
Proposal for C2x

WG14 N2527

Title: Minor attribute wording cleanups

Author, affiliation: Aaron Ballman, GrammaTech

Date: 2020-05-11

Proposal category: Editorial & Bug Fixes

Target audience: People reading the standard

Abstract: Proposes minor editorial changes and small bug fixes to the attribute wording, based on

feedback from the community.

Minor attribute wording cleanups
Reply-to: Aaron Ballman (aaron@aaronballman.com)
Document No: N2527
Revises Document No: N2482
Date: 2020-05-11

Summary of Changes

N2527

• Clarify that attributes have name spaces.

• Correct the grammar for for loops to allow attributes in the clause-1 position.

N2482

• Original proposal.

Introduction
Now that attributes have been added to the working draft, implementers are starting to update their

implementations accordingly. Through this process, some issues have been identified where the

wording in the standard could be clarified. This proposal is an omnibus paper to clarify the wording in

the standard without modifying the intent.

Proposed Wording
The wording proposed is a diff from WG14 N2478. Green text is new text, while red text is deleted text.

Clarify that attributes have their own name spaces
Modify 6.2.3p1:

If more than one declaration of a particular identifier is visible at any point in a translation unit, the

syntactic context disambiguates uses that refer to different entities. Thus, there are separate name

spaces for various categories of identifiers, as follows:

— label names (disambiguated by the syntax of the label declaration and use);

— the tags of structures, unions, and enumerations (disambiguated by following any34) of the keywords

struct, union, or enum);

— the members of structures or unions; each structure or union has a separate name space for its

members (disambiguated by the type of the expression used to access the member via the . or ->

operator);

— standard attributes and attribute prefixes (disambiguated by the syntax of the attribute specifier and

name of the attribute token) (6.7.11);

— the trailing identifier in an attribute prefixed token; each attribute prefix has a separate name space

for the implementation-defined attributes that it introduces (disambiguated by the attribute prefix and

the trailing identifier token);

— all other identifiers, called ordinary identifiers (declared in ordinary declarators or as enumeration

constants).

Clarify what an attribute appertains to in a declaration
Modify 6.7.6p5:

If, in the declaration "T D1", D1 has the form

identifier attribute-specifier-sequenceopt

then the type specified for ident is T and the optional attribute specifier sequence appertains to D1the

entity that is declared.

Allow [[nodiscard]] to be applied to a function regardless of the syntactic form of its

declaration
Modify 6.7.11.2p1:

The nodiscard attribute shall be applied to the identifier in a function declarator declaration or to the

definition of a structure, union, or enumeration type. It shall appear at most once in each attribute list

and no attribute argument clause shall be present.

Disallow declarations following a [[fallthrough]] attribute
Modify 6.7.11.5p1:

The attribute token fallthrough shall only appear in an attribute declaration (6.7); such a declaration

is a fallthrough declaration. The attribute token fallthrough shall appear at most once in each

attribute list and no attribute argument clause shall be present. A fallthrough declaration may only

appear within an enclosing switch statement (6.8.4.2). The next statement block item (6.8.2) that

would be executed encountered after a fallthrough declaration shall be a labeled statement whose label

is a case label or default label for the same switch statement.

Allow attributes on an expression in the clause-1 position of a for loop
Modify 6.8.5p1:

iteration-statement:

while (expression) statement

do statement while (expression) ;

for (expression-statementopt ; expressionopt ; expressionopt) statement

for (declaration expressionopt ; expressionopt) statement

Modify 6.8.5.3p1:

The statement

for (clause-1; expression-2; expression-3) statement

behaves as follows: The expression expression-2 is the controlling expression that is evaluated before

each execution of the loop body. The expression expression-3 is evaluated as a void expression after

each execution of the loop body. If clause-1 is a declaration, the scope of any identifiers it declares is the

remainder of the declaration and the entire loop, including the other two expressions; it is reached in

the order of execution before the first evaluation of the controlling expression. If clause-1 is an

expression statement, its expression it is evaluated as a void expression before the first evaluation of the

controlling expression.168)

Acknowledgements
I would like to acknowledge the following people for their contributions to this work: Joseph Myers and

Jens Gustedt.

