handler(code) and is typically used
to terminate the current thread or the whole program execution. If a call to recover is
evaluated and the value of code is equal to 0, the stack will continue to unwind following
execution of the remaining deferred statements of the current defer statement. If the value of

code is not equal to 0, unwinding will cease and control will continue and the statement
following the block or scope containing the deferred statement will be evaluated.

The argument handler, if provided, shall be a pointer to a function that terminates the current
thread or the program. If the argument handler is omitted an implementation-defined function
is called that is expected to terminate execution. If it is a null pointer, if it exists, a handler that
had been previously established by another call to panic on that thread and that has been
stopped by a call to recover is used. If no such handler has been established the same
handler is used as if the argument were omitted. It is undefined behavior if the panic handler
resumes execution instead of terminating the thread or program.

The first argument is an error code of type int. The error code is recommended to be:

● Negative to indicate a system defined error condition as if for errno, including an error
condition triggered by the implementation.

● Zero to indicate a normal termination of the containing guarded block, calling thread or
the whole program execution.

● Positive to indicate an application supplied error number.

Following an invocation of the panic macro until the panic handler completes execution or a
successful recovery action, the program is said to be panicking.

The panic macro may output implementation-defined information about the cause of the panic
and a trace of the respective contexts traversed during unwinding to stderr. The
implementation specific use of output functions notwithstanding, the use of the panic macro is
asynchronous signal safe and may be called from a signal handler. Whether or not such a use
from a signal handler triggers the execution of deferred statements is implementation-defined.

The second form of the panic macro:

_Noreturn void panic(int code, panic_handler_t handler);

can be used to specify a pointer to a function that terminates the current thread or the program.
C programmers currently have the ability to terminate a thread by calling the C Standard
thrd_exit function and a program by calling the C Standard exit, quick_exit, _Exit, or
abort functions. The signature specified by the panic_handler_t type supports all these
options with the exception of the abort function, which could be called from a wrapper.

Panicking is meant to be a gentle way to exit a program, allowing resources to be released.
Consequently, using an abrupt mechanism such as the abort function is generally not
recommended. A recommended practice is to use the exit function.

Both forms of the panic macro accept an int argument because that is compatible with the C
Standard exit functions that receive an int and error specifications specified as errno, which
is also an int.

A primary motivation of allowing a user to specify a panic handler is to let the user distinguish
between termination of the thread or the program.

For example, a systematic use

defer mtx_unlock(&bla);

(or the equivalent for whatever thread implementation is used)

would gain safety if paired with a use of

panic(-EVERYBAD, thrd_exit)

to indicate thread local error conditions. This would keep the process alive and would guarantee
to allow all mutexes to unlock when terminating the thread.

A similar effect could also be achieved by using thrd_exit(-EVERYBAD) alone, as we now
also impose that it executes deferred statements. But the panic mechanism is a bit more
debugging friendly as it allows to print call traces along and things like that.

One use is that a comparison to that function pointer can distinguish different debugging
behavior of the unwind mechanism. This can be achieved by querying the panic handler of the
current thread.

The recover function has the following signature:

#include <stddefer.h>

int recover(void);

A call to the recover function shall only appear within a deferred statement.

Once execution starts inside a deferred statement, the condition that leads there can be
investigated by invoking the recover function. The recover function returns an integer value
that indicates the reason the deferred statement is executing. If the return value is equal to zero,
the execution of the deferred statement is the result of the regular termination of the guarded
block caused by reaching the } that terminates the block, execution of a break or return
statement, the invocation of the exit or thrd_exit functions, or by a call to panic with a
zero value. In that case, processing of deferred statements continues as if the recover
function had not been called. Neither the _Exit or abort functions would cause an unwind.

If the recover function returns a value other than zero, the thread or program is panicking. In
this case, processing of deferred statements stops with the termination of the current deferred
statement.

Once a non-zero error condition has been recovered, the responsibility for the condition is
passed to the application. A new panic can be triggered by calling either form of the panic
macro. The code argument can be assigned the recovered value to preserve the previous error
code or set to a new value. In the latter case, the previous (possibly original) reason for the
failure is lost. If a terminating function is supplied as the func argument to the panic macro,
the function is installed as the new panic handler. If no func argument is supplied, or a null
pointer is supplied as the func argument, the previously established panic handler is retained.
It is currently undefined what happens if the panic macro is invoked in a defer statement
before the recover function is invoked, or after the recover function recovers a zero error
condition.

The fragment

void g(int i) {

 if (i > 3) {

 puts("Panicking!");

 panic(i);

 }

 guard {

 defer {

 printf("Defer in g = %d.\n", i);

 }

 printf("Printing in g = %d.\n", i);

 g(i+1);

 }

}

void f() {

 guard {

 defer {

 puts("In defer in f");

 fflush(stdout);

 int err = recover();

 if (err != 0) {

 printf("Recovered in f = %d\n", err);

 fflush(stdout);

 }

 }

 puts("Calling g.");

 g(0);

 puts("Returned normally from g.");

 }

}

Contains a function f containing a defer statement which contains a call to the recover
function. Function f invokes function g which recursively descends before panicking when the
value of i > 3. Execution of f produces the following output:

Calling g.

Printing in g = 0.

Printing in g = 1.

Printing in g = 2.

Printing in g = 3.

Panicking!

Defer in g = 3.

Defer in g = 2.

Defer in g = 1.

Defer in g = 0.

In defer in f

Recovered in f = 4

Returned normally from f.

Summary
The defer mechanism in C provides a general mechanism for deferring the execution of paired
operations on a first in last out basis. This mechanism can be used to improve resource
management, the acquisition and release of synchronization primitives, and other applications
that would benefit from a user-controlled execution stack.

This basic mechanism can be enhanced with a panic/recover mechanism that allows errors to
be handled at a distance from the original failure.

Appendix A: Resource Management and
Error Handling in C
Resource management in C programs can be complex and error prone, particularly when a
program acquires multiple resources. Each acquisition can fail, and resources must be released
to prevent leaking. If the first resource acquisition fails, no cleanup is needed, because no
resources have been allocated. However, if the second resource cannot be acquired, the first
resource needs to be released. Similarly, if the third resource cannot be acquired, the second

and first resources need to be released, and so forth. This pattern results in duplicate cleanup
code, and it can be error-prone because of the duplication and additional complexity.

Programs based on error codes are usually littered with statements of the form:

if (FAILED(err)) { return err; }

Programs based on error codes where the error code is the return value also use a boilerplate
where they need to declare out-parameters in advance of a function call, and even more
boilerplate when results of functions need to be composed.

Error codes can be accidentally ignored. Doing "the right thing" requires the programmer to write
additional code to avoid "the wrong thing". The [[nodiscard]] attribute substantially
improves this situation.

One solution is to use nested if statements, which can also become difficult to read if nested too
deeply. Alternatively, a goto chain can be used to release resources.

int do_something(void) {

 FILE *file1, *file2;

 object_t *obj;

 int ret_val = 0; // Initially assume a success

 file1 = fopen("a_file", "w");

 if (file1 == NULL) {

 ret_val = -1;

 goto FAIL_FILE1;

 }

 file2 = fopen("another_file", "w");

 if (file2 == NULL) {

 ret_val = -1;

 goto FAIL_FILE2;

 }

 obj = malloc(sizeof(object_t));

 if (obj == NULL) {

 ret_val = -1;

 goto FAIL_OBJ;

 }

 // Operate on allocated resources

 // Clean up everything

 free(obj);

FAIL_OBJ: // Otherwise, close only streams we opened

 fclose(file2);

FAIL_FILE2:

 fclose(file1);

FAIL_FILE1:

 return ret_val;

}

There are well-known and well-studied examples of failures using a goto chain, such as the
following example that resulted in the Heartbleed OpenSSL security vulnerability:

hashOut.data = hashes + SSL_MD5_DIGEST_LEN;

hashOut.length = SSL_SHA1_DIGEST_LEN;

if ((err = SSLFreeBuffer(&hashCtx)) != 0)

 goto fail;

if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)

 goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

 goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

 goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

 goto fail;

 goto fail; /* MISTAKE! THIS LINE SHOULD NOT BE HERE */

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

 goto fail;

err = sslRawVerify(...);

The programmer in this example has accidentally repeated the line:

goto fail;

The first goto fail statement executes if the if err is non-zero. This causes the code to fail
with error, and the entire TLS connection fails.

The second, unintended goto fail is always executed, in this case, when err is zero and
there is no error to report. The result is that the code jumps over the call to the sslRawVerify
function, and exits the function. This causes an immediate “exit and report success”, and the
TLS connection succeeds, even though the verification process hasn’t actually taken place.

GCC and Clang Dialects

The GNU C dialect (as implemented by GCC and Clang) provides an attribute which
can be used to enable automatic destruction on end of scope for an annotated
block-scope object:

#include <stdio.h>

static void fp_close (FILE ** fpp) { fclose (*fpp); }

extern void do_work (FILE *);

void foo (char const * name) {

__attribute__((cleanup(fp_close)))

FILE * fp = fopen (name, "r"); // run fp_close after do_work

do_work (fp);

}

This takes advantage of existing infrastructure used to compile C++ code that uses RAII

(Resource Acquisition Is Initialization). "Cleanup" functions are associated with an automatic

variable and are guaranteed to run on exit from the containing scope, either as part of normal

execution, or under stack-unwinding conditions (when a C++-like exception has been thrown).

This is primarily useful for making C code that is expected to interoperate with C++ more

robust, but it does coincidentally mean resource release code is placed closer to the point of

declaration/allocation in the source.

This provides real-world implementation experience of unwinding support for C in

industrial-quality compilers. Because the code generation shares optimization with the C++

implementation's support for RAII, which is well-understood and already highly optimized, the

cleanup calls are able to be inlined, and the code is efficient on the non-exceptional path: the

cleanup function will usually be completely inlined, as though the C code had been written with

a "traditional" explicit cleanup call on end-of-scope. Additional code is generated out-of-line for

the unwinding path, so that the common-case can take advantage of the feature at zero-cost.

This can be combined with additional local-function extensions to create a construct with

deferred error-handling blocks, superficially resembling Go's defer (GNU C does not provide

any catch/recover facility):

#if defined __clang__ // requires -fblocks (lambdas)

static void cleanup_deferred (void (^*d) (void)) {

 (*d)();

}

#define defer(...) \

 __attribute__((__cleanup__ (cleanup_deferred)))\

 void (^DF_##__LINE__) (void) = ^__VA_ARGS__

#elif defined __GNUC__ // nested-function-in-stmt-expression

static void cleanup_deferred (void (**d) (void)) {

 (*d)();

}

#define defer(...) \

 __attribute__((__cleanup__ (cleanup_deferred))) \

 void (*DF_##__LINE__) (void) = ({ \

void DF_##__LINE__##_impl (void) __VA_ARGS__ \

DF_##__LINE__##_impl; })

#endif

extern int bar (int);

void foo (void) {

bar(1);

defer ({ bar(3); });

bar(2);

}

In this case, the cleanup function just runs the local function, with its captured action

representing the deferred statement. Both code generators inline the deferred statement at

the end of the block, just as efficiently as if it had been written there explicitly. If the code is

compiled with the exception-awareness flag, separate code is again generated to place the

deferred action on the unwinding path without affecting the efficiency of the common case.

Appendix B: Resource Management and
Error Handling in C++
Exceptions provide a way to react to exceptional circumstances (like runtime errors) in programs
by transferring control to special functions called handlers.

To catch exceptions, a portion of code is placed under exception inspection. This is done by
enclosing that portion of code in a try block. When an exceptional circumstance arises within
that block, an exception is thrown that transfers the control to the exception handler. If no
exception is thrown, the code continues normally and all handlers are ignored.

An exception is thrown by using the throw keyword from inside the try block. Exception
handlers are declared with the keyword catch, which must be placed immediately after the try
block:

// exceptions

#include <iostream>

using namespace std;

 int main(void) {

 try {

 throw 20;

 }

 catch (int e) {

 cout << "An exception occurred. Exception Nr. "

 << e << endl;

 }

 return 0;

}

In C++, the resource acquisition is initialization (RAII) idiom is used extensively. Resources are
controlled by an object that links the resource’s lifetime to the objects. Using RAII, every
resource allocation should occur in its own statement (to avoid sub-expression evaluation order
issues). The object’s constructor immediately puts the resource in the charge of a resource
handle. The object’s destructor releases the resource. Copying and heap allocation of the
resource handle object are carefully controlled or outright denied.

If the "use f" part of old_fct throws an exception or returns the file isn't closed.

 void old_fct(const char* s) {

 FILE * f = fopen(s, "r"); // open the file "s"

 // use f

 fclose(f); // close the file

 }

If the "use f" part of fct throws an exception, the destructor is still called and the file is properly
closed.

 void fct(string s) {

 // File_handle's ctor opens file "s"

 File_handle f(s, "r");

 // use f

 } // File_handle destructor closes the file here

RAII can be used to write C++ code that ensures resources are properly released:

class IntArray {

public:

 int *ptr;

 IntArray() : ptr(new int[100]) {}

 ~IntArray() { delete [] ptr; }

};

{

 IntArray x;

 // work with x

 IntArray y;

 // work with x and y

} // x, y cleaned up, even if exception.

 If the "use f" part of old_fct throws an exception or returns the file isn't closed.

C++ is the closest analog to C. C++ catch clauses have as arguments a parameter and its
type. The parameter is set by the system for standard exceptions and by the programmer for
programmer-defined exceptions generated with the throw construct; the catch clause is
matched to the throw by the type of the thrown object. There is also a catch(...) syntax to
catch all unspecified exceptions.

WG14 N1841 - Alternate Exception Handling Syntax for C [7] contemplates the use of C++
exception handling mechanisms to express IEEE 754-2008 alternate exception handling in C.

P1095R0/N2289: Zero overhead deterministic failure A unified mechanism for C and C++ [15]
proposes a universal mechanism for enabling C speaking programming languages to tell C
code, and potentially one another, about failure and disappointment. This paper was discussed
at the Pittsburgh meeting with the following results:

● Does this group like the direction of N2289: Yes 15/2/2.

● Do we want to see this proposal in two parts (a function returns an extra bit for failure,
and the second part being types to return extra information)? 6/7/6. Noconsensus.

SO/IEC JTC1 SC22/WG14 AND INCITS J11 APRIL 2008 MEETING MINUTES
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1343.pdf

10.11 N1298 - Cleanup and try finally for 'C' (Stoughton) Both these constructs have value,
and recommendation is to proceed with both. PJ believes we should also add the constructor
and destructor attributes to this pair. Nick does not have the bandwidth to proceed here, and
would like to hand this off to someone else! Nick: The constructor/destructor attributes require
linker/loader and other runtime support and do not belong in a language standard. General
support for try-finally. Should there be exception handling too? try-except-finally? Nick said this
was never something he planned. Structured exception handling is widely used and
understood, and a part of the MSVC compiler. It is also imperfect, and has known flaws.
Try-finally is a well understood metaphor. Exception adds problems. C++ compatibility make it
worse. Adding exception handling needs words about how an exception is thrown. If exceptions
were limited to purely synchronous throws, it might be palatable. Bill Seymour agrees we should
talk about exceptions, but it is a separate topic. Tom answered Robert's desire to see
exceptions in C ... from certain points of view they close security vulnerabilities (people not
testing return values). Nick points out that adding exceptions will break the existing library, and
will need a whole new parallel library that is exception based. Still will be problems with old
code. PJ feels try-finally is a better solution than cleanup, and Nick agrees he's never been in
the position where he has had a choice.

Straw polls:

Who wants to see a fully-formed proposal for try-finally:

For: 11

Against: 0

Abstain: 7

Similar for cleanup attribute:

For: 2

Against: 9

Abstain: 7

Add some kind of exception handling for C:

For: 2

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1343.pdf

Against: 9

Abstain:

Boost.ScopeGuard

The Boost.ScopeGuard library fully emulates D's scope guard statement feature via C++17's
std::uncaught_exceptions() with no extra dynamic memory allocations and terse syntax via
class template deduction. 5

Given a resource that lacks built-in RAII capability, e.g. a C-style FILE*, boost::scope_guard
lets you manage its lifetime in an exception-safe and localized manner:

FILE* f = std::fopen("my/file", "r");

if (!f) { throw std::runtime_error("failed to open file"); }

boost::scope_guard my_guard = [&]{

 // Invoked when `my_guard` leaves scope, exactly when `f`'s

 // destructor would have been called if it had one.

 std::fclose(f);

};

// ...some code that can potentially throw exceptions...

A scope guard can also accept any number of additional arguments that will be passed to its
function upon invocation. This means you can often use cleanup functions directly, without
wrapping them in lambdas:

boost::scope_guard my_guard{std::fclose, f};

Function and arguments are stored by value by default, you can store them by reference via
std::ref and std::cref:

std::thread my_thread(compute_something);

boost::scope_guard my_guard{&std::thread::join, std::ref(my_thread)};

5 https://github.com/yuri-kilochek/boost.scope_guard

https://dlang.org/
https://dlang.org/spec/statement.html#scope-guard-statement
http://en.cppreference.com/w/cpp/error/uncaught_exception
http://en.cppreference.com/w/cpp/language/class_template_deduction
http://en.cppreference.com/w/cpp/language/raii
https://github.com/yuri-kilochek/boost.scope_guard#ApiReference.Classes
http://en.cppreference.com/w/cpp/utility/functional/ref
http://en.cppreference.com/w/cpp/utility/functional/ref
https://github.com/yuri-kilochek/boost.scope_guard

Having to name all your scope guard objects so that they don't conflict with each other quickly
gets tiresome, so there is a BOOST_SCOPE_GUARD macro that does this automatically (however
be aware of its limitations):

BOOST_SCOPE_GUARD {std::fclose, f};

Naturally, lambdas are supported as well:

BOOST_SCOPE_GUARD [&]{ my_thread.join(); };

Regular boost::scope_guard always invokes its stored cleanup function upon destruction,
which may not be desirable. There is also boost::scope_guard_failure that invokes its
stored cleanup function only when it is being destroyed due to stack unwinding (i.e. when an
exception is thrown) and boost::scope_guard_success that invokes its stored cleanup
function only when it is being destroyed due to flow of control leaving the scope normally.
Naturally, there are corresponding BOOST_SCOPE_GUARD_FAILURE and
BOOST_SCOPE_GUARD_SUCCESS.

Appendix C: Resource Management and
Error Handling in D
Expressions that must always be executed are written in the finally block, and expressions
that must be executed when there are error conditions are written in catch blocks. 6

Some of the variables that these blocks need may not be accessible within these
blocks:

void foo(ref int r) {

 try {

 int addend = 42;

 r += addend;

 mayThrow();

 } catch (Exception exc) {

6 http://ddili.org/ders/d.en/scope.html

https://github.com/yuri-kilochek/boost.scope_guard#ApiReference.Macros
https://github.com/yuri-kilochek/boost.scope_guard#ApiReference.MacroLimitations
https://github.com/yuri-kilochek/boost.scope_guard#ApiReference.Classes
https://github.com/yuri-kilochek/boost.scope_guard#ApiReference.Classes
http://en.cppreference.com/w/cpp/language/throw#Stack_unwinding
https://github.com/yuri-kilochek/boost.scope_guard#ApiReference.Classes
https://github.com/yuri-kilochek/boost.scope_guard#ApiReference.Macros
https://github.com/yuri-kilochek/boost.scope_guard#ApiReference.Macros
http://ddili.org/ders/d.en/scope.html

 r -= addend; // ← compilation ERROR

 }

}

That function first modifies the reference parameter and then reverts this modification when an
exception is thrown. In normal block-scoping, addend is accessible only in the try block,
where it is defined.

The scope statements have similar functionality to the catch and finally scopes but they
are better in many respects. Like finally, the three different scope statements are about
executing expressions when leaving scopes:

Scope guards allow executing statements at certain conditions if the current block is left:

● scope(exit) will always call the statements
● scope(success) statements are called when no exceptions have been thrown
● scope(failure) denotes statements that will be called when an exception has

been thrown before the block's end

Using scope guards makes code cleaner and allows resource allocation and clean up code to
be placed next to each other. These little helpers also improve safety because they make sure 7

certain cleanup code is always called independent of which paths are actually taken at runtime.

The D scope feature effectively replaces the RAII idiom used in C++ which often leads to
special scope guard objects for special resources.

Scope guards are called in the reverse order they are defined.

 Scope Guard Statement
ScopeGuardStatement:

scope(exit) NonEmptyOrScopeBlockStatement

scope(success) NonEmptyOrScopeBlockStatement

scope(failure) NonEmptyOrScopeBlockStatement

The ScopeGuardStatement executes NonEmptyOrScopeBlockStatement at the close of the
current scope, rather than at the point where the ScopeGuardStatement appears. 8

scope(exit) executes NonEmptyOrScopeBlockStatement when the scope exits normally or
when it exits due to exception unwinding. scope(failure) executes

7 https://tour.dlang.org/tour/en/gems/scope-guards
8 https://dlang.org/spec/statement.html#scope-guard-statement

https://dlang.org/spec/statement.html#scope-guard-statement
https://dlang.org/spec/statement.html#NonEmptyOrScopeBlockStatement
https://dlang.org/spec/statement.html#NonEmptyOrScopeBlockStatement
https://dlang.org/spec/statement.html#NonEmptyOrScopeBlockStatement
https://dlang.org/spec/statement.html#NonEmptyOrScopeBlockStatement
https://dlang.org/spec/statement.html#NonEmptyOrScopeBlockStatement
https://dlang.org/spec/statement.html#NonEmptyOrScopeBlockStatement
https://dlang.org/spec/statement.html#NonEmptyOrScopeBlockStatement
https://dlang.org/spec/statement.html#NonEmptyOrScopeBlockStatement
https://tour.dlang.org/tour/en/gems/scope-guards
https://dlang.org/spec/statement.html#scope-guard-statement

NonEmptyOrScopeBlockStatement when the scope exits due to exception unwinding.
scope(success) executes NonEmptyOrScopeBlockStatement when the scope exits normally.

If there are multiple ScopeGuardStatements in a scope, they will be executed in the reverse
lexical order in which they appear. If any scope instances are to be destroyed upon the close of
the scope, their destructions will be interleaved with the ScopeGuardStatements in the reverse
lexical order in which they appear.

write("1");

{

 write("2");

 scope(exit) write("3");

 scope(exit) write("4");

 write("5");

}

writeln();

writes:

12543

{

 scope(exit) write("1");

 scope(success) write("2");

 scope(exit) write("3");

 scope(success) write("4");

}

writeln();

writes:

4321

struct foo {

 this(string s) { write(s); }

 ~this() { write("1"); }

}

try {

 scope(exit) write("2");

 scope(success) write("3");

https://dlang.org/spec/statement.html#NonEmptyOrScopeBlockStatement
https://dlang.org/spec/statement.html#NonEmptyOrScopeBlockStatement

 Foo f = Foo("0");

 scope(failure) write("4");

 throw new Exception("msg");

 scope(exit) write("5");

 scope(success) write("6");

 scope(failure) write("7");

}

catch (Exception e) { }

writeln();

writes:

0412

A scope(exit) or scope(success) statement may not exit with a throw, goto, break,
continue, or return; nor may it be entered with a goto.

Appendix D: Resource Management and
Error Handling in Java
Java has an exception handling mechanism similar to C++, with the primary difference being
that Java provides checked exceptions that are enforced to some degree by the compiler. In
Java, non-memory resources are reclaimed via explicit try/finally blocks instead of the
RAII idiom. The finally block always executes when the try block exits. This ensures that
the finally block is executed even if an unexpected exception occurs. But finally is useful
for more than just exception handling—it allows the programmer to avoid having cleanup code
accidentally bypassed by a return, continue, or break. Putting cleanup code in a finally
block is always a good practice, even when no exceptions are anticipated.

The following example uses a Java try-catch-finally block in an attempt to close two
resources.

public void processFile(String in, String out)

 throws IOException{

 BufferedReader br = null;

 BufferedWriter bw = null;

 try {

 br = new BufferedReader(new FileReader(in));

 bw = new BufferedWriter(new FileWriter(out));

 // Process the input and produce the output

 }

 finally {

 try {

 if (br != null) {

 br.close();

}

if (bw != null) {

 bw.close();

}

 }

 catch (IOException x) {

 // Handle error

 }

 }

}

This code has a defect, however, in that an exception can be thrown when br is closed,
resulting in bw not being closed. This defect can be repaired by introducing a second finally
block to guarantee that bw is properly closed even when an exception is thrown while closing
br. However, Java 7 introduced the try-with-resources statement (see the JLS, §14.20.3,
"try-with-resources" [10]), which simplifies correct use of resources that implement the
java.lang.AutoCloseable interface, including those that implement the
java.io.Closeable interface.

Using the try-with-resources statement avoids problems that can arise when closing
resources with an ordinary try-catch-finally block, such as failing to close a resource
because an exception is thrown as a result of closing another resource, or masking an important
exception when a resource is closed.

This following on uses a try-with-resources statement to appropriately release the
resources associated with both br and bw:

public void processFile(String in, String out) throws IOException{

 try (BufferedReader br = new BufferedReader(new FileReader(in));

 BufferedWriter bw = new BufferedWriter(new FileWriter(out))) {

 // Process the input and produce the output

 } catch (IOException ex) {

 System.err.println("thrown exception: " + ex.toString());

 Throwable[] suppressed = ex.getSuppressed();

 for (int i = 0; i < suppressed.length; i++) {

 System.err.println("suppressed: " + suppressed[i].toString());

 }

 }

}

The try-with-resources statement is not directly implementable in C, because resources
are not as uniform as Java resources that implement the java.lang.AutoCloseable
interface.

Java is a garbage-collected language. Memory is a special class of resource on these systems
that is cleaned up or deallocated using a special mechanism.

Appendix E: Resource Management and
Error Handling in Go
A defer statement in Go invokes a function whose execution is deferred to the moment the
surrounding function returns, either because the surrounding function executed a return
statement, reached the end of its function body, or because the corresponding goroutine is
panicking.

DeferStmt = "defer" Expression .

The expression must be a function or method call; it cannot be parenthesized. Calls of built-in
functions are restricted as for expression statements.

Each time a defer statement executes, the function value and parameters to the call are
evaluated as usual and saved again but the actual function is not invoked. Instead, deferred
functions are invoked immediately before the surrounding function returns, in the reverse order
they were deferred. That is, if the surrounding function returns through an explicit return
statement, deferred functions are executed after any result parameters are set by that return
statement but before the function returns to its caller. If a deferred function value evaluates to
nil, execution panics when the function is invoked, not when the defer statement is executed.

For instance, if the deferred function is a function literal and the surrounding function has named
result parameters that are in scope within the literal, the deferred function may access and
modify the result parameters before they are returned. If the deferred function has any return
values, they are discarded when the function completes.

lock(l)

defer unlock(l) // unlock happens before enclosing function returns

// prints 3 2 1 0 before surrounding function returns

for (i = 0; i <= 3; i++) {

 defer fmt.Print(i)

}

// f returns 42

func f() (result int) {

 defer func() {

 // result is accessed after being set to 6 by the return statement

 result *= 7

 }()

 return 6

}

Defer is commonly used to simplify functions that perform various clean-up actions as seen in
the following CopyFile function:

func CopyFile(dstName, srcName string) (written int64, err error) {

 src, err := os.Open(srcName)

 if err != nil {

return

 }

 defer src.Close()

 dst, err := os.Create(dstName)

 if err != nil {

return

 }

 defer dst.Close()

 return io.Copy(dst, src)

}

Defer statements encourage developers to think about closing each file right after opening it,
guaranteeing that, regardless of the number of return statements in the function, the files will
be closed.

There are three simple rules governing the behavior of defer statements:

1. A deferred function's arguments are evaluated when the defer statement is evaluated.
2. Deferred function calls are executed in last-in-first-out order (LIFO) after the surrounding

function returns.

3. Deferred functions may read and assign to the returning function's named return values.

Rule 1 violates C's normal expression evaluation rules because the deferred function’s
arguments evaluate when the defer statement is evaluated, but the actual function does not.

Panic is a built-in function that stops the ordinary flow of control and begins panicking. When
the function F calls panic, execution of F stops, any deferred functions in F are executed
normally, and then F returns to its caller. To the caller, F then behaves like a call to panic. The
process continues up the stack until all functions in the current goroutine have returned, at
which point the program crashes. Panics can be initiated by invoking panic directly. They can
also be caused by runtime errors, such as out-of-bounds array accesses, or arithmetic overflow.

Recover is a built-in function that regains control of a panicking goroutine. Recover is only
useful inside deferred functions. During normal execution, a call to recover will return nil and
have no other effect. If the current goroutine is panicking, a call to recover will return the value
that had been given to panic and then resume normal execution.

The convention in the Go libraries is that even when a package uses panic internally, its
external API still presents explicit error return values.

Other uses of defer include releasing a mutex:

mu.Lock()

defer mu.Unlock()

printing a footer:

printHeader()

defer printFooter()

and more.

Appendix F: Examples
This section contains examples of how the defer mechanism may be used in the design of C
language programs.

Kernel
Code executing in a kernel environment cannot simply fail or exit and expect the underlying
operating system to reclaim system resources for it. As such, code developed for a kernel or
similar environments needs to reclaim all allocated resources.

The following example illustrates a kernel function f1 that acquires two spin locks before
accessing shared data:

int f1(void) {

 puts("f called");

 if (bad1()) { return 1; }

 spin_lock(&lock1);

 if (bad2()) { goto unlock1; }

 spin_lock(&lock2);

 if (bad()) { goto unlock2; }

 /* Access data protected by the spinlock then force a panic */

 completed += 1;

 unforced(completed);

unlock2:

 spin_unlock(&lock2);

unlock1:

 spin_unlock(&lock1);

 return 0;

}

This function can be converted to use the defer mechanism as follows:

int f2(void) {

 puts("g called");

 if (bad1()) { return 1; }

 spin_lock(&lock1);

 defer spin_unlock(&lock1);

 if (bad2()) { return 1; }

 spin_lock(&lock2);

 defer spin_unlock(&lock2);

 if (bad()) { return 1; }

 /* Access data protected by the spinlock then force a panic */

 completed += 1;

 unforced(completed);

 return 0;

}

This example can be used to illustrate a problem that can occur when modernizing a code base
to use the new defer mechanism. For example, assume that function f1 has not yet been
converted to use the defer mechanism and is called as follows:

 guard {
 defer {

 int err = recover();

 switch (err) {

 case 0:

 puts("no error encountered, continuing as planned");

 break;

 case -1:

 puts("recover and continue...");

 break;

 default:

 printf("unknown error %d, continue\n", err);

 break;

 }

 }

 f1();

 }

If the execution of the unforced function called from f1 results in a panic, the function will
terminate without releasing the two spinlocks which can result in deadlock when the program
attempts to reacquire these locks.

The unforced function might panic because of an explicit call to the panic function or
because an underlying trap condition results in a panic. In cases like this, it may be preferable
for the program to crash rather than continue to execute in an unknown state. As a result, it is
important that implementations provide a flag which allows compilation units to enable or
disable panicking when a trap is detected.

Mutexes
The first example is based on the compliant solution for the CERT C Coding Rule “CON31-C.
Do not destroy a mutex while it is locked” [14]. The modified version of the compliant solution is
shown below does not use the defer mechanism:

mtx_t lock;

unsigned int completed = 0;

enum { max_threads = 5 };

int do_work(void *dummy) {

 if (thrd_success != mtx_lock(&lock)) {

 thrd_exit(thrd_error);

 }

 /* Access data protected by the lock */

 completed += 1;

 if (thrd_success != mtx_unlock(&lock)) {

 exit(EXIT_FAILURE);

 }

 thrd_exit(thrd_success);

}

int main(void) {

 thrd_t threads[max_threads];

 if (thrd_success != mtx_init(&lock, mtx_plain)) {

 exit(EXIT_FAILURE);

 }

 for (size_t i = 0; i < max_threads; i++) {

 if (thrd_success != thrd_create(&threads[i], do_work, NULL)) {

 exit(EXIT_FAILURE);

 }

 }

 for (size_t i = 0; i < max_threads; i++) {

 if (thrd_success != thrd_join(threads[i], 0)) {

 exit(EXIT_FAILURE);

 }

 }

 mtx_destroy(&lock);

 printf("completed = %u.\n", completed);

 return 0;

}

The main program starts several threads, each of which locks and increments a counter before
returning. The thread identifiers returned by thrd_create are stored in the threads array.
Most of the errors are treated as terminal failures that invoke exit(EXIT_FAILURE). One
exception is that the do_work threads will invoke thrd_exit(thrd_error) if they cannot
create a mutex.

This code can be reimplemented using the defer mechanism as shown below:

mtx_t lock;

unsigned int completed = 0;

enum { max_threads = 5 };

int do_work(void *dummy) {

 guard {

 puts("starting do_work guarded block");

 if (thrd_success != mtx_lock(&lock)) {

 thrd_exit(thrd_error);

 }

 defer {

 printf("deferred mtx_unlock = %u.\n", completed);

 if (thrd_success != mtx_unlock(&lock)) {

 panic(thrd_error);

 }

 }

 /* Access data protected by the lock */

 completed += 1;

 }

 thrd_exit(thrd_success);

}

int main(void) {

 guard {

 thrd_t thread;

 int result;

 puts("starting main guarded block");

 if (thrd_success != mtx_init(&lock, mtx_plain)) {

 exit(EXIT_FAILURE);

 }

 defer mtx_destroy(&lock);

 for (unsigned int i = 0; i < max_threads; i++) {

 if (thrd_success != thrd_create(&thread, do_work, NULL)) {

 exit(EXIT_FAILURE);

 }

 defer_capture(thread) {

 if (thrd_success != thrd_join(thread, &result)) {

 printf("thrd_join failure result = %d.\n", result);

 exit(EXIT_FAILURE);

 }

 printf("thread %lu joined result = %d.\n", thread, result);

 }

 } // end for

 } // end guard

 printf("completed = %u.\n", completed);

 return 0;

}

The code for this example can be found with the reference implementation
https://gitlab.inria.fr/gustedt/defer. In this example, the do_work thread uses a defer statement
to unlock the mutex. The work of the thread occurs in the guarded block following the defer
statement, which is executed when the guarded block exits (for any reason).

The main function creates and subsequently joins the threads inside a guarded block. The
defer_capture syntax is used to capture the thread identifiers returned by thrd_create
eliminating the need for a local array.

Appendix G: Issues and Limitations

Developer Preference
Many developers strongly prefer the goto-based original to using the defer mechanism. This is
expected, as developers who have become familiar with one style of programming are often
reluctant to change. Adding a defer mechanism will not prevent or prohibit developers from using
existing patterns.

C++

C and C++ are separate languages, but there are ongoing efforts to maintain compatibility
between the two language standards including a mailing list for liaison topics spanning WG14
and WG21 . 9

C++ typically incorporates the C standard library into the C++ standard library, making some
minor alterations along the way. However, the C++ specification doesn't automatically pull in
changes to the C language.

In theory, C++ could just ignore the C defer mechanism because they have a better option with
exceptions. This would prevent code that needs to be compiled by both C and C++ compilers
from using these features.

In cases where C++ code that calls C code that calls C++ code which throws an exception, the
exception handling machinery is usually smart enough to handle unwinding through C frames,
so C never catches the exception. Either the C++ code catches it, or nothing does. There are
some requirements from the C++ that, exceptions thrown from a qsort or bsearch callback must
propagate back to the caller of qsort and bsearch. There are no further C++ requirements 10

that this works in C, but it's something that implementations commonly support.

9 https://lists.isocpp.org/mailman/listinfo.cgi/liaison
10 https://eel.is/c++draft/res.on.exception.handling#2

https://gitlab.inria.fr/gustedt/defer
https://lists.isocpp.org/mailman/listinfo.cgi/liaison
https://eel.is/c++draft/res.on.exception.handling#2

A similar issue may exist with C code that calls C++ code that calls C code that panics.
Implementations that provide the possibility to link C and C++ could provide some levels of
compatibility between the two models. For example, they could ensure that C++ destructors are
called when C++ code is traversed by a panic, and possibly translate a panic with non-zero
code to a particular stdc_panic_exception, say, that behaves similarly to recover.

There may be overhead to C++ to satisfy the requirements of the defer feature. A well
behaved system would require C++ destructors to be called when a panic crosses C++ code.
C++ usually imposes a size overhead on C to satisfy the requirements of C++ exceptions.

Partially Rewritten Code
The defer mechanism can be successful in freeing resources and recovering at higher levels of
abstraction if the intervening code has been rewritten to use deferred statements.
Deferred statements have the advantage (and disadvantage) that they can be partially
implemented. This allows new code to be written to take advantage of deferred statements
while older, existing code continues to use goto chains or other methods to release resources.
However, a panic further down in the stack will only release resources that were set to be
released using the deferred statements while unwinding the stack. This is not an issue if the
panic/recover mechanism is not invoked.

Appendix H: Reference Implementation
A library-only reference implementation of the proposed features [9] is possible, that implements
most of the functionality. A reference implementation is distributed with a permissive licence,
such that it could easily be integrated by implementations or software projects that want to
provide their users with an early preview. The principal restrictions of this reference
implementation are its lack of some required diagnostics and a less comfortable handling of
some local variables, see below.

In the general case, an implementation can use setjmp/longjmp to branch to deferred
statements. The reference implementation[9] distinguishes jumps to locations known to be
within the same function (_Defer_shrtjmp) from those that are known to jump to another
function on the call stack (_Defer_longjmp). The unwind for a return will usually be all short
jumps, whereas a call to the exit function always initiates a long jump.

The implementation can distinguish cases where all jumps are finally implemented as being
long, or platforms where some shortcut for a short jump can be taken. Currently this is only
implemented for gcc and friends that implement a "computed goto", that is labels for which
addresses can be taken, and where these addresses then can be used in an extended goto
feature.

A computed goto is a combination of two new features for C. The first is assigning the
addresses of label to an object of type void *.
 void* labeladdr = &&somelabel;

somelabel:

 // code

The second is invoking goto on a variable expression instead of a compile-time-known label,
i.e.:
void* table[]; // addresses

goto *table[pc];

Such a specialized implementation can benefit during unwinding (these then are mostly simple
jumps), but they still have to keep track of all the guarded blocks and deferred statements with
setjmp because these could be jumped to from other functions or from signal handlers. The
setjmp macro can only appear in a restrictive set of contexts (see Section 7.13.1.1 of the C
standard for details). The reference implementation only uses it or its logical negation as the
direct controlling expression in an if or for statement.

The reference implementation has the two different syntaxes for defer statements with two
different names. The first uses defer as proposed here, the second currently uses
defer_capture. Using defer_capture with empty parentheses for the capture has the
same effect as the form without capture.

Defer Statements

The reference implementation for gcc and related compilers does not require that defer
statements be placed within guarded blocks.The frontier between two different calls on the call
stack is detected automatically for return.

The only special case that is still not covered are functions where there is no return at all (void
functions or main). There we just would fall down the cliff if there is no guard around. The
programmer would have to add a return statement before the } that ends the function body.

This feature uses gcc specifics, namely __builtin_frame_address(0), to obtain and store
the frame pointer of a given function call. This is not such a difficult feature and probably most
implementations have this, at least conceptually. Using it here on a level of these macros has
some performance drawbacks for functions that do not use defer:

● all functions are forced to have a frame pointer, no matter what, so hardware register
pressure may be higher

● all return have a preamble that checks at least one or two pointers dynamically, so tail
recursion is probably not well optimized or not optimized at all

Even worse, some inline functions from the C library that have a return get a bit shaken. So
the <stddefer.h> include should always come after all C library includes or even after all

other includes if possible. We estimated that for the reference implementation it is important to
implement all features correctly.

Local Variables

The values of objects of automatic storage duration that are local to the function containing the
invocation of the corresponding setjmp macro that do not have volatile-qualified type and
have been changed between the setjmp invocation and longjmp call are indeterminate (C
Standard, Section 7.13.1.1). For our reference implementation, using setjmp/ longjmp under
the hood, this would mean a severe restriction in the usability, because the user would have to
carefully qualify some of their local variables. The reference implementation attempts to
overcome this difficulty by using synchronization tools from <stdatomic.h> where these are
available.

If these are not available, to allow the use of longjmp in an implementation, local variables that
may change after this defer invocation and that are used in the defer clause must be declared
volatile such that the latest value is accessed.

Volatile qualification is only required for variables that may change between the defer statement
and the execution of the deferred statement. For most usages of defer, volatile-qualification
should not be necessary. For example a pointer value that you want to free will usually not
change once it is allocated:
 double * x = defer_malloc(sizeof(double[42]));

 defer free(x);

This code will panic if the allocation fails, and when this doesn't happen, then ensures that the
pointed to storage instance is deallocated once the guarded block exits. The pointer should, but
is not required to, be const-qualified to emphasize that the pointer value cannot change:
 double * const x = defer_malloc(sizeof(double[42]));

 defer free(x);

In addition, to have a determinate value such automatic variables should be defined in a scope
that is either surrounding the current guarded block or be that guarded block itself (so they are
alive when jumping into the defer clause), or be initialized (by initialization or by assignment)
within the defer clause (and so are revived from within).

Appendix I: Stack Unwinding
For objects with automatic storage duration which are not of variable length array type, the
lifetime extends from the declaration of the object until execution of the program leaves the
scope of the declaration.

In the C defer mechanism, control moves from a panic to the first recover statement in a
process that is known as stack unwinding. Execution of a return, exit and thrd_exit also
unwind the stack up to their respective levels of nested guarded blocks.

 In stack unwinding, execution proceeds as follows:
1. Control reaches the guard statement by normal sequential execution. The guarded

statements are executed.
2. If no panic occurs during execution of the guarded statements, and no return, exit, or

thrd_exit statement is executed, deferred statements are executed in LIFO order and
then control continues at the statement immediately following the end of the guarded
block.

3. If a panic occurs during execution of the guarded statements or a return statement,
exit, or thrd_exit function is executed, all deferred statements registered from the
current guarded block are executed in LIFO order.

4. If a recover function is invoked and returns a value other than zero, the processing of
deferred statements stops with the termination of the containing deferred statement, and
execution continues as if the guarded block had otherwise terminated normally.

5. After execution of the deferred statements, the guarded block exits and the lifetime of
any objects of automatic storage duration declared in the guarded block ends.

6. Execution continues with the execution of any deferred statements in the immediately
containing guarded block. The immediately containing guarded block may be in the
same function, or in a calling function.

7. Stack unwinding continues until all deferred statements in the function (for return) are
executed, thread (for panic or thrd_exit) are executed or until all deferred
statements in the program (for exit) are executed.

8. If panicking and no recover statement is encountered during the whole process, the
registered termination function is invoked to terminate the thread or program.

9. Otherwise, execution resumes with the execution of the return statement , exit, or
thrd_exit function.

Because the functions _Exit and abort are designed for abrupt termination without invoking
user defined cleanup mechanisms, neither invokes the defer mechanism to unwind the stack to
execute deferred statements. Consequently, invoking either of the functions from within a
guarded block may result in resource leaks.

The use of other standard means of nonlinear control flow out of the block (goto, longjmp),
are constraint violations. For some of these constructs, there are replacements such as
defer_goto, defer_abort that can be used instead.

Appendix J: Interaction with Signals
To ensure a consistent resource management and security, it is important that the defer
mechanism is successfully embedded into the general failure model of the implementation.
Therefore, a well-defined interaction with signal handling is encouraged.

The current specification in the C standard for signals is rudimentary, and so we cannot provide
a feature-complete proposal for an interaction with the signal subsystem. But we can request
that implementations document the interaction between signals and the defer mechanism and
we can also recommend some practice. We propose to add the following two paragraphs as
7.14 p5 and p6.

It is implementation-defined if default signal handlers that terminate the execution
previously execute deferred statements of the current or any other thread and if the
processing of deferred statements is stopped by a call to recover.

Recommended practice

It is recommended that default signal handlers other than for SIGABRT that terminate the
execution do so as if by calling panic, exit, quick_exit or _Exit and that they
execute the pending deferred statements and atexit or at_quick_exit handlers as
described for these functions.

For strictly conforming programs, only the C standard library functions abort, _Exit,
quick_exit, and signal can be safely called from within a signal handler. This proposal adds
the panic macro to that list.

When a panic is triggered by a signal handler (either a default handler or user defined) the execution
of the deferred statements themselves is performed in the context where they originally appeared,
not in the context of the signal handler. Thus restrictions for signal handlers do not apply to the
deferred statements themselves, only that information that a signal handler wants to communicate to
the deferred statements must either be the error code to panic (which then can be recovered) or by
using objects that have a lock-free atomic type or are a volatile qualified sig_atomic_t.

Appendix J: Performance Considerations
The zero-overhead principle It has been repeatedly stated that C++ exceptions violate the

zero-overhead principle. Unsurprisingly, the answer depends on how you interpret the

zero-overhead principle. Zero-overhead is not zero-cost; it is zero-overhead compared to

roughly equivalent functionality. Similarly, the exception mechanism was compared to

alternatives in a program that needed to catch all errors and then either recover or terminate.

Zero cost is more applicable to features that are not being used contributing to the cost of an

operation. Obviously there can be no such thing as a zero-cost unwinding because the

unwinding is an action. But this is also much more important for RAII than it would be for

deferred execution where potentially any old object (and thousands of them) need to take an

action on unwinding. Release of unique_ptr would be the obvious example of something you

probably don't want to silently spend time establishing setjmp frames for during

non-exceptional use. But this seems like it should be less of a problem for C because there seem

to be several implications of defer:

● it's explicit, which means the user can see that they may need to expect some

setup/teardown around the guarded block, and also not to expect it elsewhere

● it would likely represent a high-cost but low-intensity operation (and QoI could allow

a compiler to point out that putting defer inside a loop body isn't necessarily a good

idea); but if it is used that way, it's still explicit

● it's only likely to be used where the exceptional case is, even if not necessarily a likely

path, locally important; it doesn't affect code that isn't at least interested in the

exceptional case

● the actual operations associated with setup/teardown are likely going to be far more

expensive than the frame handling for C-like use cases

The Boost.ScopeGuard library gives a good idea how defer could be at least partially
implemented in C++. Boost.ScopeGuard tends to optimize well. It's zero-cost in the sense
that the compiler fully inlines the argument. Lookup cost is only incurred on the throw-path.
This is an important implementation experience that shows that compilers should be able to do a
good job with statically analyzable defer uses in practice once they start to implement it as a
primitive.

While this is true for a facility like scope_guard that introduces a static scope at every
instantiation, the proposed defer facility is dynamic. That dynamism requires it to be invoked
through indirection in at least some cases and potentially unbounded allocations (much like go's
defer). The optimization would be possible for this kind of defer in simple functions with no
interesting control flow, but not in the general case.

The unconditional association with a statically-known scope is going to be the common case by far.
Codebases that make use of related features have found that deferred execution costs are inlined
away all the time in practice.

Because of the general case, the library implementation would find it hard to optimize, but a native
compiler-provided feature would know when it's the general case vs. the common case and be able

to provide different backing implementations accordingly. This strengthens the case for encouraging
implementers to provide at least a surface level of native support. Implementations could, for
instance, detect when the use is "RAII-like" and translate to the C++-like IR, and when it isn't, just use
the reference implementation this gives us a really nice middle ground of low-effort/high-reward for
implementers.

Deferred statements are comparable to Objective-C and @autorelease - although that's a "purely"
memory-related feature (it frees, it doesn't do other things). Autorelease pools can be
dynamically-stacked, which may provide some interesting implementation experience with respect
to the general case and optimizatibility for defer / guard because some autorelease pools can be
statically associated with an allocation and many others cannot.

The main go compiler began to do this same thing relatively recently
(https://go.googlesource.com/proposal/+/refs/heads/master/design/34481-opencoded-defers.md)
Auto release is a good corollary, and one implemented and used in a custom defer mechanism, also
relates well to the library support in talloc. The problem case is the defer table used in a for loop
necessarily must be dynamically sized unless you have compile time loop bounds. That pattern is a
pretty common antipattern in go, and an easy way for this to go wrong.

Appendix K: Modifications to Existing Features
This section contains changes to existing features of the C language.

The break statement

A break statement can be used to terminate a guard or defer statement by acting as a goto
to a label immediately before the closing brace of the guard statement. All deferred statements
contained in the guarded statements are executed just before the guarded block exits.

Constraints

A break statement shall appear only in or as a switch body, loop body, deferred statement,
or guarded block.

Semantics

A break statement terminates execution of the smallest enclosing switch, iteration, deferred, or
guarded statement.

EXAMPLE 1 Exit a guarded statement using a break statement as the result of an
unrecoverable error:

guard {

https://go.googlesource.com/proposal/+/refs/heads/master/design/34481-opencoded-defers.md

 double* A = malloc(sizeof(double[n]);

 defer free(A);

 /* do something complicated */

 if (something_went_wrong) break;

 /* do something even more complicated */

 if (something_else_went_wrong) break;

 /* do something very complicated */

}

EXAMPLE 2 The deferred break statement in the following code segment serves no purpose
and can be omitted without changing the behavior of the program:

guard {

 defer puts("executed deferred statement");

 defer break; // no-op

}

Rationale
Changing the semantics of the break statement to break out of a guarded statement only
makes sense if we use the guard keyword. If the guard keyword is eliminated, this change will
also be eliminated.

The following code segment does not use defer:

for (int i = 0; i < 10; ++i) {

 void *ptr = malloc(12);

 if (!ptr) break;

 ...

 free(ptr);

}

A programmer might incorrectly introduce defer as follows:

for (int i = 0; i < 10; ++i) guard {

 void *ptr = malloc(12);

 if (!ptr) break; // Does not break out of the for loop

 defer free(ptr);

 ...

}

Instead the code would need to be restructured to ensure that the code breaks out of the for loop,
for example:

for (int i = 0, bail_out = 0; !bail_out && i < 10; ++i) guard {

 void *ptr = malloc(12);

 if (!ptr) {

 bail_out = 1; // Next iteration of for loop doesn't run

 break; // Breaks out of the guard block

 }

 defer free(ptr);

 ...

}

Terminating functions

The exit function
The beginning of 7.22.4.4 p 3 is changed as follows:

First, all deferred statements of all active function calls of the current thread, if any, are
sequenced in the inverse order in which they have been met during execution. Then, all
functions registered by the atexit function are called, in the reverse order of their
registration …

The thrd_exit function
The beginning of 7.26.5.5 p 2 is changed as follows:

First, all deferred statements of all active function calls of the current thread, if any, are
sequenced in the inverse order in which they have been met during execution. Then, for
every thread-specific storage key …

Rationale
The quick_exit function was adapted from C++ where its primary purpose concerned with
was to avoid executing static destructors in C++ in situations where cooperative cancellation is
not possible [17]:

"The C++ Committee has clearly stated that it wishes to preserve execution of static destructors
in normal applications. So, we need a mechanism to abandon an application process without
cooperatively canceling all threads and without executing the static destructors."

Given this history, our current view is that the quick_exit function will not be modified to
evaluate deferred statements.

C Library Augmentations

As examples of how panic could be used by the C library, there could be augmented versions of
storage allocation functions, such as defer_malloc. The idea is that these will panic if they
encounter an out-of-memory condition. That has several effects:

● Explicit handling of such error conditions does not need to be repeated at every call site.
● Cleanup actions that the user has installed by means of defer clause will be called, e.g.,

to close files or to free large allocations.
● User code may establish a recovery mechanism using recover. This will probably be

rarely used by most applications, but safety/security critical applications would get a
handle to avoid catastrophes.

Inspection of the assembler that is created for these functions shows that all of this generates
little overhead for the fast execution path. In general, this technique might provide a sensible
way to provide the same error detection facilities as Annex K, but in a way that:

● preserves the prototypes of the functions
● is thread safe.

Appendix J: Panic Handler

Defer <stddefer.h>
The header <stddefer.h> defines one type.
The type is

panic_handler_t

which has the following definition

typedef void (*panic_handler_t)(int code);

The set_panic_handler function

Synopsis

#include <stddefer.h>

panic_handler_t set_panic_handler(panic_handler_t handler);

Description

The set_panic_handler function sets the panic handler for the current thread to handler.
The panic handler is the function to be called to terminate the current thread or program
following the execution of all deferred statements as the result of an unrecovered panic.

When the handler is called, it is passed the code set by the call to the panic function.

The implementation has a default panic handler that is used if no calls to the
set_panic_handler function have been made. The behavior of the default handler is
implementation-defined. Recommended practice is to use either the exit or quick_exit
functions.

If the handler argument to set_panic_handler is a null pointer, the implementation default
handler becomes the current panic handler.

The set_panic_handler is thread safe, and cannot be changed from another thread.

Only the most recent handler registered with set_panic_handler is called when an
unrecovered panic occurs. The registered panic handler has thread storage duration. The
registered panic handler for a newly created thread shall be the same as the registered panic
handler of the current thread at the time of creation.

Returns

The set_panic_handler function returns a pointer to the previously registered handler. 11

Rationale

The set_panic_handler function is akin to the set_terminate in C++ that establishes the
current handler function for terminating exception processing. In C++, setting the termination
handler local to a thread can be cumbersome for safety critical applications that want to put the
application into a safe state if something bad happens, no matter what thread it happens on.

11 If the previous handler was registered by calling set_panic_handler with a null pointer
argument, a pointer to the implementation default handler is returned (not NULL).

http://eel.is/c++draft/set.terminate

This may be a sufficient reason for this function to apply to the program and not the thread, or to
parameterize the function.

References

[1] Understanding Denial-of-Service Attacks | CISA

[2] CWE - Common Weakness Enumeration

[3] CWE - CWE-400: Uncontrolled Resource Consumption (4.1)

[4] CWE - 2019 CWE Top 25 Most Dangerous Software Errors

[5] CWE - CWE-415: Double Free (4.1)

[6] Why mobile web apps are slow

[7] WG14 N1841 - Alternate Exception Handling Syntax for C

[8] https://ziglang.org/#A-fresh-take-on-error-handling

[9] https://gitlab.inria.fr/gustedt/defer

[10] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, Daniel Smith, Gavin
Bierman. The Java® Language Specification, Java SE 14 Edition. 2020-02-20
https://docs.oracle.com/javase/specs/jls/se14/html/jls-14.html#jls-14.20.3

[11] Abrahams D. (2000) Exception-Safety in Generic Components. In: Jazayeri M., Loos
R.G.K., Musser D.R. (eds) Generic Programming. Lecture Notes in Computer Science, vol
1766. Springer, Berlin, Heidelberg

[12] Paul Ducklin, Anatomy of a “goto fail” – Apple’s SSL bug explained, plus an unofficial
patch for OS X!. Feb 2014.

https://www.us-cert.gov/ncas/tips/ST04-015
https://cwe.mitre.org/
https://cwe.mitre.org/data/definitions/400.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/data/definitions/415.html
https://sealedabstract.com/rants/why-mobile-web-apps-are-slow/index.html
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1841.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1841.pdf
https://ziglang.org/#A-fresh-take-on-error-handling
https://gitlab.inria.fr/gustedt/defer
https://docs.oracle.com/javase/specs/jls/se14/html/jls-14.html#jls-14.20.3

https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-ex
plained-plus-an-unofficial-patch/

[13] Lawrence Crowl. N1483 Comparing Lambda in C Proposal N1451 and C++ FCD N3092
2010-05-29 http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1483.htm

[14] Robert C. Seacord. 2014. The CERT® C Coding Standard, Second Edition: 98 Rules
for Developing Safe, Reliable, and Secure Systems (2nd. ed.). Addison-Wesley
Professional.

[15] Niall Douglas. P1095R0/N2289: Zero overhead deterministic failure A unified
mechanism for C and C++. 2018-08-29.
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2289.pdf

[16] Eli Bendersky. Handling out-of-memory conditions in C. October 30, 2009.
https://eli.thegreenplace.net/2009/10/30/handling-out-of-memory-conditions-in-c

[17] P.J. Plauger. WG14 N1327 Abandoning a Process 05-Aug-2008
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1327.htm

https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1483.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1483.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2289.pdf
https://eli.thegreenplace.net/2009/10/30/handling-out-of-memory-conditions-in-c
https://eli.thegreenplace.net/2009/10/30/handling-out-of-memory-conditions-in-c
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1327.htm

