
C2X Proposal: WG14 N2498

Title: intmax_t, again
Author: Martin Uecker, University Medical Center Göttingen
Date: 2020-02-29

Synopsis

(u)intmax_t is preserved in its current form and keeping its promise. Language feature which
make it difficult to change (u)intmax_t to a larger type because this requires ABI breaking
changes are deprecated and replaced by future-proof alternatives.

Introduction

(u)intmax_t is intended to be the largest standard type so that it can be safely used as a generic
integer type that can represent the values of all other standard integer types of same signedness.
Unfortunately, the C standard introduced several APIs where (u)intmax_t is used in a way
which makes it impossible to change it to a wider type without breaking binary compatibility.
Because of this problem, some implementations introduced new large integer types bigger than
(u)intmax_t and in this way broke the promise that it is the largest integer type. The APIs in
question are the conversion specifier j for input/output functions and several functions in the
standard library. This topic was discussed in N2425 and N2465.

Conversion Specifier

We simply declare the j length specifier an obsolescent feature. The corresponding PRI and
SCN macros are retained unmodified and implementation can later redefine these macros as
needed when (u)intmax_t needs to be changed. Here, we also adopt the new length modifier w
as proposed in N2465 that defines modifiers for all exact-width types which can then be
generated by the macros.

Library Functions

Existing functions affected:

imaxabs, imaxdiv, strtoimax, strtoumax, wcstoimax, wcstoumax

New functions affected:

compoundn, pown, rootn, fromfp, ufromfp, fromfpx, ufromfpx

For compoundn, pown, rootn, it seems desirable that they use a largest standard integer
type, but not necessarily a much larger implementation-defined extended integer type. Therefor,
the type of these function is changed to use long long int.

The functions imaxabs, imaxdiv, strtoimax, strtoumax, wcstoimax,
wcstoumax, romfrp, uframfp, fromfpx, uromfpx are deprecated as library
functions and will be redefined as function-like macros. In particular, in the future it will not be
required anymore that there exists an underlying library function of the same name. An
implementation can then redefine these macros as needed if the definition of (u)intmax_t
changes.

Rationale

This proposal tries to keep (u)intmax_t as intended while deprecating those parts which make
it difficult for implementations to honor its promise. It avoids major changes, but it sets the
foundations for fixing things later. After a transitional period implementations will be able to
introduce extended integer types by changing (u)intmax_t without breaking binary
compatibility. The intentions and expectations are made clear in the standard.

Future-Proof Interfaces

Functions which use (u)intmax_t should be specified as function-like macro or as functions taking a
size parameter and a pointer to the integer. The size and pointer could also be combined into a struct
type. It is possible to wrap such interfaces into type-safe macro wrappers. Implementations could also
perform their own type checking similar to how this is done for format specifiers. Future introduction
of a bignum type, or expanded use of generic functions could also make it easier to develop generic and
type-safe interfaces. It may be wise to restrict the use of (u)intmax_t even further as proposed here. To
facilitate a future transition to a very big integer type which may have some usage restriction or to a
proper bignum type of unbounded width, we could consider current restrictions on VLA types and
disallow the use of (u)intmax_t in structs and at file scope, maybe also of assignment (allowing only
initialization, arithmetic, passing as argument, and conversion to other integer and pointer types).

Suggested Wording Changes

7.8.2 Functions for greatest-width integer types*)

7.8.2.1 The imaxabs function
7.8.2.2 The imaxdiv function
7.8.2.3 The strtoimax and strtoumax functions
7.8.2.4 The wcstoimax and wcstoumax functions

*) These functions are obsolescent as library functions and will be
changed to function-like macros that will be provided under the same

names. This is intended to make it possible to change the (u)intmax_t
types in the future without breaking binary interfaces.

7.20.1.5 Greatest-width integer types

...

NOTE Because any introduction of larger standard or extended integer
type means that the greatest-width types change, extra care is
required when these types are to be used in interfaces that require a
stable application binary interface.

7.21.6.1 The fprintf function
7.29.2.1 The fwprintf function

...

7 The length modifiers and their meanings are:*)

...

wN Specifies that a following d, i, o, u, x, or X conversion
specifier applies to an exact-width integer type argument
of exactly N bits; or that a following n conversion
specifier applies to a pointer to an exact-width integer
type argument of exactly N bits.

...

*) The length modifier j for input/output functions is an obsolescent
feature.

7.21.6.2 The fscanf function
7.29.2.2 The fwscanf function

...

11 The length modifiers and their meanings are:*)

...

wN Specifies that a following d, i, o, u, x, or X, or n
conversion specifier applies to a pointer to an exact-width
integer type argument of exactly N bits.

...

*) The length modifier j for input/output functions is an obsolescent
feature.

7.31.4 Format conversion of integer types <inttypes.h>

2 Functions for greatest-width integer types are an obsolescent
features as library functions and this functionality will be provided
as function-like macros under the same name.

7.31 Future library directions

7.31.11 Input/output <stdio.h>

3 The length modifier j for input/output functions is an obsolescent
feature.

Additional Suggested Wording Changes

4 ...
– An optional length modifier that specifies the size of the
 argument. In some cases, the length modifier may be

followed by an asterisk.

5 As noted above, a field width, or precision, or length, or both any
combination, may be indicated by an asterisk. In this case, an int
argument supplies the field width, or precision, or length. The
arguments specifying field width, or precision, or length, or both
any combination, shall appear (in that order) before the argument (if
any) to be converted. A negative field width argument is taken as a -
flag followed by a positive field width. A negative precision
argument is taken as if the precision were omitted.

7.21.6.1 The fprintf function
7.29.2.1 The fwprintf function
7.21.6.2 The fscanf function
7.29.2.2 The fwscanf function

wN ….. to an exact-width integer type argument of exactly N
bits. If N is given as an asterisk, the pointer argument is
preceded by an integer argument indicating the length as
described above.

© 2020 by the author(s). Distributed under a Creative Commons
Attribution 4.0 International License.

