
JeanHeyd Meneide <phdofthehouse@gmail.com>

Isabella Muerte <https://twitter.com/slurpsmadrips/>

October 24th, 2019

Document: N2448
Previous Revisions: n2430
Audience: WG14
Proposal Category: New Features
Target Audience: General Developers, Compiler/Tooling Developers
Latest Revision: https://thephd.github.io/vendor/future_cxx/papers/source/n2448.html

Abstract:

Many functions return a value, however, not all function return values are of equal importance to the caller.
The recent [[nodiscard]] attribute allows compilers to issue a diagnostics, but only hands the user a generic
error message. This proposal enhances the [[nodiscard]] attribute in the same manner as the
[[deprecated]] attribute, giving developers the same power to guide their users to better APIs with the aid
of the compiler by providing a string literal attribute argument clause.

Document N2267 introduced a new attribute [[nodiscard]] in the C2x working paper. This has provided
significant improvements in reminding programmers of the safety issues of discarding the return value of a
function. The [[nodiscard]] attribute has helped prevent a serious class of software bugs, but sometimes it
is hard to communicate exactly why a function is marked as [[nodiscard]] and perhaps what actions should
be taken to rectify the issue.

This paper supplies an addendum to allow a developer to add a string attribute token to let someone provide a
small reasoning or reminder for why a function has been marked [[nodiscard("potential memory
leak")]].

This paper is an enhancement of a preexisting feature to help programmers provide clarity with their code.
Anything that makes the implementation warn or error should also provide some reasoning or perhaps point
users to a knowledge base or similar to have any questions they have about the reason for the nodiscard
attribute answered.

Consider the following code example, before and after the change:

#define FOO_BASE 0xBA51CF00

#define FOO_LINK_TYPE 1

2.0.1 Status Quo:

 - warning, but it is a generic warning; what exactly went wrong here?

2.0.2 With Proposal:

struct foo { /* ... */ };
[[nodiscard]] int foo_get_value(struct foo*);

[[nodiscard]]
foo* foo_create(int, struct foo*);
[[nodiscard]]
int foo_compare(struct foo*, struct foo*);

// Always > 0
const int kHandles = ...;

int main (int, char*[]) {

 foo* foo_handles[kHandles + 1] = { };
 foo_handles[0] = foo_create(BASE_FOO, NULL);

for (int i = 1; i < kHandles; ++i) {
 foo_handles[i] = foo_create(FOO_LINK_TYPE, foo_handles[0])
 }

/* sometime later */

for (int i = 0; i < kHandles,
 foo_compare(foo_handles[0], foo_handles[i]), foo_get_value(foo_handles[i]) > 0;

// ^ warning: function return value marked nodiscard was discarded
 ++i) {

/* process... */
 }

return 0;
}

[[nodiscard("memory leaked")]]
struct foo* foo_create(int, struct foo*);
[[nodiscard("value of foo comparison unused")]]
int foo_compare(struct foo*, struct foo*);

// Always > 0
const int kHandles = ...;

int main (int, char*[]) {

struct foo* foo_handles[kHandles + 1] = { };
 foo_handles[0] = foo_create(BASE_FOO, NULL);

for (int i = 1; i < kHandles; ++i) {
 foo_handles[i] = foo_create(FOO_LINK_TYPE, foo_handles[0])
 }

/* sometime later */

for (int i = 0; i < kHandles,
 foo_compare(foo_handles[0], foo_handles[i]), foo_get_value(foo_handles[i]) > 0;

 - warning much more clearly makes it obvious that a comma was used with the return value of
foo_compare, and not &&.

The design is very simple and follows the lead of the deprecated attribute. We propose allowing a string
literal to be passed as an attribute argument clause, allowing for [[nodiscard("use the returned token
with lib_foobar")]]. The key here is that there are some nodiscard attributes that have different kinds of
“severity” versus others.

Adding a reason to nodiscard allows implementers of the standard library, library developers, and application
writers to benefit from a more clear and concise error beyond error:<line>: value marked
[[nodiscard]] was discarded. This makes it easier for developers to understand the intent for return
values for the used libraries (and understand from which individual expression errors originate in complex
expressions).

This is in the official C++ Standard, and has been merged into Clang already as well as merged into GCC. It
would be good to maintain parity with C++ to allow headers that work in both languages to continue to use
the same syntax, since this is going to be an increasingly useful existing practice.

This proposed wording is currently relative to Working Paper N2385. The intent of this wording is to allow
for the [[nodiscard]] attribute to be able to take a string literal.

Rewrite §6.7.11.2 “The nodiscard attribute”’s Constraint subsection as follows:

The nodiscard attribute shall be applied to the identifier in a function declarator or to the
definition of a structure, union, or enumeration type. It shall appear at most once in each attribute
list. If an attribute argument clause is present, it shall have the form:

(string-literal)

Add a clause just beneath the first clause in the Recommended Practice subsection as follows:

The diagnostic message may include text provided by the string literal within the attribute
argument clause of any nodiscard attribute applied to the name or entity.

Add a third example after the first two in the Recommended Practice subsection as follows:

// ^ warning: function return marked nodiscard was discarded - value of foo comparison
unused

 ++i) {
/* process... */

 }

return 0;
}

A diagnostic for the call to arm_detonator using the string literal "must check
armed state" from the attribute argument clause is encouraged.

[[nodiscard("must check armed state")]]
bool arm_detonator(int);

void call(void) {
 arm_detonator(3);
 detonate();
}

