
N2436: Memory region stores flush and reloads force

Document #: N2436
Date: 2019-09-22
Project: WG14 Programming Language C

WG14-WG21 liaison group
Reply-to: Niall Douglas <s_sourceforge@nedprod.com>

Bob Steagall <bob.steagall.cpp@gmail.com>

There is an increasing need in modern code to work efficiently with shared memory where stores
have side effects not visible to the current program’s abstract machine, and whose contents may
change unbeknownst to the current program’s abstract machine. volatile will do the job, but
it does not perform well. This paper proposes a pair of library functions with greatly improved
performance, and which additionally provide bare minimum support for NV-DIMM memory.

Contents

1 Introduction 1

2 Proposed design 2

3 Proposed API 3

4 Implementation cost 4

5 Conclusion 5

6 References 5

1 Introduction

volatile is the canonical standard way to tell the C compiler to not eliminate loads nor stores to
the thus qualified items, and thus not subject stores to dead store elimination, nor loads to reload
elision. It additionally prevents the compiler from merging and reordering loads and stores to such
regions, which makes qualifying everything with volatile an inefficient way of working with shared
memory.

What would be ideal is for a mechanism with fewer unwanted side effects for telling the C com-
piler that stores to the shared memory region must be guaranteed to occur, and loads from the
shared memory must always reload rather than reuse previously loaded values. Such stores can be
reordered, merged and composed by the compiler so long as their final side effects are rendered;

1

mailto:s_sourceforge@nedprod.com
mailto:bob.steagall.cpp@gmail.com


similarly, reloads from such regions can be reordered and merged by the compiler in any way which
is maximally efficient, so long as a complete reload is performed.

Directly mapped non-volatile storage devices are a special kind of shared memory where the
fdatasync() operation may be efficiently implemented by ensuring that the CPU flushes modi-
fied cache lines to ‘main memory’, where the directly mapped storage device has been mapped
into the C program. Directly mapped non-volatile storage is expected to become prevalent on
high end and low power systems in the medium term, as it offers superior performance and power
consumption.

2 Proposed design

There are two functions, one to force reloading of a region of memory, and another to flush any
pending stores to a region of memory.

There are two strengths of use for each function, with a corresponding impact upon runtime per-
formance:

1. Force the compiler to write out and reload state, with optional CPU memory fence to constrain
reordering of loads and stores from the perspective of other CPUs.

2. Force both the compiler and the CPU to write out and reload state, with optional CPU
memory fence to constrain reordering of loads and stores from the perspective of other CPUs.

Cache coherency is always preserved. If the CPU is required to reload cache lines from a region
of memory by these functions, all modified cache lines for that region in all CPUs are written out
beforehand. This would ruin the utility of forcing the CPU to reload main memory which has
changed independently of CPU writes, so it is on the user to ensure that no modified cache lines
exist for a region reloaded by the CPU i.e. flush all modified lines, tell the device to change the
data, reload cache lines.

CPU store flush and reload is not atomic with respect to concurrent CPU store flush and reload
upon overlapping bytes. Users should employ additional synchronisation to prevent concurrent CPU
store flushes or reloads upon the same cache lines.

No guarantee is given that individual cache line flushes occur in any particular order before the
CPU memory release fence i.e. if you flush four modified cache lines, main memory will receive
those updates in an unknown order. If you do not wish this, flush each cache line individually with
memory fence in between each.

No guarantee is given that individual cache line reloads occur in any particular order after the CPU
memory acquire fence. If you reload four cache lines, they may be fetched from main memory in any
order. If you do not wish this, reload each cache line individually with memory fence in between
each.

2



3 Proposed API

A reference implementation for the proposed library APIs can be found at https://github.com/
ned14/quickcpplib/blob/master/include/mem_flush_loads_stores.hpp, with support for x86,
x64, ARM v7 and AArch64.

It has been in production use in the presented form for about six months, however two previous
earlier API designs were in use for some years beforehand. This proposed API design reflects the
experience gained in those years.

1 enum memory_flush
2 {
3 memory_flush_none, //!< No main memory flushing.
4

5 memory_flush_retain, //!< Flush modified cache line in CPU out to main
6 //!!< memory, but retain as unmodified in cache.
7

8 memory_flush_evict //!< Flush modified cache line in CPU out to main
9 //!< memory, and evict completely from all caches.

10 };
11

12 /*! \brief Ensures that reload elimination does not happen for a region of
13 memory, optionally synchronising the region with main memory.
14

15 \return The kind of memory flush actually used.
16 \param data The beginning of the byte array to ensure loads from.
17 \param bytes The number of bytes to ensure loads from.
18 \param kind Whether to ensure loads from the region are from main memory.
19 \param order The atomic reordering constraints to apply to this operation.
20

21 \note ‘memory_flush_retain‘ has no effect for reloads from main memory,
22 it is the same as doing nothing. Only ‘memory_flush_evict‘ evicts all the
23 cache lines for the region of memory, thus ensuring that subsequent loads
24 are from main memory. Note that if the cache line being reloaded is modified,
25 it will be flushed to main memory before being reloaded, thus destroying
26 any modified data there. You should therefore ensure that concurrent
27 actors never modify main memory with modified cache lines in your CPU.
28 */
29 memory_flush mem_force_reload_explicit(volatile char *data,
30 size_t bytes,
31 memory_flush kind,
32 memory_order order);
33

34 /*! \brief The same as ‘mem_force_reload_explicit()‘, but with
35 ‘kind‘ set to ‘memory_flush_none‘, and ‘order‘ set to ‘memory_order_acquire‘.
36 This does not reload loads from main memory, and prevents reads and writes
37 to this region subsequent to this operation being reordered to before this
38 operation.
39 */
40 memory_flush mem_force_reload(volatile char *data,
41 size_t bytes);
42

43 /*! \brief Ensures that dead store elimination does not happen for a region of
44 memory, optionally synchronising the region with main memory.
45

3

https://github.com/ned14/quickcpplib/blob/master/include/mem_flush_loads_stores.hpp
https://github.com/ned14/quickcpplib/blob/master/include/mem_flush_loads_stores.hpp


46 \return The kind of memory flush actually used.
47 \param data The beginning of the byte array to ensure stores to.
48 \param bytes The number of bytes to ensure stores to.
49 \param kind Whether to wait until all stores to the region reach main memory.
50 \param order The atomic reordering constraints to apply to this operation.
51

52 \warning On older Intel CPUs, due to lack of hardware support, we always execute
53 ‘memory_flush_evict‘ even if asked for ‘memory_flush_retain‘. This can produce
54 some very poor performance. Check the value returned to see what kind of flush
55 was actually performed.
56 */
57 memory_flush mem_flush_stores_explicit(volatile const char *data,
58 size_t bytes,
59 memory_flush kind,
60 memory_order order);
61

62 /*! \brief The same as ‘mem_flush_stores_explicit()‘, but with
63 ‘kind‘ set to ‘memory_flush_none‘, and ‘order‘ set to ‘memory_order_release‘.
64 This does not flush stores to main memory, and prevents reads and writes to
65 this region preceding this operation being reordered to after this operation.
66 */
67 memory_flush mem_flush_stores(volatile const char *data,
68 size_t bytes);

4 Implementation cost

It is firstly important to note that from the perspective of the compiler, the semantics of the above
functions could be exactly the same as for calling an extern function – the compiler must write
out relevant state before the call, and reload relevant state after the call. The main difference
is that compilers could treat these functions a bit more optimally, in that mem_flush_stores()

does not require reloading state afterwards, and mem_force_reload() does not require writing out
state beforehand. Also, the fact that mem_flush_stores() always equals an atomic_thread_fence

(memory_order_release), and mem_force_reload() always equals an
atomic_thread_fence(memory_order_acquire), could be useful to an optimiser.

On compilers without link time optimisation, a conforming implementation of these functions is
trivially easy, just being extern is enough. The main memory flush support is also trivially easy to
implement, on Intel CPUs one loops the CLWB opcode over the cache lines, on ARM64 it is the dc

cvac opcode. Most CPUs have a similar operation – for those which do not, the functions return
memory_flush_none to indicate that no main memory flushing was performed.

On compilers with link time optimisation, there is a trick which the reference library implementation
uses – it calls an externally modifiable function pointer, thus forcing the compiler to flush and reload
state even under link time optimisation. Current link time optimisation technology appears to be
unable to discern that the function pointer will only ever have one value, and thus deindirect the
function call, and thus optimise away the desired semantics.

4



5 Conclusion

Obviously built in support for these operations in the compiler would be much better again still
than calling an extern function which in the default implementation, simply calls an atomic thread
fence and nothing else. This is why these operations are proposed for standardisation: built in (i.e.
inlined) understanding would be more efficient than calling a function which calls a single CPU
opcode and returns.

One would also be guaranteed that future link time optimisation technology improvements will
retain the desired semantics.

Finally there would be the hope that compilers could better optimise how much state to flush and
reload based on the byte range supplied, as the current reference implementation is a sledgehammer
which flushes and reloads all compiler state.

6 References

[Intel CLWB opcode] https://www.felixcloutier.com/x86/clwb

[ARM DC opcode] https://developer.arm.com/docs/ddi0595/latest/

aarch64-system-instructions/dc-cvac

5

https://www.felixcloutier.com/x86/clwb
https://developer.arm.com/docs/ddi0595/latest/aarch64-system-instructions/dc-cvac
https://developer.arm.com/docs/ddi0595/latest/aarch64-system-instructions/dc-cvac

	Introduction
	Proposed design
	Proposed API
	Implementation cost
	Conclusion
	References

