
C2x Proposal: WG14 N2497

Title: Compatibility of Pointers to Arrays with Qualifiers
Authors: Martin Uecker, University Medical Center Göttingen

Aaron Ballman, GrammaTech
Jens Gustedt, University of Strasbourg

Date: 2020-02-29

Introduction

Pointer conversion rules regarding qualifiers as specified in 6.5.16.1 Simple assignment and
referenced at various places allow to convert a pointer to a non-qualified type to a pointer to a
qualified type. These rule does not work correctly for pointer to arrays, because the qualifiers is
always moved to the element type of the array and then the conversion rules formally do not
apply. This issue was discussed in detail in N1923.

Example:

void matrix_fun(int N, const float x[N][N]);

int N = 100;
float x[N][N];

matrix_fun(N, x); // incompatible types!

Most compilers largely already follow the rules suggested in the following (with some minor
differences among compilers) and accept this code without warning. Also C++ has long
adopted modified rules which allow these conversions. The proposed wording suggested here is
a minimal change that is similar. Specifically, we propose to make the following change: An
array should always be considered to have identical qualifiers as its element type (with the
exception of _Atomic). Qualifiers do only affect lvalue conversion and should therefor not
have any effect on the array itself, but all the pointer conversion rules now work as intended.
The C++ standard (quoted from a recent draft) has a similar (but somewhat confusing) rule in
6.8.3(6) that states the following:

Cv-qualifiers applied to an array type attach to the underlying
element type, so the notation “cv T”, where T is an array type,
refers to an array whose elements are so-qualified. An array type
whose elements are cv-qualified is also considered to have the same
cv-qualifications as its elements.

For the _Atomic qualifier introduced in 6.2.5(27) nothing is changed, i.e. an array with an
element type that has the _Atomic qualifier is not considered to have the same qualifier.

Explicitly creating _Atomic qualified arrays continues to be not allowed according to 6.7.3(4)
and 6.7.2.4(3).

Examples:

typedef int aT[3];
const aT x; // still allowed, 6.7.3(10)
typedef int aT[3];
_Atomic aT x; // still forbidden, 6.7.3(4)

Other Consequences of the Proposal

The proposal has two other minor effects, which both seem desirable, but which are not fully
backwards compatible.

1.) Converting a pointer to a qualified array to a void* is not allowed anymore because the
revised rules now detect that the qualifier is lost.

const int foo[5];
memset(&foo, 0, sizeof foo); // not allowed anymore

2.) The type of an expression involving the tertiary operator choosing between expressions of
type void* and of type pointer-to-qualified-array will now change to include the qualifier
which is otherwise lost. Compilers currently differ in whether the result has the qualifier or not.

void* v;
const int (*i)[3];
foo = (1 ? v : i); // <-- will have type 'const void*’

Explicit Construction of Qualified Array Types Using Typedefs

Reflector discussion brought up the concern that having restrict-qualified arrays might be
confusing. The newly introduced qualification of the array type does not seem to be too
problematic as it does not have any direct effect itself and can be safely ignored by
programmers. Nevertheless, one could consider to completely forbid the explicit construction
of qualified arrays using typedefs (which is now blessed by 6.7.3(10) and otherwise
syntactically not possible) or to allow this construction only for some qualifiers (e.g. the const
qualifier). One the other hand, one could also go in the different direction and – for the sake of
consistency - simply allow this construction for _Atomic too.

Examples:
(comments refer to the proposed rules)

typedef int *aT[3];
_Atomic aT a; // not allowed (not allowed in C++)
const aT b; // allowed (allowed in C++)

restrict aT c; // allowed (restrict does not exist in C++)
volatile At d; // allowed (allowed in C++)

Pointer Conversion Rules for restrict

Another question raised was whether it makes sense that a restrict qualifier can be added to the
pointer type referenced itself by a pointer type This is allowed for restrict too as it follows all
the generic rules of a qualifier. The present proposal will then also allow adding the restrict
qualifier to arrays of pointers that are referenced by a pointer type, i.e. allow to add the
qualifier to all pointers in an array at the same time. Both cases do not seem very important, but
could be useful to mark pointers passed by reference as restrict qualified or to add the restrict
qualifier to a large number of pointer variables without incurring the overhead of copying the
complete array.

Examples:

void foo(int * restrict *ap);
int *a;
foo(&a); // pointer to restrict qualified pointer(s)

void foo(int * restrict (*a)[3]);
int *a[3];
foo(&a); // pointer to array(s) of three restrict qualified pointers

Suggested Wording Changes

6.2.5(26)
Any type so far mentioned is an unqualified type. Each unqualified
type has several qualified versions of its type, corresponding to the
combinations of one, two, or all three of the const, volatile, and
restrict qualifiers. The qualified or unqualified versions of a type
are distinct types that belong to the same type category and have the
same representation and alignment requirements. An array and its
element type are always considered to be identically qualified*) Any
other A derived type is not qualified by the qualifiers (if any) of
the type from which it is derived.

*) This does not apply to the _Atomic qualifier. Note that qualifiers
do not have any direct effect on the array type itself, but affect
conversion rules for pointer types that reference an array type.

6.7.6.2(3) Array Declarators

If, in the declaration "T D1", D1 has one of the forms:

D [type-qualifier-list_opt assignment-expression_opt]
D [type-qualifier-list_opt assignment-expression]
D [type-qualifier-list static assignment-expression]
D [type-qualifier-list_opt]

and the type specified for ident in the declaration "T D" is
"derived-declarator-type-list T", then the type specified for ident
is "derived-declarator-type-list array of T".145,*) (See 6.7.6.3 for
the meaning of the optional type qualifiers and the keyword static.)

*) The array is considered identically qualified to T according
6.2.5(26).

6.7.3(10)
If the specification of an array type includes any type qualifiers,
both the array and the element type is are so-qualified, not the
array type. If the specification of a function type includes any type
qualifiers, the behavior is undefined.139)

139) Both of these This can occur through the use of typedefs. Note
that is rule does not apply to the _Atomic qualifier, and that
qualifiers do not have any direct effect on the array type itself,
but affect conversion rules for pointer types that reference an array
type.

6.7.3(2)
Types other than pointer types whose referenced type is an object
type and array types with such pointer types as element type shall
not be restrict-qualified.

References

1.) N 1923: Compatibility of Pointers to Arrays with Qualifiers
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1923.htm
2.) Reflector discussion from SC22WG14.17437 to SC22WG14.17460)

Acknowledgement

Joseph Myers for help with the implementation.

© 2020 by the author(s). Distributed under a Creative Commons
Attribution 4.0 International License.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1923.htm

