2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC 9899:yyyy

Programming languages — C

Abstract

(This cover sheet to be replaced by ISO.)

This document specifies the form and establishes the interpretation of programs expressed in the
programming language C. Its purpose is to promote portability, reliability, maintainability, and
efficient execution of C language programs on a variety of computing systems.

Clauses are included that detail the C language itself and the contents of the C language execution
library. Annexes summarize aspects of both of them, and enumerate factors that influence the
portability of C programs.

Although this document is intended to guide knowledgeable C language programmers as well as
implementors of C language translation systems, the document itself is not designed to serve as a
tutorial.

Recipients of this draft are invited to submit, with their comments, notification of any relevant
patent rights of which they are aware and to provide supporting documentation.

This document marks changes from version C17 to version C201909. They are indicated by striking
out text that has been deleted and underlining text that has been added. Pages that contain changes
are marked with C17..C201909 and are listed under C201909 CHANGES in the index.

The following documents have been applied to this draft:

DR 476 volatile semantics for Ivalues

DR 488 clértomb () on wide characters encoded as multiple charl6_t
DR 494 Part 1: Alignment specifier expression evaluation

DR 496 offsetof and subobjects (with editorial modification)
DR 497 "white-space character" defined in two places

DR 499 Anonymous structure in union behavior

DR 500 Ambiguous specification for FLT_EVAL_METHOD

DR 501 make DECIMAL_DIG obsolescent

FPDR 20 changes for obsolescing DECIMAL_DIG

FPDR21 printf of one-digit character string

FP DR 23 1lquantexp invalid case

FPDR24 remainder NaN case

FPDR25 totalorder parameters

N2124 and N2319 rounding direction macro FE_TONEARESTFROMZERO
N2186 Alternative to N2166

N2212 type generic cbrt (with editorial changes)

Abstract i

clauses) and part 3 (version macros for

ISO/IEC 9899:202x (E) working draft — September 25, 2019
N2260 Clarifying the restrict Keyword v2
N2265 Harmonizing static_assert with C++
N2267 nodiscard attribute
N2270 maybe_unused attribute
N2271 CR for pow divide-by-zero case
N2293 Alignment requirements for memory management functions
N2314 TS 18661-1 plus CR/DRs for C2X
N2322 preprocessor line numbers unspecified
N2325 DBL_NORM_MAX etc
N2326 floating-point zero and other normalization
N2334 deprecated attribute
N2335 attributes
N2337 strftime, with'b’ and'B’ swapped
N2338 error indicator for encoding errors in fgetwc
N2341 TS 18661-2 plus CR/DRs for C2X
N2345 editors, resolve ambiguity of a semicolon
N2349 the memccpy function
N2350 defining new types in offsetof
N2353 the strdup and strndup functions
N2356 update for payload functions
N2358 no internal state for mblen
N2359 part 2 (remove WANT macros from numbered

changed library clauses)

N2401 TS 18661-4a for C2X

ii

In addition to these, the document has undergone some editorial changes, namely

— The synopsis lists in Annex B are now generated automatically and classified according to
the feature test or WANT macros that are required to make them available.

— Addition of a new non-normative clause J.6 to Annex J that categorizes identifiers used by
this document.

— Renaming of the syntax term “struct declaration”,

”ou

trr “

struct declaration list” “struct declarator”,

v

and “struct declarator list” to the more appropriate “member declaration”, “member declaration
list”, “member declarator” and “member declarator list”, respectively.

Abstract

2434

2434

(no diff marks, here)

working draft — September 25, 2019

Abstract

ISO/IEC 9899:202x (E)

iii

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

(no diff marks, here)

iv Contents

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)
Contents
Foreword xiii
Introduction xiv
1 Scope 1
2 Normative references 2
3 Terms, definitions, and symbols 3
4 Conformance 8
5 Environment 9
51 Conceptualmodels L 9
5.1.1 Translationenvironment e 9
5.1.2 Executionenvironments e e e 10
5.2 Environmental considerations e 17
521 Charactersets e 17
52.2 Character display semantics L. 19
523 Signalsandinterrupts L L L L Lo 19
524 Environmental limits 19
6 Language 33
6.1 Notation e e 33
6.2 Concepts 33
6.2.1 Scopesofidentifiers L L o L L 33
6.2.2 Linkagesofidentifiers L L L oL 34
6.2.3 Namespacesofidentifiers. o L oL 34
6.24 Storage durationsofobjects L o oo L 35
625 Types 36
6.2.6 Representationsoftypes L. 39
6.2.7 Compatible type and compositetype 40
6.2.8 Alignmentofobjects Lo oL 41
6.3 CONVEISIONS . . . o . v o e o e e e e e e e e 42
6.3.1 Arithmeticoperands o o 42
632 Otheroperands 45
6.4 Lexicalelements 48
641 Keywords 49
6.42 Identifiers 49
Contents v

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

Vi

6.5

6.6
6.7

6.8

6.4.3 Universal characternames. 51
644 Constants 52
6.45 Stringliterals 59
6.4.6 Punctuators 60
6.47 Headernames 61
6.4.8 Preprocessingnumbers L L L L L oL 62
649 Comments 62
Expressions 64
6.5.1 Primaryexpressions e 65
6.5.2 Postfixoperators 66
6.5.3 Unaryoperators o 72
654 Castoperators. 75
6.5.5 Multiplicative operators L L L Lo 75
6.5.6 Additiveoperators 76
6.5.7 Bitwiseshiftoperators o oo o 77
6.5.8 Relationaloperators L L o 77
6.5.9 Equalityoperators 78
6.5.10 Bitwise ANDoperator 79
6.5.11 Bitwise exclusive ORoperator 79
6.5.12 Bitwise inclusive OR operator, 80
6.5.13 Logical ANDoperator 80
6.5.14 Logical ORoperator 80
6.5.15 Conditionaloperator L L o 81
6.5.16 Assignmentoperators oL 82
6.5.17 Commaoperator 84
Constant expressions 85
Declarations e 87
6.7.1 Storage-classspecifiers L 88
6.72 Typespecifiers 89
6.73 Typequalifiers 97
6.74 Functionspecifiers o o 102
6.7.5 Alignmentspecifier. o L o 103
6.7.6 Declarators 104
6.77 Typenames 110
6.7.8 Typedefinitions L 110
6.7.9 Initialization L 112
6.7.10 Staticassertions 117
6.7.11 Attributes 117
Statementsand blocks Lo o 122
6.8.1 Labeledstatements 122

Contents

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

6.8.2 Compound statement 123

6.8.3 Expressionandnull statements 123

6.84 Selectionstatements 124

6.8.5 Iterationstatements o 126

6.8.6 Jumpstatements oo 127

6.9 Externaldefinitions 130
6.9.1 Functiondefinitions 130

6.9.2 External objectdefinitions L L L Lo 133

6.10 Preprocessing directives L L 135
6.10.1 Conditional inclusion 136
6.10.2 Source fileinclusion 137
6.10.3 Macroreplacement L L L 139
6.104 Linecontrol 144
6.10.5 Errordirective e 145
6.10.6 Pragmadirective L 145
6.10.7 Nulldirective e 146
6.10.8 Predefined macronames 146
6.10.9 Pragmaoperator 148

6.11 Futurelanguagedirections L. 149
6.11.1 Floatingtypes 149
6.11.2 Linkages ofidentifiers 149
6.11.3 Externalnames 149
6.11.4 Character escape SEQUENCES v vt vt 149
6.11.5 Storage-classspecifiers L L Lo oL 149
6.11.6 Functiondeclarators 149
6.11.7 Function definitions 149
6.11.8 Pragmadirectives. L o 149
6.11.9 Predefined macronamest 149

7 Library 150
7.1 Introduction 150
7.1.1 Definitionsof terms 150

712 Standard headers 150

7.1.3 Reservedidentifiers 151

714 Useoflibrary functions, 152

7.2 Diagnostics<assert.h> o o 154
721 Programdiagnostics L o 154

7.3 Complex arithmetic <complex.h> 155
731 Introduction 155

732 ConventionS e e e e e e e e e 155

Contents vii

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

74

7.5
7.6

7.7
7.8

7.9
7.10
7.11

7.12

viii

733 Branchcuts 155
734 The CX_LIMITED_RANGE pragma 156
7.3.5 Trigonometric functions L L L oL 156
73.6 Hyperbolicfunctions 158
7.3.7 Exponential and logarithmic functions 159
7.3.8 Power and absolute-value functions 160
7.3.9 Manipulation functions L L Lo 161
Character handling <ctype.h> 164
7.4.1 Character classification functions 164
742 Character case mapping functions L L L 166
Errors<errno.h> 168
Floating-point environment <fenv.h> 0L 169
7.6.1 The FENV_ACCESS pragmat v v v v ittt 171
7.6.2 The FENV_ROUND pragma 172
7.6.3 The FENV_DEC_ROUND pragma 173
7.6.4 Floating-pointexceptions L L L L 174
7.6.5 Rounding and other controlmodes 177
7.6.6 Environment 179
Characteristics of floating types <float.h> 181
Format conversion of integer types <inttypes.h> 182
7.8.1 Macros for format specifiers L oL oL 182
7.8.2 Functions for greatest-width integer types 183
Alternative spellings <is0646.h>. Lo L L. 185
Sizes of integer types <limits.h> 186
Localization <locale.h>. e 187
711.1 Localecontrol L 187
7.11.2 Numeric formatting convention inquiry 188
Mathematics <math.h> L 193
7.12.1 Treatment of error conditions, 196
7122 The FP_CONTRACT pragma oo v vttt et 197
7.12.3 Classificationmacros 197
7124 Trigonometric functions L. 200
7.12.5 Hyperbolicfunctions Lo o 205
7.12.6 Exponential and logarithmic functions 207
7.12.7 Power and absolute-value functions 214
7.12.8 Error and gamma functions o oL L L oL 218
7129 Nearestinteger functionso L L Lo 219
7.12.10 Remainder functions L. 224
7.12.11 Manipulation functions o o o oo o 225
7.12.12 Maximum, minimum, and positive difference functions 228

Contents

2434

7.13

7.14

7.15

7.16

7.17

7.18
7.19
7.20

7.21

working draft — September 25, 2019 ISO/IEC 9899:202x (E)

71213 Floating multiply-add, 229
7.12.14 Functions that round result to narrower type 230
7.12.15 Quantum and quantum exponent functions 232
7.12.16 Decimal re-encoding functions 0L, 234
7.12.17 CompariSON MACIOS v v v v v v e e e e 235
Nonlocal jumps <setjmp.h>. L L L oL 238
7.13.1 Savecallingenvironment 238
7.13.2 Restore calling environment L., 238
Signal handling <signal.h>. 240
7.14.1 Specify signalhandling 240
7142 Sendsignal 241
Alignment <stdalign.h> L L 243
Variable arguments <stdarg.h> L L L L. 244
7.16.1 Variable argument listaccessmacros 244
Atomics <stdatomic.h> L o 247
7171 Introduction L 247
7.17.2 Initialization L 248
7173 Orderandconsistency 248
7174 Fences 251
7.17.5 Lock-free property 252
717.6 Atomicintegertypes o 252
7.17.7 Operations on atomictypes, 253
7.17.8 Atomic flag type and operations L L L L 256
Boolean type and values <stdbool.h> 258
Common definitions <stddef.h> 0 0 L. 259
Integer types <stdint.h> o o 260
720.1 Integertypes 260
7.20.2 Limits of specified-width integer types 261
7.20.3 Limits of otherintegertypes 264
7.20.4 Macros for integer constants L oL 265
Input/output <stdio.h>. Lo 266
721.1 Introduction 266
7212 Streams 267
7213 Files 268
7214 Operationsonfiles 270
7215 Fileaccess functions 271
7.21.6 Formatted input/output functions 275
7.21.7 Character input/output functions 0L 292
7.21.8 Direct input/output functions L L L L 295
7.21.9 File positioning functions oL L L Lo L 296

Contents ix

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

7.21.10 Error-handling functions L 298

7.22 General utilities <stdlib.h> Lo o oo 300
7.22.1 Numeric conversion functions 300
7.22.2 Pseudo-random sequence generation functions 306
7.22.3 Memory management functions L 307
7.22.4 Communication with the environment 309
7.22.5 Searching and sorting utilities 312
7.22.6 Integer arithmetic functions L. 314
7.22.7 Multibyte/wide character conversion functions 315
7.22.8 Multibyte/wide string conversion functions 316

723 _Noreturn <stdnoreturn.h>. 319
7.24 String handling <string.h>.o o 320
7.24.1 String function conventions Lo L L L 320
7242 Copyingfunctions 320
7.24.3 Concatenation functions L L Lo 321
7244 Comparisonfunctions L L L oL 322
7245 Searchfunctions 324
7.24.6 Miscellaneous functions o o oo 326

7.25 Type-generic math <tgmath.h> 329
7.26 Threads <threads.h> 334
726.1 Introduction L 334
7.26.2 Initialization functions L Lo L Lo 335
7.26.3 Condition variable functions L L. 335
7264 Mutex functions L 337
7265 Thread functions L 339
7.26.6 Thread-specific storage functions 341

7.27 Dateand time <time.h> o oo o 344
7271 Componentsoftime 344
7.27.2 Time manipulation functions L. 345
7.27.3 Time conversion functionso L oL 347

7.28 Unicode utilities <uchar.h> o o oo 352
7.28.1 Restartable multibyte/wide character conversion functions 352

7.29 Extended multibyte and wide character utilities <wchar.h>. 355
729.1 Introduction L L 355
7.29.2 Formatted wide character input/output functions 356
7.29.3 Wide character input/output functions 369
7.29.4 General wide string utilities o o o oL 372
7.29.41 Wide string numeric conversion functions 372

7.29.4.2 Wide string copying functions 376

7.29.4.3 Wide string concatenation functions 378

Contents

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)
7.29.4.4 Wide string comparison functions 378
7.29.4.5 Wide string search functions 380
7.29.4.6 Miscellaneous functions 383
7.29.5 Wide character time conversion functions 383
7.29.6 Extended multibyte/wide character conversion utilities 384
7.29.6.1 Single-byte/wide character conversion functions 384
7.29.6.2 Conversion state functions 385
7.29.6.3 Restartable multibyte/wide character conversion functions 385
7.29.6.4 Restartable multibyte/wide string conversion functions 387
7.30 Wide character classification and mapping utilities <wctype.h> 389
7.30.1 Introduction 389
7.30.2 Wide character classification utilities 389
7.30.2.1 Wide character classification functions 389
7.30.2.2 Extensible wide character classification functions 392
7.30.3 Wide character case mapping utilities 393
7.30.3.1 Wide character case mapping functions. 393
7.30.3.2 Extensible wide character case mapping functions 393
7.31 Future library directions 395
7.31.1 Complex arithmetic <complex.h> 395
7.31.2 Character handling <ctype.h> 395
7313 Errors<errno.h>. 395
7.31.4 Floating-point environment <fenv.h>. 395
7.31.5 Characteristics of floating types <float.h> 395
7.31.6 Format conversion of integer types <inttypes.h>. 395
7.31.7 Localization<locale.h>, 395
7.31.8 Mathematics<math.h> 0. 395
7.319 Signal handling <signal.h> 396
7.31.10 Atomics <stdatomic.h>. L 396
7.31.11 Boolean type and values <stdbool.h> 396
7.31.12 Integer types <stdint.h> o oo 396
7.31.13 Input/output <stdio.h>o oL L Lo 396
7.31.14 General utilities <stdlib.h>o o oL L 396
7.31.15String handling <string.h> L. 396
7.31.16 Date and time <time.h>o L o 396
7.31.17 Threads <threads.h> 397
7.31.18 Extended multibyte and wide character utilities <wchar.h> 397
7.31.19 Wide character classification and mapping utilities <wctype.h> 397
Annex A (informative) Language syntax summary 398
Annex B (informative) Library summary 413

Contents X1

ISO/IEC 9899:202x (E) working draft — September 25, 2019

Annex C (informative) Sequence points

Annex D (normative) Universal character names for identifiers
Annex E (informative) Implementation limits

Annex F (normative) IEC 60559 floating-point arithmetic
Annex G (normative) IEC 60559-compatible complex arithmetic
Annex H (informative) Language independent arithmetic
Annex I (informative) Common warnings

Annex J (informative) Portability issues

Annex K (normative) Bounds-checking interfaces

Annex L (normative) Analyzability

Annex M (informative) Change History

Bibliography

Index

xii Contents

2434

439

440

441

443

474

485

489

490

525

578

580

583

584

8

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that
are member of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work. In the field of information technology, ISO and IEC have established a joint
technical committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for
the different types of document should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights. Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does
not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO’s adherence to
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see the
following URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/IEC JTC 1, Information technology, Sub-
committee SC 22, Programming languages, their environments and system software interfaces.

This feurthfifth edition cancels thire-fourth edition, ISO/IEC 9899:2011-which-has

and replaces the

changes from the revios edition include:
— added a one-argument version of _Static_assert
— harmonization with ISO/IEC 9945 (POSIX):

e extended month name formats for strftime

e integration of functions: memccpy, strdup, strndup
— harmonization with floating point standard IEC 60559:

e integration of binary floating-point technical specification TS 18661-1
e integration of decimal floating-point technical specification TS 18661-2

e integration of decimal floating-point technical specification TS 18661-4a
— the macro DECIMAL_DIG is declared obsolescent
— added version test macros to certain library headers
— added the attributes feature

— added nodiscard, maybe_unused and deprecated attributes

A complete change history can be found in Annex M.

Foreword Xiii

https://www.iso.org/directives
https://www.iso.org/patents
https://www.iso.org/iso/foreword.html

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

Introduction

With the introduction of new devices and extended character sets, new features could be added to
this document. Subclauses in the language and library clauses warn implementors and programmers
of usages which, though valid in themselves, could conflict with future additions.

Certain features are obsolescent, which means that they could be considered for withdrawal in future
revisions of this document. They are retained because of their widespread use, but their use in
new implementations (for implementation features) or new programs (for language [6.11] or library
features [7.31]) is discouraged.

This document is divided into four major subdivisions:

— preliminary elements (Clauses 1-4);
— the characteristics of environments that translate and execute C programs (Clause 5);
— the language syntax, constraints, and semantics (Clause 6);

— the library facilities (Clause 7).

Examples are provided to illustrate possible forms of the constructions described. Footnotes are
provided to emphasize consequences of the rules described in that subclause or elsewhere in this
document. References are used to refer to other related subclauses. Recommendations are provided
to give advice or guidance to implementors. Annexes define optional features, provide additional
information and summarize the information contained in this document. A bibliography lists
documents that were referred to during the preparation of this document.

The language clause (Clause 6) is derived from “The C Reference Manual”.
The library clause (Clause 7) is based on the 1984 /usr/group Standard.

The Working Group responsible for this document (WG 14) maintains a site on the World Wide Web
athttp://www.open-std.org/JTC1/SC22/WG14/ containing ancillary information that may be of
interest to some readers such as a Rationale for many of the decisions made during its preparation
and a log of Defect Reports and Responses.

xiv Introduction

http://www.open-std.org/JTC1/SC22/WG14/

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC 9899:yyyy

Programming languages — C

1. Scope

1 This document specifies the form and establishes the interpretation of programs written in the C
programming language.? It specifies
— the representation of C programs;
— the syntax and constraints of the C language;
— the semantic rules for interpreting C programs;
— the representation of input data to be processed by C programs;
— the representation of output data produced by C programs;

— the restrictions and limits imposed by a conforming implementation of C.
2 This document does not specify

— the mechanism by which C programs are transformed for use by a data-processing system;
— the mechanism by which C programs are invoked for use by a data-processing system;

— the mechanism by which input data are transformed for use by a C program;

— the mechanism by which output data are transformed after being produced by a C program;

— the size or complexity of a program and its data that will exceed the capacity of any specific
data-processing system or the capacity of a particular processor;

— all minimal requirements of a data-processing system that is capable of supporting a conform-
ing implementation.

DThis document is designed to promote the portability of C programs among a variety of data-processing systems. It is
intended for use by implementors and programmers. Annex] gives an overview of portability issues that a C program might
encounter.

§1 General 1

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

2. Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any amendments)
applies.

ISO/IEC 2382:2015, Information technology — Vocabulary. Available from the ISO online browsing
platform at http://www.iso.org/obp.

ISO 4217, Codes for the representation of currencies and funds.

ISO 8601, Data elements and interchange formats — Information interchange — Representation of dates and
times.

ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS). Available from the
ISO/IEC Information Technology Task Force (ITTF) web site at http://isotc.iso.org/livelink/
livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm.

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously designated
IEC 559:1989).

ISO 80000-2, Quantities and units — Part 2: Mathematical signs and symbols to be used in the natural
sciences and technology.

2 General §2

http://www.iso.org/obp
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

3. Terms, definitions, and symbols

For the purposes of this document, the terms and definitions given in ISO/IEC 2382, ISO 800002,
and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at http://www.electropedia.org/

Additional terms are defined where they appear in italic type or on the left side of a syntax rule.
Terms explicitly defined in this document are not to be presumed to refer implicitly to similar terms
defined elsewhere.

3.1

access (verb)

(execution-time action) to read or modify the value of an object
Note 1 to entry: Where only one of these two actions is meant, “read” or “modify” is used.
Note 2 to entry: “Modify” includes the case where the new value being stored is the same as the previous value.

Note 3 to entry: Expressions that are not evaluated do not access objects.

3.2

alignment

requirement that objects of a particular type be located on storage boundaries with addresses that
are particular multiples of a byte address

3.3

argument
actual argument
DEPRECATED: actual parameter

expression in the comma-separated list bounded by the parentheses in a function call expression, or
a sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a
function-like macro invocation

3.4

behavior

external appearance or action

3.4.1

implementation-defined behavior

unspecified behavior where each implementation documents how the choice is made
Note 1 to entry:].3 gives an overview over properties of C programs that lead to implementation-defined behavior.

EXAMPLE An example of implementation-defined behavior is the propagation of the high-order bit when a signed integer
is shifted right.

3.4.2

locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each implemen-
tation documents

§3.4.2 General 3

https://www.iso.org/obp
http://www.electropedia.org/

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

Note 1 to entry:].4 gives an overview over properties of C programs that lead to locale-specific behavior.

EXAMPLE An example of locale-specific behavior is whether the islower function returns true for characters other than
the 26 lowercase Latin letters.

3.4.3

undefined behavior

behavior, upon use of a nonportable or erroneous program construct or of erroneous data, for which
this document imposes no requirements

Note 1 to entry: Possible undefined behavior ranges from ignoring the situation completely with unpredictable results,
to behaving during translation or program execution in a documented manner characteristic of the environment (with or
without the issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic
message).

Note 2 to entry:].2 gives an overview over properties of C programs that lead to undefined behavior.

EXAMPLE An example of undefined behavior is the behavior on integer overflow.

3.4.4

unspecified behavior

behavior, that results from the use of an unspecified value, or other behavior upon which this
document provides two or more possibilities and imposes no further requirements on which is
chosen in any instance

Note 1 to entry:].1 gives an overview over properties of C programs that lead to unspecified behavior.

EXAMPLE An example of unspecified behavior is the order in which the arguments to a function are evaluated.

3.5

bit

unit of data storage in the execution environment large enough to hold an object that can have one
of two values

Note 1 to entry: It need not be possible to express the address of each individual bit of an object.

3.6
byte

addressable unit of data storage large enough to hold any member of the basic character set of the
execution environment

Note 1 to entry: It is possible to express the address of each individual byte of an object uniquely.

Note 2 to entry: A byte is composed of a contiguous sequence of bits, the number of which is implementation-defined. The
least significant bit is called the low-order bit; the most significant bit is called the high-order bit.

3.7

character

(abstract) member of a set of elements used for the organization, control, or representation of data

3.7.1

character
single-byte character

(C) bit representation that fits in a byte

3.7.2

multibyte character

sequence of one or more bytes representing a member of the extended character set of either the
source or the execution environment

Note 1 to entry: The extended character set is a superset of the basic character set.

4 General §3.7.2

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

3.7.3

wide character

value representable by an object of type wchar_t, capable of representing any character in the
current locale

3.8

constraint

restriction, either syntactic or semantic, by which the exposition of language elements is to be
interpreted

3.9

correctly rounded result

representation in the result format that is nearest in value, subject to the current rounding mode, to
what the result would be given unlimited range and precision

Note 1 to entry: In this document, when the words “correctly rounded” are not immediately followed by “result”, this is the
intended usage.

3.10

diagnostic message

message belonging to an implementation-defined subset of the implementation’s message output

3.11
forward reference

reference to a later subclause of this document that contains additional information relevant to this
subclause

3.12
implementation
particular set of software, running in a particular translation environment under particular con-

trol options, that performs translation of programs for, and supports execution of functions in, a
particular execution environment

3.13

implementation limit

restriction imposed upon programs by the implementation

3.14

memory location

either an object of scalar type, or a maximal sequence of adjacent bit-fields all having nonzero width

Note 1 to entry: Two threads of execution can update and access separate memory locations without interfering with each
other.

Note 2 to entry: A bit-field and an adjacent non-bit-field member are in separate memory locations. The same applies to
two bit-fields, if one is declared inside a nested structure declaration and the other is not, or if the two are separated by a
zero-length bit-field declaration, or if they are separated by a non-bit-field member declaration. It is not safe to concurrently
update two non-atomic bit-fields in the same structure if all members declared between them are also (nonzero-length)
bit-fields, no matter what the sizes of those intervening bit-fields happen to be.

EXAMPLE A structure declared as

struct {
char a;
int b:5, c:11,:0, d:8;
struct { int ee:8; } e;

§3.14 General 5

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

contains four separate memory locations: The member a, and bit-fields d and e.ee are each separate memory locations,
and can be modified concurrently without interfering with each other. The bit-fields b and c together constitute the fourth
memory location. The bit-fields b and ¢ cannot be concurrently modified, but b and a, for example, can be.

3.15
object

region of data storage in the execution environment, the contents of which can represent values

Note 1 to entry: When referenced, an object can be interpreted as having a particular type; see 6.3.2.1.

3.16

parameter
formal parameter
DEPRECATED: formal argument

object declared as part of a function declaration or definition that acquires a value on entry to the
function, or an identifier from the comma-separated list bounded by the parentheses immediately
following the macro name in a function-like macro definition

3.17

recommended practice

specification that is strongly recommended as being in keeping with the intent of the standard, but
that might be impractical for some implementations

3.18

runtime-constraint

requirement on a program when calling a library function

Note 1 to entry: Despite the similar terms, a runtime-constraint is not a kind of constraint as defined by 3.8, and need not be
diagnosed at translation time.

Note 2 to entry: Implementations that support the extensions in Annex K are required to verify that the runtime-constraints
for a library function are not violated by the program; see K.3.1.4.

Note 3 to entry: Implementations that support Annex L are permitted to invoke a runtime-constraint handler when they
perform a trap.

3.19

value

precise meaning of the contents of an object when interpreted as having a specific type

3.19.1

implementation-defined value

unspecified value where each implementation documents how the choice is made

3.19.2

indeterminate value

either an unspecified value or a trap representation

3.19.3

unspecified value

valid value of the relevant type where this document imposes no requirements on which value is
chosen in any instance

Note 1 to entry: An unspecified value cannot be a trap representation.

6 General §3.19.3

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

3.19.4

trap representation

an object representation that need not represent a value of the object type

3.19.5
perform a trap

interrupt execution of the program such that no further operations are performed

Note 1 to entry: In this document, when the word “trap” is not immediately followed by “representation”, this is the
intended usage.?)

Note 2 to entry: Implementations that support Annex L are permitted to invoke a runtime-constraint handler when they
perform a trap.

3.20

]

ceiling of x

the least integer greater than or equal to =
EXAMPLE [2.4] is 3, [—2.4] is —2.

3.21

L]

floor of

the greatest integer less than or equal to
EXAMPLE |2.4]is2, |—2.4]is —3.

IFor example, “Trapping or stopping (if supported) is disabled ...” (F.8.2). Note that fetching a trap representation might
perform a trap but is not required to (see 6.2.6.1).

§3.21 General 7

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

4. Conformance

In this document, “shall” is to be interpreted as a requirement on an implementation or on a program;
conversely, “shall not” is to be interpreted as a prohibition.

If a “shall” or “shall not” requirement that appears outside of a constraint or runtime-constraint is
violated, the behavior is undefined. Undefined behavior is otherwise indicated in this document by
the words “undefined behavior” or by the omission of any explicit definition of behavior. There is
no difference in emphasis among these three; they all describe “behavior that is undefined”.

A program that is correct in all other aspects, operating on correct data, containing unspecified
behavior shall be a correct program and act in accordance with 5.1.2.3.

The implementation shall not successfully translate a preprocessing translation unit containing a
#error preprocessing directive unless it is part of a group skipped by conditional inclusion.

A strictly conforming program shall use only those features of the language and library specified
in this document.” It shall not produce output dependent on any unspecified, undefined, or
implementation-defined behavior, and shall not exceed any minimum implementation limit.

The two forms of conforming implementation are hosted and freestanding. A conforming hosted
implementation shall accept any strictly conforming program. A conforming freestanding implemen-
tation shall accept any strictly conforming program in which the use of the features specified
in the library clause (Clause 7) is confined to the contents of the standard headers <float.h>,
<is0646.h>, <limits.h>, <stdalign.h>, <stdarg.h>, <stdbool.h>, <stddef.h>, <stdint.h>,
and <stdnoreturn.h>. A conforming implementation may have extensions (including additional
library functions), provided they do not alter the behavior of any strictly conforming program.?

The_strictly conforming programs that shall be accepted by a_conforming freestanding
implementation that defines __STDC_TEC_60559. BFP__ or __STDC_TEC_60559_DFP__ may
also use features in the contents of the standard headers <fenv.h>and <math.h> and the numeric
conversion functions (7.22.1) of the standard header <stdlib.h>. All identifiers that are reserved
when <stdlib.h> is included in a hosted implementation are reserved when it is included in a
freestanding implementation.

A conforming program is one that is acceptable to a conforming implementation.’)

An implementation shall be accompanied by a document that defines all implementation-defined
and locale-specific characteristics and all extensions.

Forward references: conditional inclusion (6.10.1), error directive (6.10.5), characteristics of floating
types <float.h> (7.7), alternative spellings <is0646.h> (7.9), sizes of integer types <limits.h>
(7.10), alignment <stdalign.h> (7.15), variable arguments <stdarg.h> (7.16), boolean type and
values <stdbool.h>(7.18), common definitions <stddef . h>(7.19), integer types <stdint.h> (7.20),
<stdnoreturn.h> (7.23).

3 A strictly conforming program can use conditional features (see 6.10.8.3) provided the use is guarded by an appropriate
conditional inclusion preprocessing directive using the related macro. For example:

#ifdef _STDC_IEC_60559_BFP__ /x FE_UPWARD defined x*/
/*x ... x/
fesetround (FE_UPWARD) ;
/*x ... %/

#endif

YThis implies that a conforming implementation reserves no identifiers other than those explicitly reserved in this
document.

S)Strictly conforming programs are intended to be maximally portable among conforming implementations. Conforming
programs can depend upon nonportable features of a conforming implementation.

8 General §4

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

5. Environment

An implementation translates C source files and executes C programs in two data-processing-system
environments, which will be called the translation environment and the execution environment in this
document. Their characteristics define and constrain the results of executing conforming C programs
constructed according to the syntactic and semantic rules for conforming implementations.

Forward references: In this clause, only a few of many possible forward references have been
noted.

5.1 Conceptual models
5.1.1 Translation environment

5.1.1.1 Program structure

A C program need not all be translated at the same time. The text of the program is kept in units
called source files, (or preprocessing files) in this document. A source file together with all the headers
and source files included via the preprocessing directive #include is known as a preprocessing
translation unit. After preprocessing, a preprocessing translation unit is called a translation unit.
Previously translated translation units may be preserved individually or in libraries. The separate
translation units of a program communicate by (for example) calls to functions whose identifiers have
external linkage, manipulation of objects whose identifiers have external linkage, or manipulation
of data files. Translation units may be separately translated and then later linked to produce an
executable program.

Forward references: linkages of identifiers (6.2.2), external definitions (6.9), preprocessing direc-
tives (6.10).

5.1.1.2 Translation phases

The precedence among the syntax rules of translation is specified by the following phases.®)

1. Physical source file multibyte characters are mapped, in an implementation-defined manner, to
the source character set (introducing new-line characters for end-of-line indicators) if necessary.
Trigraph sequences are replaced by corresponding single-character internal representations.

2. Each instance of a backslash character (\) immediately followed by a new-line character is
deleted, splicing physical source lines to form logical source lines. Only the last backslash on
any physical source line shall be eligible for being part of such a splice. A source file that is
not empty shall end in a new-line character, which shall not be immediately preceded by a
backslash character before any such splicing takes place.

3. The source file is decomposed into preprocessing tokens”) and sequences of white-space
characters (including comments). A source file shall not end in a partial preprocessing token or
in a partial comment. Each comment is replaced by one space character. New-line characters
are retained. Whether each nonempty sequence of white-space characters other than new-line
is retained or replaced by one space character is implementation-defined.

4. Preprocessing directives are executed, macro invocations are expanded, and =Pragma—_Pragma
unary operator expressions are executed. If a character sequence that matches the syntax
of a universal character name is produced by token concatenation (6.10.3.3), the behavior is
undefined. A #include preprocessing directive causes the named header or source file to be

processed from phase 1 through phase 4, recursively. All preprocessing directives are then
deleted.

®This requires implementations to behave as if these separate phases occur, even though many are typically folded
together in practice. Source files, translation units, and translated translation units need not necessarily be stored as files,
nor need there be any one-to-one correspondence between these entities and any external representation. The description is
conceptual only, and does not specify any particular implementation.

7) As described in 6.4, the process of dividing a source file’s characters into preprocessing tokens is context-dependent. For
example, see the handling of < within a #include preprocessing directive.

§5.1.1.2 Environment 9

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

5. Each source character set member and escape sequence in character constants and string
literals is converted to the corresponding member of the execution character set; if there is no
corresponding member, it is converted to an implementation-defined member other than the
null (wide) character.®)

6. Adjacent string literal tokens are concatenated.

7. White-space characters separating tokens are no longer significant. Each preprocessing token
is converted into a token. The resulting tokens are syntactically and semantically analyzed
and translated as a translation unit.

8. All external object and function references are resolved. Library components are linked to
satisfy external references to functions and objects not defined in the current translation. All
such translator output is collected into a program image which contains information needed
for execution in its execution environment.

Forward references: universal character names (6.4.3), lexical elements (6.4), preprocessing direc-
tives (6.10), trigraph sequences (5.2.1.1), external definitions (6.9).

5.1.1.3 Diagnostics

A conforming implementation shall produce at least one diagnostic message (identified in an imple-
mentation-defined manner) if a preprocessing translation unit or translation unit contains a violation
of any syntax rule or constraint, even if the behavior is also explicitly specified as undefined or
implementation-defined. Diagnostic messages need not be produced in other circumstances.”)

EXAMPLE An implementation is required to issue a diagnostic for the translation unit:

char i;
int i;

because in those cases where wording in this document describes the behavior for a construct as being both a constraint error
and resulting in undefined behavior, the constraint error is still required to be diagnosed.

5.1.2 Execution environments

Two execution environments are defined: freestandingfreestanding and hested-hosted. In both cases,
program startup occurs when a designated C function is called by the execution environment. All
objects with static storage duration shall be initialized (set to their initial values) before program
startup. The manner and timing of such initialization are otherwise unspecified. Program termination
returns control to the execution environment.

Forward references: storage durations of objects (6.2.4), initialization (6.7.9).

5.1.2.1 Freestanding environment

In a freestanding environment (in which C program execution may take place without any benefit
of an operating system), the name and type of the function called at program startup are implemen-
tation-defined. Any library facilities available to a freestanding program, other than the minimal set
required by Clause 4, are implementation-defined.

The effect of program termination in a freestanding environment is implementation-defined.

5.1.2.2 Hosted environment

A hosted environment need not be provided, but shall conform to the following specifications if
present.

8 An implementation need not convert all non-corresponding source characters to the same execution character.

9 An implementation is encouraged to identify the nature of, and where possible localize, each violation. Of course, an
implementation is free to produce any number of diagnostic messages, often referred to as warnings, as long as a valid
program is still correctly translated. It can also successfully translate an invalid program. Annex I lists a few of the more
common warnings.

10 Environment §5.1.2.2

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

5.1.2.2.1 Program startup

The function called at program startup is named main. The implementation declares no prototype
for this function. It shall be defined with a return type of int and with no parameters:

| int main(void) { /* ... */ }

or with two parameters (referred to here as argc and argv, though any names may be used, as they
are local to the function in which they are declared):

\ int main(int argc, char xargv[]) { /x ... %/ }

or equivalent;lo) or in some other implementation-defined manner.

If they are declared, the parameters to the main function shall obey the following constraints:

— The value of argc shall be nonnegative.
— argv[argc] shall be a null pointer.

— If the value of argc is greater than zero, the array members argv[0] through argv[argc-1]
inclusive shall contain pointers to strings, which are given implementation-defined values
by the host environment prior to program startup. The intent is to supply to the program
information determined prior to program startup from elsewhere in the hosted environment.
If the host environment is not capable of supplying strings with letters in both uppercase and
lowercase, the implementation shall ensure that the strings are received in lowercase.

— If the value of argc is greater than zero, the string pointed to by argv[0] represents the
program name; argv[0][0] shall be the null character if the program name is not available
from the host environment. If the value of argc is greater than one, the strings pointed to by
argv[1] through argv[argc-1] represent the program parameters.

— The parameters argc and argv and the strings pointed to by the argv array shall be modifiable
by the program, and retain their last-stored values between program startup and program
termination.

5.1.2.2.2 Program execution

In a hosted environment, a program may use all the functions, macros, type definitions, and objects
described in the library clause (Clause 7).

5.1.2.2.3 Program termination

If the return type of the main function is a type compatible with int, a return from the initial call
to the main function is equivalent to calling the exit function with the value returned by the main
function as its argument;!) reaching the } that terminates the main function returns a value of 0. If
the return type is not compatible with int, the termination status returned to the host environment
is unspecified.

Forward references: definition of terms (7.1.1), the exit function (7.22.4.4).

5.1.2.3 Program execution

The semantic descriptions in this document describe the behavior of an abstract machine in which
issues of optimization are irrelevant.

Aceessing-a—volatile-object;meodifying-An access to_an object through the use of an lvalue of
volatile-qualified type is a volatile access . A volatile access to an object, modifying a file, or calling a

19Thus, int can be replaced by a typedef name defined as int, or the type of argv can be written as char *x argv, and so
on.

1DIn accordance with 6.2.4, the lifetimes of objects with automatic storage duration declared in main will have ended in the
former case, even where they would not have in the latter.

§5.1.23 Environment 11

10

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

function that does any of those operations are all side effects,'? which are changes in the state of the
execution environment. Evaluation of an expression in general includes both value computations
and initiation of side effects. Value computation for an lvalue expression includes determining the
identity of the designated object.

Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations executed by a
single thread, which induces a partial order among those evaluations. Given any two evaluations
A and B, if A is sequenced before B, then the execution of A shall precede the execution of B.
(Conversely, if A is sequenced before B, then B is sequenced after A.) If A is not sequenced before or
after B, then A and B are unsequenced. Evaluations A and B are indeterminately sequenced when A is
sequenced either before or after B, but it is unspecified which.!® The presence of a sequence point
between the evaluation of expressions A and B implies that every value computation and side effect
associated with A is sequenced before every value computation and side effect associated with B. (A
summary of the sequence points is given in Annex C.)

In the abstract machine, all expressions are evaluated as specified by the semantics. An actual
implementation need not evaluate part of an expression if it can deduce that its value is not used and
that no needed side effects are produced (including any caused by calling a function or aecessinga

volatile-through volatile access to an object).

When the processing of the abstract machine is interrupted by receipt of a signal, the values of
objects that are neither lock-free atomic objects nor of type volatile sig_atomic_t are unspecified,
as is the state of the dynamic floating-point environment. The value of any object modified by
the handler that is neither a lock-free atomic object nor of type volatile sig_atomic_t becomes
indeterminate when the handler exits, as does the state of the dynamic floating-point environment
if it is modified by the handler and not restored to its original state.

The least requirements on a conforming implementation are:

— Accesses-to-volatile-Volatile accesses to objects are evaluated strictly according to the rules of
the abstract machine.

— At program termination, all data written into files shall be identical to the result that execution
of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place as specified in 7.21.3.
The intent of these requirements is that unbuffered or line-buffered output appear as soon as
possible, to ensure that prompting messages actually appear prior to a program waiting for
input.

This is the observable behavior of the program.
What constitutes an interactive device is implementation-defined.

More stringent correspondences between abstract and actual semantics may be defined by each
implementation.

EXAMPLE 1 An implementation might define a one-to-one correspondence between abstract and actual semantics: at every
sequence point, the values of the actual objects would agree with those specified by the abstract semantics. The keyword
volatile would then be redundant.

Alternatively, an implementation might perform various optimizations within each translation unit, such that the actual
semantics would agree with the abstract semantics only when making function calls across translation unit boundaries. In
such an implementation, at the time of each function entry and function return where the calling function and the called
function are in different translation units, the values of all externally linked objects and of all objects accessible via pointers
therein would agree with the abstract semantics. Furthermore, at the time of each such function entry the values of the
parameters of the called function and of all objects accessible via pointers therein would agree with the abstract semantics. In

12)The IEC 60559 standard for binary floating-point arithmetic requires certain user-accessible status flags and control
modes. Floating-point operations implicitly set the status flags; modes affect result values of floating-point operations.
Implementations that support such floating-point state are required to regard changes to it as side effects — see Annex F for
details. The floating-point environment library <fenv.h> provides a programming facility for indicating when these side
effects matter, freeing the implementations in other cases.

13)The executions of unsequenced evaluations can interleave. Indeterminately sequenced evaluations cannot interleave, but
can be executed in any order.

12 Environment §5.1.2.3

11

12

13

14

15

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

this type of implementation, objects referred to by interrupt service routines activated by the signal function would require
explicit specification of volatile storage, as well as other implementation-defined restrictions.

EXAMPLE 2 In executing the fragment

char cl1, c2;
/*x ... %/
cl =cl + c2;

the “integer promotions” require that the abstract machine promote the value of each variable to int size and then add
the two ints and truncate the sum. Provided the addition of two chars can be done without overflow, or with overflow
wrapping silently to produce the correct result, the actual execution need only produce the same result, possibly omitting the
promotions.

EXAMPLE 3 Similarly, in the fragment

float f1l, f2;
double d;
/* .. %/
fl = f2 % d;

the multiplication can be executed using single-precision arithmetic if the implementation can ascertain that the result would
be the same as if it were executed using double-precision arithmetic (for example, if d were replaced by the constant 2.0,
which has type double).

EXAMPLE 4 Implementations employing wide registers have to take care to honor appropriate semantics. Values are
independent of whether they are represented in a register or in memory. For example, an implicit spilling of a register is
not permitted to alter the value. Also, an explicit store and load is required to round to the precision of the storage type. In
particular, casts and assignments are required to perform their specified conversion. For the fragment

double dl1, d2;

float f;

dl f = expression;

d2 (float) expression;

the values assigned to d1 and d2 are required to have been converted to float.

EXAMPLE 5 Rearrangement for floating-point expressions is often restricted because of limitations in precision as well as
range. The implementation cannot generally apply the mathematical associative rules for addition or multiplication, nor
the distributive rule, because of roundoff error, even in the absence of overflow and underflow. Likewise, implementations
cannot generally replace decimal constants in order to rearrange expressions. In the following fragment, rearrangements
suggested by mathematical rules for real numbers are often not valid (see F.9).

double x, y, z;

/* ... %/

X = (x xy) * z; // not equivalent to X %=y * z;

z=(x -vy) +vy; // not equivalent to z = x;

Z =X+ Xx*Y; // not equivalent to z = x * (1.0 + y);
y =x/ 5.0; // not equivalent toy = x * 0.2;

EXAMPLE 6 To illustrate the grouping behavior of expressions, in the following fragment

int a, b;
/* ... %/
a =a + 32760 + b + 5;

the expression statement behaves exactly the same as

a = (((a+ 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is next added to b, and
that result is then added to 5 which results in the value assigned to a. On a machine in which overflows produce an explicit
trap and in which the range of values representable by an int is [-32768, +32767], the implementation cannot rewrite this
expression as

a = ((a+ b) + 32765);

§5.1.2.3 Environment 13

16

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

since if the values for a and b were, respectively, —32754 and —15, the sum a + b would produce a trap while the original
expression would not; nor can the expression be rewritten either as

| a = ((a+32765) + b);

or

| a=(a+ (b+ 32765));

since the values for a and b might have been, respectively, 4 and —8 or —17 and 12. However, on a machine in which
overflow silently generates some value and where positive and negative overflows cancel, the above expression statement
can be rewritten by the implementation in any of the above ways because the same result will occur.

EXAMPLE 7 The grouping of an expression does not completely determine its evaluation. In the following fragment

#include <stdio.h>

int sum;

char xp;

/* ... %/

sum = sum * 10 - 'O’ + (xp++ = getchar());

the expression statement is grouped as if it were written as

| sum = (((sum * 10) - '0') + ((+(p++)) = (getchar()))); |

but the actual increment of p can occur at any time between the previous sequence point and the next sequence point (the ;),
and the call to getchar can occur at any point prior to the need of its returned value.

Forward references: expressions (6.5), type qualifiers (6.7.3), statements (6.8), floating-point envi-
ronment <fenv.h> (7.6), the signal function (7.14), files (7.21.3).

5.1.2.4 Multi-threaded executions and data races

Under a hosted implementation, a program can have more than one thread of execution (or thread)
running concurrently. The execution of each thread proceeds as defined by the remainder of this
document. The execution of the entire program consists of an execution of all of its threads.'¥
Under a freestanding implementation, it is implementation-defined whether a program can have
more than one thread of execution.

The value of an object visible to a thread 7" at a particular point is the initial value of the object, a
value stored in the object by T, or a value stored in the object by another thread, according to the
rules below.

NOTE1 In some cases, there could instead be undefined behavior. Much of this section is motivated by the desire to support

atomic operations with explicit and detailed visibility constraints. However, it also implicitly supports a simpler view for
more restricted programs.

Two expression evaluations conflict if one of them modifies a memory location and the other one
reads or modifies the same memory location.

The library defines a number of atomic operations (7.17) and operations on mutexes (7.26.4) that are
specially identified as synchronization operations. These operations play a special role in making
assignments in one thread visible to another. A synchronization operation on one or more memory
locations is either an acquire operation, a release operation, both an acquire and release operation, or a
consume operation. A synchronization operation without an associated memory location is a ferice and
can be either an acquire fence, a release fence, or both an acquire and release fence. In addition, there
are relaxed atomic operations, which are not synchronization operations, and atomic read-modify-write
operations, which have special characteristics.

NOTE 2 For example, a call that acquires a mutex will perform an acquire operation on the locations composing the mutex.
Correspondingly, a call that releases the same mutex will perform a release operation on those same locations. Informally,
performing a release operation on A forces prior side effects on other memory locations to become visible to other threads

that later perform an acquire or consume operation on A. Relaxed atomic operations are not included as synchronization
operations although, like synchronization operations, they cannot contribute to data races.

149)The execution can usually be viewed as an interleaving of all of the threads. However, some kinds of atomic operations,
for example, allow executions inconsistent with a simple interleaving as described below.

14 Environment §5.124

10

11

12

13

14

15

16

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

All modifications to a particular atomic object M occur in some particular total order, called the
modification order of M. If A and B are modifications of an atomic object M, and A happens before B,
then A shall precede B in the modification order of M, which is defined below.

NOTE 3 This states that the modification orders are expected to respect the “happens before” relation.

NOTE 4 There is a separate order for each atomic object. There is no requirement that these can be combined into a single
total order for all objects. In general this will be impossible since different threads can observe modifications to different
variables in inconsistent orders.

A release sequence headed by a release operation A on an atomic object M is a maximal contiguous
sub-sequence of side effects in the modification order of M, where the first operation is A and every
subsequent operation either is performed by the same thread that performed the release or is an
atomic read-modify-write operation.

Certain library calls synchronize with other library calls performed by another thread. In particular,
an atomic operation A that performs a release operation on an object A/ synchronizes with an atomic
operation B that performs an acquire operation on M and reads a value written by any side effect in
the release sequence headed by A.

NOTE 5 Except in the specified cases, reading a later value does not necessarily ensure visibility as described below. Such a
requirement would sometimes interfere with efficient implementation.

NOTE 6 The specifications of the synchronization operations define when one reads the value written by another. For atomic
variables, the definition is clear. All operations on a given mutex occur in a single total order. Each mutex acquisition “reads
the value written” by the last mutex release.

An evaluation A carries a dependency' to an evaluation B if:

— the value of A is used as an operand of B, unless:

e Bis an invocation of the kill_dependency macro,

A is the left operand of a & or | | operator,

o Ais the left operand of a ?: operator, or

A is the left operand of a , operator;
or

— A writes a scalar object or bit-field M, B reads from M the value written by A, and A is
sequenced before B, or

— for some evaluation X, A carries a dependency to X and X carries a dependency to B.
An evaluation A is dependency-ordered before'® an evaluation B if:

— A performs a release operation on an atomic object M, and, in another thread, B performs a
consume operation on M and reads a value written by any side effect in the release sequence
headed by A, or

— for some evaluation X, A is dependency-ordered before X and X carries a dependency to B.

An evaluation A inter-thread happens before an evaluation B if A synchronizes with B, A is
dependency-ordered before B, or, for some evaluation X:

— A synchronizes with X and X is sequenced before B,
— Ais sequenced before X and X inter-thread happens before B, or

— A inter-thread happens before X and X inter-thread happens before B.

15)The “carries a dependency” relation is a subset of the “sequenced before” relation, and is similarly strictly intra-thread.
19The “dependency-ordered before” relation is analogous to the “synchronizes with” relation, but uses release/consume in
place of release/acquire.

§5.124 Environment 15

17

18

19
20

21

22

23

24

25

26
27

28
29

30
31

32
33

34

35

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

i

NOTE 7 The “inter-thread happens before” relation describes arbitrary concatenations of “sequenced before”, “synchronizes
with”, and “dependency-ordered before” relationships, with two exceptions. The first exception is that a concatenation is
not permitted to end with “dependency-ordered before” followed by “sequenced before”. The reason for this limitation is
that a consume operation participating in a “dependency-ordered before” relationship provides ordering only with respect
to operations to which this consume operation actually carries a dependency. The reason that this limitation applies only
to the end of such a concatenation is that any subsequent release operation will provide the required ordering for a prior
consume operation. The second exception is that a concatenation is not permitted to consist entirely of “sequenced before”.
The reasons for this limitation are (1) to permit “inter-thread happens before” to be transitively closed and (2) the “happens
before” relation, defined below, provides for relationships consisting entirely of “sequenced before”.

An evaluation A happens before an evaluation B if A is sequenced before B or A inter-thread happens
before B. The implementation shall ensure that no program execution demonstrates a cycle in the
“happens before” relation.

NOTE 8 This cycle would otherwise be possible only through the use of consume operations.

A wvisible side effect A on an object M with respect to a value computation B of M satisfies the
conditions:

— A happens before B, and

— there is no other side effect X to M such that A happens before X and X happens before B.

The value of a non-atomic scalar object M, as determined by evaluation B, shall be the value stored
by the visible side effect A.

NOTE 9 If there is ambiguity about which side effect to a non-atomic object is visible, then there is a data race and the
behavior is undefined.

NOTE 10 This states that operations on ordinary variables are not visibly reordered. This is not actually detectable without
data races, but it is necessary to ensure that data races, as defined here, and with suitable restrictions on the use of atomics,
correspond to data races in a simple interleaved (sequentially consistent) execution.

The value of an atomic object M, as determined by evaluation B, shall be the value stored by some
side effect A that modifies M, where B does not happen before A.

NOTE 11 The set of side effects from which a given evaluation might take its value is also restricted by the rest of the rules
described here, and in particular, by the coherence requirements below.

If an operation A that modifies an atomic object M happens before an operation B that modifies M,
then A shall be earlier than B in the modification order of M.

NOTE 12 The requirement above is known as “write-write coherence”.

If a value computation A of an atomic object M happens before a value computation B of M, and A
takes its value from a side effect X on M, then the value computed by B shall either be the value
stored by X or the value stored by a side effect Y on M, where Y follows X in the modification
order of M.

NOTE 13 The requirement above is known as “read-read coherence”.

If a value computation A of an atomic object M happens before an operation B on M, then A shall
take its value from a side effect X on M, where X precedes B in the modification order of M.
NOTE 14 The requirement above is known as “read-write coherence”.

If a side effect X on an atomic object M happens before a value computation B of M, then the

evaluation B shall take its value from X or from a side effect Y that follows X in the modification
order of M.

NOTE 15 The requirement above is known as “write-read coherence”.

NOTE 16 This effectively disallows compiler reordering of atomic operations to a single object, even if both operations are
“relaxed” loads. By doing so, it effectively makes the “cache coherence” guarantee provided by most hardware available to C
atomic operations.

NOTE 17 The value observed by a load of an atomic object depends on the “happens before” relation, which in turn depends
on the values observed by loads of atomic objects. The intended reading is that there exists an association of atomic loads
with modifications they observe that, together with suitably chosen modification orders and the “happens before” relation
derived as described above, satisfy the resulting constraints as imposed here.

The execution of a program contains a data race if it contains two conflicting actions in different
threads, at least one of which is not atomic, and neither happens before the other. Any such data

16 Environment §5.124

36

37

38

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

race results in undefined behavior.

NOTE 18 It can be shown that programs that correctly use simple mutexes and memory_order_seq_cst operations to
prevent all data races, and use no other synchronization operations, behave as though the operations executed by their
constituent threads were simply interleaved, with each value computation of an object being the last value stored in that
interleaving. This is normally referred to as “sequential consistency”. However, this applies only to data-race-free programs,
and data-race-free programs cannot observe most program transformations that do not change single-threaded program
semantics. In fact, most single-threaded program transformations continue to be allowed, since any program that behaves
differently as a result necessarily has undefined behavior even before such a transformation is applied.

NOTE 19 Compiler transformations that introduce assignments to a potentially shared memory location that would not
be modified by the abstract machine are generally precluded by this document, since such an assignment might overwrite
another assignment by a different thread in cases in which an abstract machine execution would not have encountered a
data race. This includes implementations of data member assignment that overwrite adjacent members in separate memory
locations. Reordering of atomic loads in cases in which the atomics in question might alias is also generally precluded, since
this could violate the coherence requirements.

NOTE 20 Transformations that introduce a speculative read of a potentially shared memory location might not preserve
the semantics of the program as defined in this document, since they potentially introduce a data race. However, they are
typically valid in the context of an optimizing compiler that targets a specific machine with well-defined semantics for data
races. They would be invalid for a hypothetical machine that is not tolerant of races or provides hardware race detection.

5.2 Environmental considerations

5.2.1 Character sets

Two sets of characters and their associated collating sequences shall be defined: the set in which
source files are written (the source character set), and the set interpreted in the execution environment
(the execution character set). Each set is further divided into a basic character set, whose contents are
given by this subclause, and a set of zero or more locale-specific members (which are not members
of the basic character set) called extended characters. The combined set is also called the extended
character set. The values of the members of the execution character set are implementation-defined.

In a character constant or string literal, members of the execution character set shall be represented by
corresponding members of the source character set or by escape sequences consisting of the backslash
\ followed by one or more characters. A byte with all bits set to 0, called the null character, shall exist
in the basic execution character set; it is used to terminate a character string.

Both the basic source and basic execution character sets shall have the following members: the 26
uppercase letters of the Latin alphabet

A C
N P

<
N =

B DEF GHTI JK
0 Q RS T UV WX

the 26 lowercase letters of the Latin alphabet

b ¢ d e f g h i j k U m
n o p q r s t w X Yy z

the 10 decimal digits

‘ 06 1 2 3 45 6 7 8 9

the following 29 graphic characters

N O
< =>?2 0 N1~ _ {1} ~

’

the space character, and control characters representing horizontal tab, vertical tab, and form feed.
The representation of each member of the source and execution basic character sets shall fit in a
byte. In both the source and execution basic character sets, the value of each character after 0 in
the above list of decimal digits shall be one greater than the value of the previous. In source files,
there shall be some way of indicating the end of each line of text; this document treats such an
end-of-line indicator as if it were a single new-line character. In the basic execution character set,
there shall be control characters representing alert, backspace, carriage return, and new line. If any
other characters are encountered in a source file (except in an identifier, a character constant, a string
literal, a header name, a comment, or a preprocessing token that is never converted to a token), the

§52.1 Environment 17

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

behavior is undefined.

4 Aletter is an uppercase letter or a lowercase letter as defined above; in this document the term does
not include other characters that are letters in other alphabets.

5 The universal character name construct provides a way to name other characters.

Forward references: universal character names (6.4.3), character constants (6.4.4.4), preprocessing
directives (6.10), string literals (6.4.5), comments (6.4.9), string (7.1.1).

5.2.1.1 Trigraph sequences

1 Before any other processing takes place, each occurrence of one of the following sequences of three
characters (called trigraph sequences)'”) is replaced with the corresponding single character.

= # ?7?7) 1] [

770 [7>}

7?7/ 0\ 77« | ?7?7- ~
No other trigraph sequences exist. Each ? that does not begin one of the trigraphs listed above is not
changed.

2 EXAMPLE 1

i ??=define arraycheck(a, b) a??(b??) ??!??! b??(a??)

becomes

#define arraycheck(a, b) a[b] || blal

3 EXAMPLE 2 The following source line

i printf("Eh???/n");

becomes (after replacement of the trigraph sequence ??/)

i printf("Eh?\n");

5.2.1.2 Multibyte characters

1 The source character set may contain multibyte characters, used to represent members of the
extended character set. The execution character set may also contain multibyte characters, which
need not have the same encoding as for the source character set. For both character sets, the following
shall hold:

— The basic character set shall be present and each character shall be encoded as a single byte.
— The presence, meaning, and representation of any additional members is locale-specific.

— A multibyte character set may have a state-dependent encoding, wherein each sequence of
multibyte characters begins in an initial shift state and enters other locale-specific shift states
when specific multibyte characters are encountered in the sequence. While in the initial shift
state, all single-byte characters retain their usual interpretation and do not alter the shift state.
The interpretation for subsequent bytes in the sequence is a function of the current shift state.

— A byte with all bits zero shall be interpreted as a null character independent of shift state. Such
a byte shall not occur as part of any other multibyte character.

2 For source files, the following shall hold:

— An identifier, comment, string literal, character constant, or header name shall begin and end
in the initial shift state.

17)The trigraph sequences enable the input of characters that are not defined in the Invariant Code Set as described in
ISO/IEC 646, which is a subset of the seven-bit US ASCII code set.

18 Environment §5.2.1.2

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

— An identifier, comment, string literal, character constant, or header name shall consist of a
sequence of valid multibyte characters.

5.2.2 Character display semantics

The active position is that location on a display device where the next character output by the
fputc function would appear. The intent of writing a printing character (as defined by the isprint
function) to a display device is to display a graphic representation of that character at the active
position and then advance the active position to the next position on the current line. The direction
of writing is locale-specific. If the active position is at the final position of a line (if there is one), the
behavior of the display device is unspecified.

Alphabetic escape sequences representing nongraphic characters in the execution character set are
intended to produce actions on display devices as follows:

\a (alert) Produces an audible or visible alert without changing the active position.

\b (backspace) Moves the active position to the previous position on the current line. If the active
position is at the initial position of a line, the behavior of the display device is unspecified.

\T (form feed) Moves the active position to the initial position at the start of the next logical page.
\n (new line) Moves the active position to the initial position of the next line.
\r (carriage return) Moves the active position to the initial position of the current line.

\t (horizontal tab) Moves the active position to the next horizontal tabulation position on the current
line. If the active position is at or past the last defined horizontal tabulation position, the behavior
of the display device is unspecified.

\V (vertical tab) Moves the active position to the initial position of the next vertical tabulation
position. If the active position is at or past the last defined vertical tabulation position, the
behavior of the display device is unspecified.

Each of these escape sequences shall produce a unique implementation-defined value which can be
stored in a single char object. The external representations in a text file need not be identical to the
internal representations, and are outside the scope of this document.

Forward references: the isprint function (7.4.1.8), the fputc function (7.21.7.3).

5.2.3 Signals and interrupts

Functions shall be implemented such that they may be interrupted at any time by a signal, or may be
called by a signal handler, or both, with no alteration to earlier, but still active, invocations’ control
flow (after the interruption), function return values, or objects with automatic storage duration.
All such objects shall be maintained outside the function image (the instructions that compose the
executable representation of a function) on a per-invocation basis.

5.2.4 Environmental limits

Both the translation and execution environments constrain the implementation of language trans-
lators and libraries. The following summarizes the language-related environmental limits on a
conforming implementation; the library-related limits are discussed in Clause 7.

5.2.4.1 Translation limits

The implementation shall be able to translate and execute at least one program that contains at least
one instance of every one of the following limits:'®)

— 127 nesting levels of blocks

18 Implementations are encouraged to avoid imposing fixed translation limits whenever possible.

§524.1 Environment 19

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

— 63 nesting levels of conditional inclusion

— 12 pointer, array, and function declarators (in any combinations) modifying an arithmetic,
structure, union, or void type in a declaration

— 63 nesting levels of parenthesized declarators within a full declarator
— 63 nesting levels of parenthesized expressions within a full expression

— 63 significant initial characters in an internal identifier or a macro name(each universal charac-
ter name or extended source character is considered a single character)

— 31 significant initial characters in an external identifier (each universal character name specify-
ing a short identifier of 0000FFFF or less is considered 6 characters, each universal character
name specifying a short identifier of 00010000 or more is considered 10 characters, and each
extended source character is considered the same number of characters as the corresponding
universal character name, if any)'”

— 4095 external identifiers in one translation unit

— 511 identifiers with block scope declared in one block

— 4095 macro identifiers simultaneously defined in one preprocessing translation unit

— 127 parameters in one function definition

— 127 arguments in one function call

— 127 parameters in one macro definition

— 127 arguments in one macro invocation

— 4095 characters in a logical source line

— 4095 characters in a string literal (after concatenation)

— 65535 bytes in an object (in a hosted environment only)

— 15 nesting levels for #included files

— 1023 case labels for a switch statement (excluding those for any nested switch statements)

— 1023 members in a single structure or union

— 1023 enumeration constants in a single enumeration

— 63 levels of nested structure or union definitions in a single struet-deelaration-listmember
declaration list

5.2.4.2 Numerical limits

An implementation is required to document all the limits specified in this subclause, which are
specified in the headers <limits.h>and <float.h>. Additional limits are specified in <stdint.h>.

Forward references: integer types <stdint.h> (7.20).

19)See “future language directions” (6.11.3).

20 Environment §524.2

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

5.2.4.2.1 Sizes of integer types <limits.h>
The values given below shall be replaced by constant expressions suitable for use in #if preprocess-
ing directives.

Moreover, except for CHAR_BIT and MB_LEN_MAX, and the width-of-type macros, the following shall
be replaced by expressions that have the same type as would an expression that is an object of the
corresponding type converted according to the integer promotions. Their implementation-defined
values shall be equal or greater in magnitude (absolute value) to those shown, with the same sign.

— number of bits for smallest object that is not a bit-field (byte)

[
| CHAR_BIT 8
L

— minimum value for an object of type signed char

[
SCHAR_MIN -127 // —(2" - 1)
L

— maximum value for an object of type signed char

[
| SCHAR_MAX +127 // 2" -1
L

— width of type signed char

[
SCHARWIDTH 8
L

— maximum value for an object of type unsigned char

[
| UCHAR_MAX 255 // 2° -1
L

— width of type unsigned char

[
UCHARMWIDTH 8
L

— minimum value for an object of type char

[
| CHAR_MIN see below
L

— maximum value for an object of type char

[
| CHAR_MAX see below
L

— width of type char

[
CHARWIOTH 8
L

— maximum number of bytes in a multibyte character, for any supported locale

| MB_LEN_MAX 1
L

— minimum value for an object of type short int

[
SHRT_MIN -32767 // —(2"° —1)
L

— maximum value for an object of type short int

§524.2.1 Environment 21

ISO/IEC 9899:202x (E)

working draft — September 25, 2019

C17..C201909 2434

[
| SHRT_MAX +32767 // 2% —1
L

— width of type short int

[
SHRTWIDTH 16
L

A

maximum value for an object of type unsigned short int

| USHRT_MAX 65535 // 2'° — 1

width of type unsigned short int

[
USHRTWIDTH 16
L

minimum value for an object of type int

|INT_MIN -32767 // —(2" — 1)
L

maximum value for an object of type int

[
| INT_MAX +32767 // 2% -1
L

width of type int

[
ONTWIDTH 16

maximum value for an object of type unsigned int

iUINT_MAx 65535 // 2'°—1
L

width of type unsigned int

[
UINTWIOTH 16

A

minimum value for an object of type long int

| LONG_MIN -2147483647 // —(2°' —1)

maximum value for an object of type long int

| LONG_MAX +2147483647 // 2°' —1

width of type long int

[
LONGWIDTH 32
L

maximum value for an object of type unsigned long int

[
| ULONG_MAX 4294967295 // 2°% —1
L

— width of type unsigned long int

22

[
ULONGWIDTH 32
L

Environment

§5.24.2.1

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

— minimum value for an object of type long long int

iLLONG_MIN -9223372036854775807 // —(2°° —1)
L

— maximum value for an object of type long long int

| LLONG_MAX +0223372036854775807 // 2°° — 1

— width of type long long int

[
LLONGWIDTH 64
L

— maximum value for an object of type unsigned long long int

(ULLONG_MAX 18446744073769551615 // 2°% — 1
L

— width of type unsigned long long int

ULLONG WIDTH 64 |
L

N~

If an object of type char can hold negative values, the value of CHAR_MIN shall be the same as that of
SCHAR_MIN and the value of CHAR_MAX shall be the same as that of SCHAR_MAX. Otherwise, the value
of CHAR_MIN shall be 0 and the value of CHAR_MAX shall be the same as that of UCHAR_MAX.2) The
value UCHAR_MAX shall equal 2CHAR-BIT _ 1,

Forward references: representations of types (6.2.6), conditional inclusion (6.10.1).

5.2.4.2.2 Characteristics of floating types <float.h>

The characteristics of floating types are defined in terms of a model that describes a representa-
tion of floating-point numbers and values that provide information about an implementation’s
floating-point arithmetic.?). An implementation that defines —_STDC_IEC_60559_BFP__ or _
—STDC_IEC_559__ shall implement floating point types and arithmetic conforming to IEC 60559
as specified in Annex F. An implementation that defines __STDC_IEC_60559_COMPLEX__ or
—STDC_IEC_559_COMPLEX__ shall implement complex types and arithmetic conforming to
IEC 60559 as specified in Annex G.

The following parameters are used to define the model for each floating-point type:

sign (£1)

base or radix of exponent representation (an integer > 1)

exponent (an integer between a minimum en,i, and a maximum ey, ,x)
p precision (the number of base-b digits in the significand)

fr nonnegative integers less than b (the significand digits)

For each floating-point type, the parameters b, p, emin, and e ax are fixed constants.
A-For each floating-point type, a floating-point number (x) is defined by the following model:

P
—k
x=s5bY fib™", emin < €< emax
k=1

xS ®»

In-additionto-nermalized-floating-peint-numbers-Floatin es shall be able to represent zero
all fr == 0) and all normalized floating-point numbers (f1 > 0 if==£0yand all possible k digits and
e exponents result in values representable in the type). In addition, floating types may be able to

2)See 6.2.5.
2DThe floating-point model is intended to clarify the description of each floating-point characteristic and does not require
the floating-point arithmetic of the implementation to be identical.

§524.22 Environment 23

10
11

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

contain other kinds of floating-point numbers,such-as-?? such as negative zero , subnormal floating-
point numbers (x # 0, € = emin, f1 = 0) and unnormalized floating-point numbers (x # 0, € > €min,
fi = 0), and values that are not floating-point numbers, such as infinities and NaNs. A NaN
is an-encoding-a value signifying Not-a-Number. A quiet NaN propagates through almost every
arithmetic operation without raising a floating-point exception; a signaling NaN generally raises a
floating-point exception when occurring as an arithmetic operand.?

An implementation may give zero and values that are not floating-point numbers (such as infinities
and NaNs) a sign or may leave them unsigned. Wherever such values are unsigned, any requirement
in this document to retrieve the sign shall produce an unspecified sign, and any requirement to set
the sign shall be ignored.

An_implementation may prefer particular representations of values that have multiple
representations in a floating type, 6.2.6.1 not withstanding.*¥ The preferred representations of a
floating type, including unique representations of values in the type, are called canonical. A floating.
type may also contain non-canonical representations, for example, redundant representations of
some or all of its values, or representations that are extraneous to the floating-point model.*
Typically, floating-point operations deliver results with canonical representations. IEC 60559

operations deliver results with canonical representations, unless specified otherwise.

The minimum range of representable values for a floating type is the most negative finite floating-
point number representable in that type through the most positive finite floating-point number
representable in that type. In addition, if negative infinity is representable in a type, the range of
that type is extended to all negative real numbers; likewise, if positive infinity is representable in a
type, the range of that type is extended to all positive real numbers.

The accuracy of the floating-point operations (+,- , *, /) and of the library functions in <math.h>
and <complex.h> that return floating-point results is implementation-defined, as is the accuracy of
the conversion between floating-point internal representations and string representations performed
by the library functions in <stdio.h>, <stdlib.h>, and <wchar.h>. The implementation may state

that the accuracy is unknown. Decimal floating-point operations have stricter requirements.

All integer values in the <float.h> header, except FLT_ROUNDS, shall be constant expressions
suitable for use in #if preprocessing directives; all floating values shall be constant expressions. All

except DECIMAL-DIG,-CR_DECIMAL_DIG (E.5), DECIMAL_DIG, DEC_EVAL_METHOD, FLT_EVAL_METHOD,
FLT_RADIX, and FLT_ROUNDS have separate names for all three-floating-point types. The floating-

point model representation is provided for all values except DEC_EVAL_METHOD, FLT_EVAL_METHOD
and FLT_ROUNDS.

The remainder of this subclause specifies characteristics of standard floatin es.

The rounding mode for floating-point addition for standard floating types is characterized by the
implementation-defined value of FLT_ROUNDS :. Evaluation of FLT_ROUNDS correctly reflects an

execution-time change of rounding mode through the function fesetround in <fenv.h>._

-1 indeterminable

0 toward zero

1 to nearest, ties to even
2 toward positive infinity
3 toward negative infinity

22)Some implementations have types that include finite numbers with extra range and/or precision that are not covered

by the model.
2)IEC 60559:1989 specifies quiet and signaling NaNs. For implementations that do not support IEC 60559:1989, the terms

quiet NaN and signaling NaN are intended to apply to values with similar behavior.

*The library operations iscanonical and canonicalize distinguish canonical (preferred) representations, but this
distinction alone does not imply that canonical and non-canonical representations are of different values.

#Some of the values in the TEC 60559 decimal formats have non-canonical representations (as well as a canonical
representation).

24 Environment §524.22

12

13

14

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

4 to nearest, ties away from zero

All other values for FLT_ROUNDS characterize implementation-defined rounding behavior.

MfAf/l\oAziAh/Qg\’gypwylelded by operators wﬂorﬂeaﬁﬂgepefaﬁds—&ﬁé%a}uesrsub]ect to the usual arith-
metic conversionsaned-, including the values vielded by the implicit conversion of operands, and the

values of floating constants are evaluated to a format whose range and precision may be greater than

required by the type. The-use-ofevaluationformats-Such a format is called an evaluation format.

In all cases, assienment and cast operators yield values in the format of the type. The extent
to which evaluation formats are used is characterized by the implementation-defined-value of

FLT_EVAL_METHOD:29

-1 indeterminable;
0 evaluate all operations and constants just to the range and precision of the type;
1 evaluate operations and constants of type float and double to the range and precision of
the double type, evaluate long double operations and constants to the range and precision

of the long double type;

2 evaluate all operations and constants to the range and precision of the Long double type.

All other negative values for FLT_EVAL_METHOD characterize implementation-defined behavior. The

value of FLT_EVAL_METHOD does not characterize values returned by function calls (see 6.8.6.4, E.6).

The presence or absence of subnormal numbers is characterized by the implementation-defined
values of FLT_HAS_SUBNORM, DBL_HAS_SUBNORM, and LDBL_HAS_SUBNORM:

—1 indeterminable?”)
0 absent (type does not support subnormal numbers)?®
1 present (type does support subnormal numbers)

The values given in the following list shall be replaced by constant expressions with implementa-
tion-defined values that are greater or equal in magnitude (absolute value) to those shown, with the
same sign:

— radix of exponent representation, b

[
| FLT_RADIX 2
L

— number of base-FLT_RADIX digits in the floating-point significand, p

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

2)The evaluation method determines evaluation formats of expressions involving all floating types, not just real
types. For example, if FLT_EVAL_METHOD is 1, then the product of two float _Complex operands is represented in the
double _Complex format, and its parts are evaluated to double.

?)Characterization as indeterminable is intended if floating-point operations do not consistently interpret subnormal
representations as zero, nor as nonzero.

28)Characterization as absent is intended if no floating-point operations produce subnormal results from non-subnormal
inputs, even if the type format includes representations of subnormal numbers.

§524.22 Environment 25

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

— number of decimal digits, n, such that any floating-point number with p radix b digits can be
rounded to a floating-point number with n decimal digits and back again without change to

the value,
plogiob if b is a power of 10
[1+ plog,yb] otherwise
FLT_DECIMAL_DIG 6
DBL_DECIMAL_DIG 10
LDBL_DECIMAL_DIG 10

— number of decimal digits, n, such that any floating-point number in the widest supported
floating type with py.x radix b digits can be rounded to a floating-point number with n decimal
digits and back again without change to the value,

Drmax 10810 b if b is a power of 10
[1 4 pmax loggb] otherwise

[
| DECIMAL_DIG 10
L

This is an obsolescent feature, see 7.31.8.

— number of decimal digits, g, such that any floating-point number with ¢ decimal digits can be
rounded into a floating-point number with p radix b digits and back again without change to
the ¢ decimal digits,

plog,ob if b is a power of 10
[(p—1)log,,b| otherwise
FLT_DIG 6
DBL_DIG 10
LDBL_DIG 10

— minimum negative integer such that FLT_RADIX raised to one less than that power is a normal-
ized floating-point number, iy,

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

— minimum negative integer such that 10 raised to that power is in the range of normalized
floating-point numbers, [logyob®i~"|

[
| FLT_MIN_10_EXP -37
| DBL_MIN_10_EXP -37

‘LDBL_MIN_IO_EXP -37
L

— maximum integer such that FLT_RADIX raised to one less than that power is a representable
finite floating-point number, e;ax

[

| FLT_MAX_EXP
| DBL_MAX_EXP
| LDBL_MAX_EXP
L

26 Environment §524.22

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

— maximum integer such that 10 raised to that power is in the range of representable finite
floating-point numbers, [log1o((1 — b™7)b%m=x) |

FLT_MAX_10_EXP +37
DBL_MAX_10_EXP +37
LDBL_MAX_10_EXP +37

15 The values given in the following list shall be replaced by constant expressions with implementa-
tion-defined values that are greater than or equal to those shown:

— maximum representable finite floating-point number; if that number is normalized, its value
is (1 — b7 P)bemax

FLT_MAX 1E+37
DBL_MAX 1E+37
LDBL_MAX 1E+37

— maximum normalized floating-point number, (1 — b~P)pmax

[

| FLT_NORM_MAX 1E+37

' DBL_NORM_MAX 1E+37
1E+37

| LDBL_NORM_MAX
L

16 The values given in the following list shall be replaced by constant expressions with implementa-
tion-defined (positive) values that are less than or equal to those shown:

— the difference between 1 and the least normalized value greater than 1 that is representable in
the given floating-point type, b' 7

FLT_EPSILON 1E-5
DBL_EPSILON 1E-9
LDBL_EPSILON 1E-9

— minimum normalized positive floating-point number, pmin~1

FLT_MIN 1E-37
DBL_MIN 1E-37
LDBL_MIN 1E-37

— minimum positive floating-point number?”)
FLT_TRUE_MIN 1E-37
DBL_TRUE_MIN 1E-37
LDBL_TRUE_MIN 1E-37

Recommended practice

17 Conversion from—(atleast)-doublte-to-decimal-with-DECIMAL=DIG between real floating type and
decimal character sequence with at most T_DECIMAL_DIG digits should be correctly rounded, where
T is_the macro prefix for the type. This assures conversion from real floating type to decimal
character sequence with T_DECIMAL_DIG digits and backshould-be-, using to-nearest rounding,
is the identity function.

18 EXAMPLE 1 The following describes an artificial floating-point representation that meets the minimum requirements of this
document, and the appropriate values in a <float. h>header for type float:

29)1f the presence or absence of subnormal numbers is indeterminable, then the value is intended to be a positive number
no greater than the minimum normalized positive number for the type.

§524.22 Environment 27

ISO/IEC 9899:202x (E)

6
x=s16° > frl67%, —31<e< +32
k=1

working draft — September 25, 2019

C17..C201909 2434

FLT_RADIX 16
FLT_MANT_DIG 6
FLT_EPSILON 9.53674316E-07F
FLT_DECIMAL_DIG 9
FLT_DIG 6
FLT_MIN_EXP -31
FLT_MIN 2.93873588E-39F
FLT_MIN_10_EXP -38
FLT_MAX_EXP +32
FLT_MAX 3.40282347E+38F
FLT_MAX_10_EXP +38

19 EXAMPLE 2 The following describes floating-point representations that also meet the requirements for single-precision and
double-precision numbers in IEC 60559,” and the appropriate values in a <float . h> header for types float and double:

DBL_MAX_10_EXP

+308

Ty = 52¢ 224) fe27k, —125 <e < 4128
k=1
53
xg=82° > fp27F, —1021 <e < +1024

k=1

FLT_RADIX 2
—PEEMALBI6————————— 17

FLT_MANT_DIG 24
FLT_EPSILON 1.19209290E-07F // decimal constant
FLT_EPSILON 0X1P-23F // hex constant
FLT_DECIMAL_DIG 9
FLT_DIG 6
FLT_MIN_EXP -125
FLT_MIN 1.17549435E-38F // decimal constant
FLT_MIN 0X1P-126F // hex constant
FLT_TRUE_MIN 1.40129846E-45F // decimal constant
FLT_TRUE_MIN OX1P-149F // hex constant
FLT_HAS_SUBNORM 1
FLT_MIN_10_EXP -37
FLT_MAX_EXP +128
FLT_MAX 3.40282347E+38F // decimal constant
FLT_MAX 0X1.fffffeP127F // hex constant
FLT_MAX_10_EXP +38
DBL_MANT_DIG 53
DBL_EPSILON 2.2204460492503131E-16 // decimal constant
DBL_EPSILON 0X1P-52 // hex constant
DBL_DECIMAL_DIG 17
DBL_DIG 15
DBL_MIN_EXP -1021
DBL_MIN 2.2250738585072014E-308 // decimal constant
DBL_MIN 0X1P-1022 // hex constant
DBL_TRUE_MIN 4.9406564584124654E-324 // decimal constant
DBL_TRUE_MIN 0X1P-1074 // hex constant
DBL_HAS_SUBNORM 1
DBL_MIN_10_EXP -307
DBL_MAX_EXP +1024
DBL_MAX 1.7976931348623157E+308 // decimal constant
DBL_MAX OX1.fffffffffffffP1023 // hex constant

30)The floating-point model in that standard sums powers of b from zero, so the values of the exponent limits are one less

than shown here.

28 Environment

§5.2422

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Forward references: conditional inclusion (6.10.1), predefined macro names (6.10.8), complex arith-
metic <complex. h> (7.3), extended multibyte and wide character utilities <wchar. h> (7.29), floating-
point environment <fenv.h> (7.6), general utilities <stdlib.h> (7.22), input/output <stdio.h>
(7.21), mathematics <math.h> (7.12), IEC 60559 floating-point arithmetic (Annex F), IEC 60559-
compatible complex arithmetic (Annex G).

5.2.4.2.3 Characteristics of decimal floating types in <float.h>

This subclause specifies macros in <float . h> that provide characteristics of decimal floating types
in terms of the model presented in 5.2.4.2.2. An implementation that does not support decimal
floating types shall not provide these macros. The prefixes DEC32_, DEC64_, and DEC128_ denote
the types _Decimal32, _Decimal64, and _Decimall28 respectively.

DEC_EVAL_METHOD is the decimal floating-point analog of FLT_EVAL_METHOD (5.2.4.2.2).

implementation-defined value characterizes the use of evaluation formats for decimal floatin
types:

—1 indeterminable;

=}

evaluate all operations and constants just to the range and precision of the type;

evaluate operations and constants of type _Decimal32 and _Decimal64 to the range and
recision of the _Decimal64 type, evaluate _Decimall28 operations and constants to the
range and precision of the _Decimall28 type;

evaluate all operations and constants to the range and precision of the _Decimall28 type.

=

N0

The integer values given in the following lists shall be replaced by constant expressions suitable for
use in #1if preprocessing directives:

— radix of exponent representation, b(=10)

For the standard floating types, this value is implementation-defined and is specified by the
macro FLT_RADIX. For the decimal floating types there is no corresponding macro, since the
value 10 is an inherent property of the types. Wherever FLT_RADIX appears in a description
of a function that has versions that operate on decimal floating types, it is noted that for the
decimal floating-point versions the value used is implicitly 10, rather than FLT_RADIX.

— number of digits in the coefficient

DEC32 MANT.DIG 7
DEC64 MANT DIG 16
DEC128 MANT DIG __ 34

— minimum exponent

— maximum exponent

DEC32 MAX EXP 97
DEC64 MAX EXP 385
DEC128 MAX EXP 6145

§524.23 Environment 29

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

— maximum representable finite decimal floating-point number (there are 6, 15 and 33 9’s after
the decimal points respectivel

DEC32 MAX ______9,999999E96DF
(DEC64 MAX " 9.999999999999999E384DD
\DEC128 MAX _____9,999999999999999999999999999999999E6144DL

— the difference between 1 and the least value greater than 1 that is representable in the given

floating type_

[

\DEC32 EPSTLON ___ 1E-6DF
| DEC64_EPSILON ___ 1E-15DD
|DEC128 EPSTLON __ 1E-33DL

— minimum normalized positive decimal floating-point number

DEC32 MIN _ 1E-95DF
DEC64 MIN _ 1E-3830D
DEC128 MIN _ 1E-6143DL

— minimum positive subnormal decimal floating-point number

For decimal floating-point arithmetic, it is often convenient to consider an alternate equivalent

model where the significand is represented with integer rather than fraction digits. With s, b, e, p,
and f;. as defined in 5.2.4.2.2, a floating-point number x is defined by the model:

P
x=g-ble=P) Z fro - bP=F)
k=1

With b fixed to 10, a decimal floating-point number x is thus:

p
z=5-10"7% " fr - 107 H)
k=1

The quantum exponent is ¢ = e — p and the coefficient is ¢ = - -+ [n, which is an integer between

0and 10~Y inclusive. Thus, z = s-c-10? is represented by the triple of integers (s, c
quantum of x is 109, which is the value of a unit in the last place of the coefficient.

Quantum exponent ranges

Maximum Quantum Exponent (¢yaz). 20 369 6111
Minimum Quantum Exponent (¢, —101 =398 —6176

For binary floating-point arithmetic following IEC 60559, representations in the model described
in 5.2.4.2.2 that have the same numerical value are indistinguishable in the arithmetic. However,

30 Environment §524.23

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

for decimal floating-point arithmetic, representations that have the same numerical value but
different quantum exponents, e.g., (1,10, —1) representing 1.0 and (1,100, —2) representing 1.00,
are distinguishable. To facilitate exact fixed-point calculation, operation results that are of decimal

floating type have a preferred quantum exponent , as specified in IEC 60559, which is determined
by the quantum exponents of the operands if they have decimal floating types (or by specific

rules for conversions from other es). The table below gives rules for determining preferred

quantum exponents for results of TEC 60559 operations, and for other operations specified in
this document. When exact, these operations produce a result with their preferred quantum
exponent, or as close to it as possible within the limitations of the type. When inexact, these
operations produce a result with the least possible quantum exponent. For example, the preferred

uantum exponent for addition is the minimum of the quantum exponents of the operands. Hence
1,5230,—3) or 1.23 + 4.000 = 5.230.

The following table shows, for each operation delivering a result in decimal floating-point format,
how the preferred quantum exponents of the operands X), etc., determine the preferred

uantum exponent of the operation result.

Preferred quantum exponents

Operation Preferred quantum exponent of result

rint, nearbyint

nextup, nextdown, nextafter, nexttoward | least possible

remainder min(Q(x

fmin, fmax, fminmag, fmaxmag x) if X gives the result if y gives the result
scalbn, scalbln x)+n

ldexp QX) +p

logb 9

+,d32add, d64add min(Q(x

- 432sub, d64sub min(Q(X

*, d32mul, d64mul Qx) + Qy)

sqrt, d32sqrt, d64sqrt. [QXx)/2]

fma, d32fma, d64fma_ win(Q(x) + Qy). Q(2))
conversion from integer type 0.

exact conversion from non-decimal floating | 0_

type

inexact _conversion _from _non-decimal | least possible

floating type

conversion between decimal floating types | Q(X)

xcx returned by canonicalize Qlxx)

strto, wecsto, scanf, floating constants of | see7.22.1.6
decimal floating type

ACIN QX)

fabs Q(x)

copysign Qx)

quantize Qly).

quantum QX))

xencptr _ returned by __ encodedec, | Q(xxptr)

encodebin

*xptr returned by decodedec, decodebin | Q(xencptr)

fmod min(Q(x

fdim_ min((Q(x ifx >y, 0ifx <

§5.2.4.23 Environment 31

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

hypot min(Q(x

pow_ Ly x QX))

modf Q(value)

*iptr returned by modf max(Q(value). 0)

frexp Q(value) if value = 0, ~(length of coefficient of

value) otherwise

setpayloadsig

*res returned b setpayload,

0 if pl does not represent a valid payload, not
applicable otherwise (NaN returned

getpayload 0 if xx is a NaN, unspecified otherwise
compoundn [> min(0, Q(x)]

pown_ [x Q)]

powr Ly x Q)]

rootn (Q(z)/n]

rsqrt. —1Q(=)/2]

transcendental functions

A function family listed in the table above indicates the functions for all decimal floating types,

where the function family is represented by the name of the functions without a suffix. For example,
ceil indicates the functions ceild32, ceild64, and ceild128.

Forward references: extended multibyte and wide character utilities <wchar.h> (7.29),
floating-point _environment <fenv.h> (7.6), general utilities <stdlib.h> (7.22), input/output
<stdio.h> (7.21), mathematics <math.h> (7.12), type-generic mathematics <tgmath.h> (7.25),

IEC 60559 floating-point arithmetic (Annex F).

32 Environment §52.4.23

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

6. Language

6.1 Notation

In the syntax notation used in this clause, syntactic categories (nonterminals) are indicated by italic
type, and literal words and character set members (terminals) by bold type. A colon (:) following
a nonterminal introduces its definition. Alternative definitions are listed on separate lines, except
when prefaced by the words “one of”. An optional symbol is indicated by the subscript “opt”, so
that

{—eaep#esswﬁ@t—} exXpression gny

indicates an optional expression enclosed in braces.

When syntactic categories are referred to in the main text, they are not italicized and words are
separated by spaces instead of hyphens.

A summary of the language syntax is given in Annex A.

6.2 Concepts
6.2.1 Scopes of identifiers

An identifier can denote an object; a function; a tag or a member of a structure, union, or enumeration;
a typedef name; a label name; a macro name; or a macro parameter. The same identifier can denote
different entities at different points in the program. A member of an enumeration is called an
enumeration constant. Macro names and macro parameters are not considered further here, because
prior to the semantic phase of program translation any occurrences of macro names in the source file
are replaced by the preprocessing token sequences that constitute their macro definitions.

For each different entity that an identifier designates, the identifier is visible (i.e., can be used) only
within a region of program text called its scope. Different entities designated by the same identifier
either have different scopes, or are in different name spaces. There are four kinds of scopes: function,
file, block, and function prototype. (A function prototype is a declaration of a function that declares
the types of its parameters.)

A label name is the only kind of identifier that has function scope. It can be used (in a goto statement)
anywhere in the function in which it appears, and is declared implicitly by its syntactic appearance
(followed by a : and a statement).

Every other identifier has scope determined by the placement of its declaration (in a declarator or
type specifier). If the declarator or type specifier that declares the identifier appears outside of any
block or list of parameters, the identifier has file scope, which terminates at the end of the translation
unit. If the declarator or type specifier that declares the identifier appears inside a block or within the
list of parameter declarations in a function definition, the identifier has block scope, which terminates
at the end of the associated block. If the declarator or type specifier that declares the identifier
appears within the list of parameter declarations in a function prototype (not part of a function
definition), the identifier has function prototype scope, which terminates at the end of the function
declarator. If an identifier designates two different entities in the same name space, the scopes might
overlap. If so, the scope of one entity (the inner scope) will end strictly before the scope of the other
entity (the outer scope). Within the inner scope, the identifier designates the entity declared in the
inner scope; the entity declared in the outer scope is hidden (and not visible) within the inner scope.

Unless explicitly stated otherwise, where this document uses the term “identifier” to refer to some
entity (as opposed to the syntactic construct), it refers to the entity in the relevant name space whose
declaration is visible at the point the identifier occurs.

Two identifiers have the same scope if and only if their scopes terminate at the same point.

Structure, union, and enumeration tags have scope that begins just after the appearance of the tag in
a type specifier that declares the tag. Each enumeration constant has scope that begins just after the
appearance of its defining enumerator in an enumerator list. Any other identifier has scope that

§6.2.1 Language 33

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

begins just after the completion of its declarator.

As a special case, a type name (which is not a declaration of an identifier) is considered to have
a scope that begins just after the place within the type name where the omitted identifier would
appear were it not omitted.

Forward references: declarations (6.7), function calls (6.5.2.2), function definitions (6.9.1), identifiers
(6.4.2), macro replacement (6.10.3), name spaces of identifiers (6.2.3), source file inclusion (6.10.2),
statements and blocks (6.8).

6.2.2 Linkages of identifiers

An identifier declared in different scopes or in the same scope more than once can be made to refer to
the same object or function by a process called linkage.*) There are three kinds of linkage: external,
internal, and none.

In the set of translation units and libraries that constitutes an entire program, each declaration of a
particular identifier with external linkage denotes the same object or function. Within one translation
unit, each declaration of an identifier with internal linkage denotes the same object or function. Each
declaration of an identifier with no linkage denotes a unique entity.

If the declaration of a file scope identifier for an object or a function contains the storage-class
specifier static, the identifier has internal linkage.*?

For an identifier declared with the storage-class specifier extern in a scope in which a prior dec-
laration of that identifier is visible,® if the prior declaration specifies internal or external linkage,
the linkage of the identifier at the later declaration is the same as the linkage specified at the prior
declaration. If no prior declaration is visible, or if the prior declaration specifies no linkage, then the
identifier has external linkage.

If the declaration of an identifier for a function has no storage-class specifier, its linkage is determined
exactly as if it were declared with the storage-class specifier extern. If the declaration of an identifier
for an object has file scope and no storage-class specifier, its linkage is external.

The following identifiers have no linkage: an identifier declared to be anything other than an object
or a function; an identifier declared to be a function parameter; a block scope identifier for an object
declared without the storage-class specifier extern.

If, within a translation unit, the same identifier appears with both internal and external linkage, the
behavior is undefined.

Forward references: declarations (6.7), expressions (6.5), external definitions (6.9), statements (6.8).

6.2.3 Name spaces of identifiers

If more than one declaration of a particular identifier is visible at any point in a translation unit, the
syntactic context disambiguates uses that refer to different entities. Thus, there are separate name
spaces for various categories of identifiers, as follows:

— label names (disambiguated by the syntax of the label declaration and use);

— the tags of structures, unions, and enumerations (disambiguated by following any** of the
keywords struct, union, or enum);

— the members of structures or unions; each structure or union has a separate name space for its
members (disambiguated by the type of the expression used to access the member via the . or
-> operator);

— all other identifiers, called ordinary identifiers (declared in ordinary declarators or as enumera-
tion constants).

3D There is no linkage between different identifiers.

32) A function declaration can contain the storage-class specifier static only if it is at file scope; see 6.7.1.
33) As specified in 6.2.1 , the later declaration might hide the prior declaration.

3% There is only one name space for tags even though three are possible.

34 Language §6.2.3

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Forward references: enumeration specifiers (6.7.2.2), labeled statements (6.8.1), structure and union
specifiers (6.7.2.1), structure and union members (6.5.2.3), tags (6.7.2.3), the goto statement (6.8.6.1).

6.2.4 Storage durations of objects

An object has a storage duration that determines its lifetime. There are four storage durations: static,
thread, automatic, and allocated. Allocated storage is described in 7.22.3.

The lifetime of an object is the portion of program execution during which storage is guaranteed
to be reserved for it. An object exists, has a constant address,?® and retains its last-stored value
throughout its lifetime.>® If an object is referred to outside of its lifetime, the behavior is undefined.
The value of a pointer becomes indeterminate when the object it points to (or just past) reaches the
end of its lifetime.

An object whose identifier is declared without the storage-class specifier _Thread_local, and either
with external or internal linkage or with the storage-class specifier static, has static storage duration.
Its lifetime is the entire execution of the program and its stored value is initialized only once, prior
to program startup.

An object whose identifier is declared with the storage-class specifier _Thread_local has thread
storage duration. Its lifetime is the entire execution of the thread for which it is created, and its
stored value is initialized when the thread is started. There is a distinct object per thread, and use of
the declared name in an expression refers to the object associated with the thread evaluating the
expression. The result of attempting to indirectly access an object with thread storage duration from
a thread other than the one with which the object is associated is implementation-defined.

An object whose identifier is declared with no linkage and without the storage-class specifier static
has automatic storage duration, as do some compound literals. The result of attempting to indirectly
access an object with automatic storage duration from a thread other than the one with which the
object is associated is implementation-defined.

For such an object that does not have a variable length array type, its lifetime extends from entry
into the block with which it is associated until execution of that block ends in any way. (Entering an
enclosed block or calling a function suspends, but does not end, execution of the current block.) If
the block is entered recursively, a new instance of the object is created each time. The initial value of
the object is indeterminate. If an initialization is specified for the object, it is performed each time
the declaration or compound literal is reached in the execution of the block; otherwise, the value
becomes indeterminate each time the declaration is reached.

For such an object that does have a variable length array type, its lifetime extends from the declaration
of the object until execution of the program leaves the scope of the declaration.?”) If the scope is
entered recursively, a new instance of the object is created each time. The initial value of the object is
indeterminate.

A non-lvalue expression with structure or union type, where the structure or union contains a
member with array type (including, recursively, members of all contained structures and unions)
refers to an object with automatic storage duration and temporary lifetime.’® Its lifetime begins
when the expression is evaluated and its initial value is the value of the expression. Its lifetime ends
when the evaluation of the containing full expression ends. Any attempt to modify an object with
temporary lifetime results in undefined behavior. An object with temporary lifetime behaves as if it
were declared with the type of its value for the purposes of effective type. Such an object need not
have a unique address.

Forward references: array declarators (6.7.6.2), compound literals (6.5.2.5), declarators (6.7.6),
function calls (6.5.2.2), initialization (6.7.9), statements (6.8), effective type (6.5).

%)The term “constant address” means that two pointers to the object constructed at possibly different times will compare
equal. The address can be different during two different executions of the same program.

39)In the case of a volatile object, the last store need not be explicit in the program.

37)Leaving the innermost block containing the declaration, or jumping to a point in that block or an embedded block prior
to the declaration, leaves the scope of the declaration.

3)The address of such an object is taken implicitly when an array member is accessed.

§6.2.4 Language 35

10

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

6.2.5 Types

The meaning of a value stored in an object or returned by a function is determined by the type of the
expression used to access it. (An identifier declared to be an object is the simplest such expression;
the type is specified in the declaration of the identifier.) Types are partitioned into object types (types
that describe objects) and function types (types that describe functions). At various points within a
translation unit an object type may be incomplete (lacking sufficient information to determine the
size of objects of that type) or complete (having sufficient information).3”

An object declared as type _Bool is large enough to store the values 0 and 1.

An object declared as type char is large enough to store any member of the basic execution character
set. If a member of the basic execution character set is stored in a char object, its value is guaranteed
to be nonnegative. If any other character is stored in a char object, the resulting value is implemen-
tation-defined but shall be within the range of values that can be represented in that type.

There are five standard signed integer types, designated as signed char, short int, int, long int,
and long long int. (These and other types may be designated in several additional ways, as
described in 6.7.2.) There may also be implementation-defined extended signed integer types.*? The
standard and extended signed integer types are collectively called signed integer types.*)

An object declared as type signed char occupies the same amount of storage as a “plain” char
object. A “plain” int object has the natural size suggested by the architecture of the execution
environment (large enough to contain any value in the range INT_MIN to INT_MAX as defined in the
header <limits.h>).

For each of the signed integer types, there is a corresponding (but different) unsigned integer type
(designated with the keyword unsigned) that uses the same amount of storage (including sign
information) and has the same alignment requirements. The type _Bool and the unsigned integer
types that correspond to the standard signed integer types are the standard unsigned integer types.
The unsigned integer types that correspond to the extended signed integer types are the extended
unsigned integer types. The standard and extended unsigned integer types are collectively called
unsigned integer types.*?

The standard signed integer types and standard unsigned integer types are collectively called the
standard integer types; the extended signed integer types and extended unsigned integer types are
collectively called the extended integer types.

For any two integer types with the same signedness and different integer conversion rank (see
6.3.1.1), the range of values of the type with smaller integer conversion rank is a subrange of the
values of the other type.

The range of nonnegative values of a signed integer type is a subrange of the corresponding unsigned
integer type, and the representation of the same value in each type is the same.*> A computation
involving unsigned operands can never overflow, because a result that cannot be represented by the
resulting unsigned integer type is reduced modulo the number that is one greater than the largest
value that can be represented by the resulting type.

There are three standard floating types , designated as float, double, and long double.*¥ The set
of values of the type float is a subset of the set of values of the type double; the set of values of the
type double is a subset of the set of values of the type long double.

A type can be incomplete or complete throughout an entire translation unit, or it can change states at different points
within a translation unit.

40)Implementation-defined keywords have the form of an identifier reserved for any use as described in 7.1.3.

“DTherefore, any statement in this document about signed integer types also applies to the extended signed integer types.

42)Therefore, any statement in this document about unsigned integer types also applies to the extended unsigned integer
types.

43)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,
return values from functions, and members of unions.

#4)See “future language directions” (6.11.1).

36 Language §6.2.5

11

12

13

14

15

16

17

18

19

20

21

22

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

There are three decimal floating types , designated as _Decimal32, Decimal64, and _Decimall28.
Respectively, they have the IEC 60559 formats: decimal32,%) decimal64, and decimal128. Decimal

The standard floating types and the decimal floating types are collectively called the real floatin
types.

There are three complex types, designated as float _Complex, double _Complex, and long double
—Complex.* (Complex types are a conditional feature that implementations need not support; see
6.10.8.3.) The real floating and complex types are collectively called the floating types.

For each floating type there is a corresponding real type, which is always a real floating type. For real
floating types, it is the same type. For complex types, it is the type given by deleting the keyword
—Complex from the type name.

Each complex type has the same representation and alignment requirements as an array type
containing exactly two elements of the corresponding real type; the first element is equal to the real
part, and the second element to the imaginary part, of the complex number.

The type char, the signed and unsigned integer types, and the floating types are collectively called
the basic types. The basic types are complete object types. Even if the implementation defines two or
more basic types to have the same representation, they are nevertheless different types.*”)

The three types char, signed char, and unsigned char are collectively called the character types.
The implementation shall define char to have the same range, representation, and behavior as either
signed char or unsigned char.*®

An enumeration comprises a set of named integer constant values. Each distinct enumeration
constitutes a different enumerated type.

The type char, the signed and unsigned integer types, and the enumerated types are collectively
called integer types. The integer and real floating types are collectively called real types.

Integer and floating types are collectively called arithmetic types.*” Each arithmetic type belongs to
one type domain: the real type domain comprises the real types, the complex type domain comprises the
complex types.

The void type comprises an empty set of values; it is an incomplete object type that cannot be
completed.

Any number of derived types can be constructed from the object and function types, as follows:

— An array type describes a contiguously allocated nonempty set of objects with a particular
member object type, called the element type. The element type shall be complete whenever the
array type is specified. Array types are characterized by their element type and by the number
of elements in the array. An array type is said to be derived from its element type, and if its
element type is T, the array type is sometimes called “array of T”. The construction of an array
type from an element type is called “array type derivation”.

— A structure type describes a sequentially allocated nonempty set of member objects (and, in
certain circumstances, an incomplete array), each of which has an optionally specified name
and possibly distinct type.

— A union type describes an overlapping nonempty set of member objects, each of which has an
optionally specified name and possibly distinct type.

4HIEC 60559 specifies decimal32 as a data-interchange format that does not require arithmetic support; however,

~Decimal32 is a fully supported arithmetic type.

46) A specification for imaginary types is in Annex G.

47) An implementation can define new keywords that provide alternative ways to designate a basic (or any other) type; this
does not violate the requirement that all basic types be different. Implementation-defined keywords have the form of an
identifier reserved for any use as described in 7.1.3.

48) CHAR_MIN, defined in <limits.h>, will have one of the values 0 or SCHAR_MIN, and this can be used to distinguish the
two options. Irrespective of the choice made, char is a separate type from the other two and is not compatible with either.

49 Annex H documents the extent to which the C language supports the ISO/IEC 10967-1 standard for language-
independent arithmetic (LIA-1).

§6.2.5 Language 37

23

24

25
26

27

28

29

30

31

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

— A function type describes a function with specified return type. A function type is characterized
by its return type and the number and types of its parameters. A function type is said to
be derived from its return type, and if its return type is T, the function type is sometimes
called “function returning T”. The construction of a function type from a return type is called
“function type derivation”.

— A pointer type may be derived from a function type or an object type, called the referenced type. A
pointer type describes an object whose value provides a reference to an entity of the referenced
type. A pointer type derived from the referenced type T is sometimes called “pointer to T”.
The construction of a pointer type from a referenced type is called “pointer type derivation”.
A pointer type is a complete object type.

— An atomic type describes the type designated by the construct _Atomic (type-name). (Atomic
types are a conditional feature that implementations need not support; see 6.10.8.3.)

These methods of constructing derived types can be applied recursively.

Arithmetic types and pointer types are collectively called scalar types. Array and structure types are
collectively called aggregate types.>”

An array type of unknown size is an incomplete type. It is completed, for an identifier of that type,
by specifying the size in a later declaration (with internal or external linkage). A structure or union
type of unknown content (as described in 6.7.2.3) is an incomplete type. It is completed, for all
declarations of that type, by declaring the same structure or union tag with its defining content later
in the same scope.

A type has known constant size if the type is not incomplete and is not a variable length array type.

Array, function, and pointer types are collectively called derived declarator types. A declarator type
derivation from a type T is the construction of a derived declarator type from T by the application of
an array-type, a function-type, or a pointer-type derivation to T.

A type is characterized by its type category, which is either the outermost derivation of a derived
type (as noted above in the construction of derived types), or the type itself if the type consists of no
derived types.

Any type so far mentioned is an unqualified type. Each unqualified type has several qualified versions
of its type,® corresponding to the combinations of one, two, or all three of the const, volatile,
and restrict qualifiers. The qualified or unqualified versions of a type are distinct types that
belong to the same type category and have the same representation and alignment requirements.>?
A derived type is not qualified by the qualifiers (if any) of the type from which it is derived.

Further, there is the _Atomic qualifier. The presence of the _Atomic qualifier designates an atomic
type. The size, representation, and alignment of an atomic type need not be the same as those of
the corresponding unqualified type. Therefore, this document explicitly uses the phrase “atomic,
qualified, or unqualified type” whenever the atomic version of a type is permitted along with the
other qualified versions of a type. The phrase “qualified or unqualified type”, without specific
mention of atomic, does not include the atomic types.

A pointer to void shall have the same representation and alignment requirements as a pointer to a
character type.>? Similarly, pointers to qualified or unqualified versions of compatible types shall
have the same representation and alignment requirements. All pointers to structure types shall have
the same representation and alignment requirements as each other. All pointers to union types shall
have the same representation and alignment requirements as each other. Pointers to other types
need not have the same representation or alignment requirements.

EXAMPLE 1 The type designated as “float *” has type “pointer to float”. Its type category is pointer, not a floating type.

The const-qualified version of this type is designated as “float * const” whereas the type designated as “const float *”
is not a qualified type — its type is “pointer to const-qualified float” and is a pointer to a qualified type.

50)Note that aggregate type does not include union type because an object with union type can only contain one member at
a time.

51)See 6.7.3 regarding qualified array and function types.

52)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,
return values from functions, and members of unions.

38 Language §6.2.5

32

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

EXAMPLE 2 The type designated as “struct tag (*[5]) (float)” has type “array of pointer to function returning
struct tag”. The array has length five and the function has a single parameter of type float. Its type category is array.

Forward references: compatible type and composite type (6.2.7), declarations (6.7).

6.2.6 Representations of types
6.2.6.1 General
The representations of all types are unspecified except as stated in this subclause.

Except for bit-fields, objects are composed of contiguous sequences of one or more bytes, the number,
order, and encoding of which are either explicitly specified or implementation-defined.

Values stored in unsigned bit-fields and objects of type unsigned char shall be represented using a
pure binary notation.>

Values stored in non-bit-field objects of any other object type consist of n x CHAR_BIT bits, where
n is the size of an object of that type, in bytes. The value may be copied into an object of type
unsigned char [n] (e.g., by memcpy); the resulting set of bytes is called the object representation of
the value. Values stored in bit-fields consist of m bits, where m is the size specified for the bit-field.
The object representation is the set of m bits the bit-field comprises in the addressable storage unit
holding it. Two values (other than NaNs) with the same object representation compare equal, but
values that compare equal may have different object representations.

Certain object representations need not represent a value of the object type. If the stored value of an
object has such a representation and is read by an lvalue expression that does not have character
type, the behavior is undefined. If such a representation is produced by a side effect that modifies
all or any part of the object by an Ivalue expression that does not have character type, the behavior
is undefined.® Such a representation is called a trap representation.

When a value is stored in an object of structure or union type, including in a member object, the
bytes of the object representation that correspond to any padding bytes take unspecified values.®
The value of a structure or union object is never a trap representation, even though the value of a
member of the structure or union object may be a trap representation.

When a value is stored in a member of an object of union type, the bytes of the object representation
that do not correspond to that member but do correspond to other members take unspecified values.

Where an operator is applied to a value that has more than one object representation, which object
representation is used shall not affect the value of the result.’® Where a value is stored in an object
using a type that has more than one object representation for that value, it is unspecified which
representation is used, but a trap representation shall not be generated.

Loads and stores of objects with atomic types are done with memory_order_seq_cst semantics.

Forward references: declarations (6.7), expressions (6.5), Ivalues, arrays, and function designators
(6.3.2.1), order and consistency (7.17.3).

6.2.6.2 Integer types

For unsigned integer types other than unsigned char, the bits of the object representation shall be
divided into two groups: value bits and padding bits (there need not be any of the latter). If there are
N value bits, each bit shall represent a different power of 2 between 1 and 2¥ !, so that objects of
that type shall be capable of representing values from 0 to 2"V — 1 using a pure binary representation;

53) A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by successive
bits are additive, begin with 1, and are multiplied by successive integral powers of 2, except perhaps the bit with the highest
position. (Adapted from the American National Dictionary for Information Processing Systems.) A byte contains CHAR_BIT bits,
and the values of type unsigned char range from 0 to 2¢HARBIT _ 7,

59Thus, an automatic variable can be initialized to a trap representation without causing undefined behavior, but the value
of the variable cannot be used until a proper value is stored in it.

%) Thus, for example, structure assignment need not copy any padding bits.

56)1t is possible for objects x and y with the same effective type T to have the same value when they are accessed as objects
of type T, but to have different values in other contexts. In particular, if == is defined for type T, then x == y does not imply
that memcmp (&x, &y, sizeof (T))== 0. Furthermore, x == y does not necessarily imply that x and y have the same value;
other operations on values of type T might distinguish between them.

§6.2.6.2 Language 39

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

this shall be known as the value representation. The values of any padding bits are unspecified.””)

For signed integer types, the bits of the object representation shall be divided into three groups:
value bits, padding bits, and the sign bit. There need not be any padding bits; signed char shall
not have any padding bits. There shall be exactly one sign bit. Each bit that is a value bit shall have
the same value as the same bit in the object representation of the corresponding unsigned type (if
there are M value bits in the signed type and IV in the unsigned type, then M < N). If the sign bit is
zero, it shall not affect the resulting value. If the sign bit is one, the value shall be modified in one of
the following ways:

— the corresponding value with sign bit 0 is negated (sign and magnitude);
— the sign bit has the value —(2) (two’s complement);

— the sign bit has the value — (2™ — 1) (ones’ complement).

Which of these applies is implementation-defined, as is whether the value with sign bit 1 and all
value bits zero (for the first two), or with sign bit and all value bits 1 (for ones’ complement), is a
trap representation or a normal value. In the case of sign and magnitude and ones’ complement, if
this representation is a normal value it is called a negative zero.

If the implementation supports negative zeros, they shall be generated only by:

— the & |, ”,~,<<, and >> operators with operands that produce such a value;
— the+,- ,*,/, and % operators where one operand is a negative zero and the result is zero;

— compound assignment operators based on the above cases.

It is unspecified whether these cases actually generate a negative zero or a normal zero, and whether
a negative zero becomes a normal zero when stored in an object.

If the implementation does not support negative zeros, the behavior of the &, |, *,~, <<, and >>
operators with operands that would produce such a value is undefined.

The values of any padding bits are unspecified.’® A valid (non-trap) object representation of a
signed integer type where the sign bit is zero is a valid object representation of the corresponding
unsigned type, and shall represent the same value. For any integer type, the object representation
where all the bits are zero shall be a representation of the value zero in that type.

The precision of an integer type is the number of bits it uses to represent values, excluding any sign
and padding bits. The width of an integer type is the same but including any sign bit; thus for
unsigned integer types the two values are the same, while for signed integer types the width is one
greater than the precision.

6.2.7 Compatible type and composite type

Two types have compatible type if their types are the same. Additional rules for determining whether
two types are compatible are described in 6.7.2 for type specifiers, in 6.7.3 for type qualifiers, and in
6.7.6 for declarators.”” Moreover, two structure, union, or enumerated types declared in separate
translation units are compatible if their tags and members satisfy the following requirements: If
one is declared with a tag, the other shall be declared with the same tag. If both are completed
anywhere within their respective translation units, then the following additional requirements
apply: there shall be a one-to-one correspondence between their members such that each pair of

57)Some combinations of padding bits might generate trap representations, for example, if one padding bit is a parity bit.
Regardless, no arithmetic operation on valid values can generate a trap representation other than as part of an exceptional
condition such as an overflow, and this cannot occur with unsigned types. All other combinations of padding bits are
alternative object representations of the value specified by the value bits.

%8)Some combinations of padding bits might generate trap representations, for example, if one padding bit is a parity bit.
Regardless, no arithmetic operation on valid values can generate a trap representation other than as part of an exceptional
condition such as an overflow. All other combinations of padding bits are alternative object representations of the value
specified by the value bits.

%) Two types need not be identical to be compatible.

40 Language §6.2.7

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

corresponding members are declared with compatible types; if one member of the pair is declared
with an alignment specifier, the other is declared with an equivalent alignment specifier; and if
one member of the pair is declared with a name, the other is declared with the same name. For
two structures, corresponding members shall be declared in the same order. For two structures or
unions, corresponding bit-fields shall have the same widths. For two enumerations, corresponding
members shall have the same values.

All declarations that refer to the same object or function shall have compatible type; otherwise, the
behavior is undefined.

A composite type can be constructed from two types that are compatible; it is a type that is compatible
with both of the two types and satisfies the following conditions:

— If both types are array types, the following rules are applied:

e If one type is an array of known constant size, the composite type is an array of that size.

o Otherwise, if one type is a variable length array whose size is specified by an expression
that is not evaluated, the behavior is undefined.

e Otherwise, if one type is a variable length array whose size is specified, the composite
type is a variable length array of that size.

o Otherwise, if one type is a variable length array of unspecified size, the composite type is
a variable length array of unspecified size.

e Otherwise, both types are arrays of unknown size and the composite type is an array of
unknown size.

The element type of the composite type is the composite type of the two element types.

— If only one type is a function type with a parameter type list (a function prototype), the
composite type is a function prototype with the parameter type list.

— If both types are function types with parameter type lists, the type of each parameter in the
composite parameter type list is the composite type of the corresponding parameters.

These rules apply recursively to the types from which the two types are derived.

For an identifier with internal or external linkage declared in a scope in which a prior declaration of
that identifier is visible,®? if the prior declaration specifies internal or external linkage, the type of
the identifier at the later declaration becomes the composite type.

Forward references: array declarators (6.7.6.2).

EXAMPLE Given the following two file scope declarations:

int f(int (*)(), double (*)[31);
int f(int (x)(char *), double (*)[]);

The resulting composite type for the function is:

| int f(int (%)(char %), double (+)[31);

6.2.8 Alignment of objects

Complete object types have alignment requirements which place restrictions on the addresses at
which objects of that type may be allocated. An alignment is an implementation-defined integer
value representing the number of bytes between successive addresses at which a given object can be
allocated. An object type imposes an alignment requirement on every object of that type: stricter
alignment can be requested using the _Alignas keyword.

A fundamental alignment is a valid alignment less than or equal to _Alignof (max_align_t). Fun-
damental alignments shall be supported by the implementation for objects of all storage durations.
The alignment requirements of the following types shall be fundamental alignments:

60) As specified in 6.2.1, the later declaration might hide the prior declaration.

§6.2.8 Language 41

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

— all atomic, qualified, or unqualified basic types;

— all atomic, qualified, or unqualified enumerated types;

— all atomic, qualified, or unqualified pointer types;

— all array types whose element type has a fundamental alignment requirement;
— all types specified in Clause 7 as complete object types;

— all structure or union types all of whose elements have types with fundamental alignment
requirements and none of whose elements have an alignment specifier specifying an alignment
that is not a fundamental alignment.

An extended alignment is represented by an alignment greater than _Alignof (max_align_t). Itis
implementation-defined whether any extended alignments are supported and the storage durations
for which they are supported. A type having an extended alignment requirement is an over-aligned

type.®V
Alignments are represented as values of the type size_t. Valid alignments include only fundamental

alignments, plus an additional implementation-defined set of values, which may be empty. Every
valid alignment value shall be a nonnegative integral power of two.

Alignments have an order from weaker to stronger or stricter alignments. Stricter alignments have
larger alignment values. An address that satisfies an alignment requirement also satisfies any weaker
valid alignment requirement.

The alignment requirement of a complete type can be queried using an _Alignof expression. The
types char, signed char, and unsigned char shall have the weakest alignment requirement.

Comparing alignments is meaningful and provides the obvious results:

— Two alignments are equal when their numeric values are equal.
— Two alignments are different when their numeric values are not equal.

— When an alignment is larger than another it represents a stricter alignment.

6.3 Conversions

Several operators convert operand values from one type to another automatically. This subclause
specifies the result required from such an implicit conversion, as well as those that result from a cast
operation (an explicit conversion). The list in 6.3.1.8 summarizes the conversions performed by most
ordinary operators; it is supplemented as required by the discussion of each operator in 6.5.

Unless explicitly stated otherwise, conversion of an operand value to a compatible type causes no
change to the value or the representation.

Forward references: cast operators (6.5.4).

6.3.1 Arithmetic operands

6.3.1.1 Boolean, characters, and integers
Every integer type has an integer conversion rank defined as follows:

— No two signed integer types shall have the same rank, even if they have the same representa-
tion.

— The rank of a signed integer type shall be greater than the rank of any signed integer type with
less precision.

61 Every over-aligned type is, or contains, a structure or union type with a member to which an extended alignment has
been applied.

42 Language §6.3.1.1

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

— The rank of long long int shall be greater than the rank of long int, which shall be greater
than the rank of int, which shall be greater than the rank of short int, which shall be greater
than the rank of signed char.

— The rank of any unsigned integer type shall equal the rank of the corresponding signed integer
type, if any.

— The rank of any standard integer type shall be greater than the rank of any extended integer
type with the same width.

— The rank of char shall equal the rank of signed char and unsigned char.
— The rank of _Bool shall be less than the rank of all other standard integer types.

— The rank of any enumerated type shall equal the rank of the compatible integer type (see
6.7.2.2).

— The rank of any extended signed integer type relative to another extended signed integer
type with the same precision is implementation-defined, but still subject to the other rules for
determining the integer conversion rank.

— For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has greater rank than
T3, then T1 has greater rank than T3.

The following may be used in an expression wherever an int or unsigned int may be used:

— An object or expression with an integer type (other than int or unsigned int) whose integer
conversion rank is less than or equal to the rank of int and unsigned int.

— A bit-field of type _Bool, int, signed int, or unsigned int.

If an int can represent all values of the original type (as restricted by the width, for a bit-field), the
value is converted to an int; otherwise, it is converted to an unsigned int. These are called the
integer promotions.®? All other types are unchanged by the integer promotions.

The integer promotions preserve value including sign. As discussed earlier, whether a “plain” char
can hold negative values is implementation-defined.

Forward references: enumeration specifiers (6.7.2.2), structure and union specifiers (6.7.2.1).

6.3.1.2 Boolean type

When any scalar value is converted to _Bool, the result is 0 if the value compares equal to 0;
otherwise, the result is 1.%%

6.3.1.3 Signed and unsigned integers

When a value with integer type is converted to another integer type other than _Bool, if the value
can be represented by the new type, it is unchanged.

Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or subtracting
one more than the maximum value that can be represented in the new type until the value is in the
range of the new type.®¥

Otherwise, the new type is signed and the value cannot be represented in it; either the result is
implementation-defined or an implementation-defined signal is raised.

2The integer promotions are applied only: as part of the usual arithmetic conversions, to certain argument expressions, to
the operands of the unary +,- , and ~ operators, and to both operands of the shift operators, as specified by their respective
subclauses.

63NaNs do not compare equal to 0 and thus convert to 1.

69 The rules describe arithmetic on the mathematical value, not the value of a given type of expression.

§6.3.13 Language 43

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

6.3.1.4 Real floating and integer

When a finite value of real-standard floating type is converted to an integer type other than _Bool,
the fractional part is discarded (i.e., the value is truncated toward zero). If the value of the integral
part cannot be represented by the integer type, the behavior is undefined.®

When a finite value of decimal floating type is converted to an integer type other than _Bool, the
fractional part is discarded (i.e., the value is truncated toward zero). If the value of the integral part
cannot be represented by the integer type, the “invalid” floating-point exception shall be raised and
the result of the conversion is unspecified.

When a value of integer type is converted to a real-standard floating type, if the value being
converted can be represented exactly in the new type, it is unchanged. If the value being converted
is in the range of values that can be represented but cannot be represented exactly, the result is
either the nearest higher or nearest lower representable value, chosen in an implementation-defined
manner. If the value being converted is outside the range of values that can be represented, the
behavior is undefined. Results of some implicit conversions may be represented in greater range
and precision than that required by the new type (see 6.3.1.8 and 6.8.6.4).

When a value of integer type is converted to a decimal floating type, if the value being converted
can be represented exactly in the new type, it is unchanged. If the value being converted cannot

be represented exactly, the result shall be correctly rounded with exceptions raised as specified in
TEC 60559..

6.3.1.5 Real floating types

When a value of real floating type is converted to a real floating type, if the value being converted
can be represented exactly in the new type, it is unchanged. -

When a value of real floating type is converted to a standard floating type, if the value being
converted is in the range of values that can be represented but cannot be represented exactly, the

result is either the nearest higher or nearest lower representable value, chosen in an implementation-
defined manner. If the value being converted is outside the range of values that can be represented,
the behavior is undefined.

When a value of real floating type is converted to a decimal floating type, if the value bein
converted cannot be represented exactly, the result is correctly rounded with exceptions raised
as specified in IEC 60559.

Results of some implicit conversions may be represented in greater range and precision than that
required by the new type (see 6.3.1.8 and 6.8.6.4).

6.3.1.6 Complex types

When a value of complex type is converted to another complex type, both the real and imaginary
parts follow the conversion rules for the corresponding real types.

6.3.1.7 Real and complex

When a value of real type is converted to a complex type, the real part of the complex result value is
determined by the rules of conversion to the corresponding real type and the imaginary part of the
complex result value is a positive zero or an unsigned zero.

When a value of complex type is converted to a real type other than _Bool,% the imaginary part of
the complex value is discarded and the value of the real part is converted according to the conversion
rules for the corresponding real type.

6.3.1.8 Usual arithmetic conversions

Many operators that expect operands of arithmetic type cause conversions and yield result types in
a similar way. The purpose is to determine a comrmon real type for the operands and result. For the
specified operands, each operand is converted, without change of type domain, to a type whose

%)The remaindering operation performed when a value of integer type is converted to unsigned type need not be
performed when a value of real floating type is converted to unsigned type. Thus, the range of portable real floating values is
(—1, Utype_MAX + 1).

66)See 6.3.1.2..

44 Language §6.3.1.8

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

corresponding real type is the common real type. Unless explicitly stated otherwise, the common
real type is also the corresponding real type of the result, whose type domain is the type domain of
the operands if they are the same, and complex otherwise. This pattern is called the usual arithmetic
conversions:

If one operand has decimal floating type, the other operand shall not have standard floating,

First, if the type of either operand is _Decimall28, the other operand is converted to
~Decimall2s.

Otherwise, if the type of either operand is _Decimal64, the other operand is converted to
~Decimal64.

Otherwise, if the type of either operand is _Decimal32, the other operand is converted to
~Decimal32.

Otherwise, if the corresponding real type of either operand is long double, the other operand
is converted, without change of type domain, to a type whose corresponding real type is
long double.

Otherwise, if the corresponding real type of either operand is double, the other operand is
converted, without change of type domain, to a type whose corresponding real type is double.

Otherwise, if the corresponding real type of either operand is float, the other operand is
converted, without change of type domain, to a type whose corresponding real type is float.®”)

Otherwise, the integer promotions are performed on both operands. Then the following rules
are applied to the promoted operands:

If both operands have the same type, then no further conversion is needed.

Otherwise, if both operands have signed integer types or both have unsigned integer
types, the operand with the type of lesser integer conversion rank is converted to the type
of the operand with greater rank.

Otherwise, if the operand that has unsigned integer type has rank greater or equal to
the rank of the type of the other operand, then the operand with signed integer type is
converted to the type of the operand with unsigned integer type.

Otherwise, if the type of the operand with signed integer type can represent all of the
values of the type of the operand with unsigned integer type, then the operand with
unsigned integer type is converted to the type of the operand with signed integer type.

Otherwise, both operands are converted to the unsigned integer type corresponding to
the type of the operand with signed integer type.

The values of floating operands and of the results of floating expressions may be represented in
greater range and precision than that required by the type; the types are not changed thereby.

See 5.2.4.2.2 regarding evaluation formats.
6.3.2 Other operands

6.3.2.1 Lvalues, arrays, and function designators

An [value is an expression (with an object type other than void) that potentially designates an
object;®® if an Ivalue does not designate an object when it is evaluated, the behavior is undefined.

67)For example, addition of a double _Complex and a float entails just the conversion of the float operand to double
(and yields a double _Complex result).

8)The name “Ivalue” comes originally from the assignment expression E1 = E2, in which the left operand E1 is required to
be a (modifiable) Ivalue. It is perhaps better considered as representing an object “locator value”. What is sometimes called
“rvalue” is in this document described as the “value of an expression”.

An obvious example of an lvalue is an identifier of an object. As a further example, if E is a unary expression that is a
pointer to an object, *E is an Ivalue that designates the object to which E points.

§63.2.1 Language 45

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

When an object is said to have a particular type, the type is specified by the lvalue used to designate
the object. A modifiable lvalue is an Ivalue that does not have array type, does not have an incomplete
type, does not have a const-qualified type, and if it is a structure or union, does not have any
member (including, recursively, any member or element of all contained aggregates or unions) with
a const-qualified type.

Except when it is the operand of the sizeof operator, the unary & operator, the++ operator, the- -
operator, or the left operand of the . operator or an assignment operator, an lvalue that does not
have array type is converted to the value stored in the designated object (and is no longer an lvalue);
this is called [value conversion. If the lvalue has qualified type, the value has the unqualified version
of the type of the lvalue; additionally, if the Ivalue has atomic type, the value has the non-atomic
version of the type of the lvalue; otherwise, the value has the type of the Ivalue. If the lvalue has an
incomplete type and does not have array type, the behavior is undefined. If the Ivalue designates an
object of automatic storage duration that could have been declared with the register storage class
(never had its address taken), and that object is uninitialized (not declared with an initializer and no
assignment to it has been performed prior to use), the behavior is undefined.

Except when it is the operand of the sizeof operator, or the unary & operator, or is a string literal
used to initialize an array, an expression that has type “array of type” is converted to an expression
with type “pointer to fype” that points to the initial element of the array object and is not an lvalue.
If the array object has register storage class, the behavior is undefined.

A function designator is an expression that has function type. Except when it is the operand of the
sizeof operator,’”) or the unary & operator, a function designator with type “function returning
type” is converted to an expression that has type “pointer to function returning type”.

Forward references: address and indirection operators (6.5.3.2), assignment operators (6.5.16),
common definitions <stddef.h> (7.19), initialization (6.7.9), postfix increment and decrement
operators (6.5.2.4), prefix increment and decrement operators (6.5.3.1), the sizeof and _Alignof
operators (6.5.3.4), structure and union members (6.5.2.3).

6.3.2.2 void

The (nonexistent) value of a void expression (an expression that has type void) shall not be used in any
way, and implicit or explicit conversions (except to void) shall not be applied to such an expression.
If an expression of any other type is evaluated as a void expression, its value or designator is
discarded. (A void expression is evaluated for its side effects.)

6.3.2.3 Pointers

A pointer to void may be converted to or from a pointer to any object type. A pointer to any object
type may be converted to a pointer to void and back again; the result shall compare equal to the
original pointer.

For any qualifier g, a pointer to a non-g-qualified type may be converted to a pointer to the g-qualified
version of the type; the values stored in the original and converted pointers shall compare equal.

An integer constant expression with the value 0, or such an expression cast to type void , is called
a null pointer constant.””) If a null pointer constant is converted to a pointer type, the resulting
pointer, called a null pointer, is guaranteed to compare unequal to a pointer to any object or function.

Conversion of a null pointer to another pointer type yields a null pointer of that type. Any two null
pointers shall compare equal.

An integer may be converted to any pointer type. Except as previously specified, the result is imple-
mentation-defined, might not be correctly aligned, might not point to an entity of the referenced
type, and might be a trap representation.”?

Any pointer type may be converted to an integer type. Except as previously specified, the result

69)Because this conversion does not occur, the operand of the sizeof operator remains a function designator and violates
the constraints in 6.5.3.4.

70The macro NULL is defined in <stddef. h> (and other headers) as a null pointer constant; see 7.19.

"DThe mapping functions for converting a pointer to an integer or an integer to a pointer are intended to be consistent with
the addressing structure of the execution environment.

46 Language §6.3.23

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

is implementation-defined. If the result cannot be represented in the integer type, the behavior is
undefined. The result need not be in the range of values of any integer type.

A pointer to an object type may be converted to a pointer to a different object type. If the resulting
pointer is not correctly aligned’? for the referenced type, the behavior is undefined. Otherwise,
when converted back again, the result shall compare equal to the original pointer. When a pointer to
an object is converted to a pointer to a character type, the result points to the lowest addressed byte
of the object. Successive increments of the result, up to the size of the object, yield pointers to the
remaining bytes of the object.

A pointer to a function of one type may be converted to a pointer to a function of another type and
back again; the result shall compare equal to the original pointer. If a converted pointer is used to
call a function whose type is not compatible with the referenced type, the behavior is undefined.

Forward references: cast operators (6.5.4), equality operators (6.5.9), integer types capable of
holding object pointers (7.20.1.4), simple assignment (6.5.16.1).

72In general, the concept “correctly aligned” is transitive: if a pointer to type A is correctly aligned for a pointer to type B,
which in turn is correctly aligned for a pointer to type C, then a pointer to type A is correctly aligned for a pointer to type C.

§6.3.2.3 Language 47

1

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

6.4 Lexical elements

Syntax
token:
keyword
identifier
constant
string-literal
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator
each non-white-space character that cannot be one of the above

Constraints

Each preprocessing token that is converted to a token shall have the lexical form of a keyword, an
identifier, a constant, a string literal, or a punctuator.

Semantics

A token is the minimal lexical element of the language in translation phases 7 and 8. The categories of
tokens are: keywords, identifiers, constants, string literals, and punctuators. A preprocessing token
is the minimal lexical element of the language in translation phases 3 through 6. The categories of
preprocessing tokens are: header names, identifiers, preprocessing numbers, character constants,
string literals, punctuators, and single non-white-space characters that do not lexically match the
other preprocessing token categories.” Ifa’ ora " character matches the last category, the behavior
is undefined. Preprocessing tokens can be separated by white space; this consists of comments
(described later), or white-space characters (space, horizontal tab, new-line, vertical tab, and form-
feed), or both. As described in 6.10, in certain circumstances during translation phase 4, white
space (or the absence thereof) serves as more than preprocessing token separation. White space
may appear within a preprocessing token only as part of a header name or between the quotation
characters in a character constant or string literal.

If the input stream has been parsed into preprocessing tokens up to a given character, the next
preprocessing token is the longest sequence of characters that could constitute a preprocessing
token. There is one exception to this rule: header name preprocessing tokens are recognized only
within #include preprocessing directives and in implementation-defined locations within #pragma
directives. In such contexts, a sequence of characters that could be either a header name or a string
literal is recognized as the former.

EXAMPLE 1 The program fragment 1Ex is parsed as a preprocessing number token (one that is not a valid floating or integer
constant token), even though a parse as the pair of preprocessing tokens 1 and Ex might produce a valid expression (for

example, if Ex were a macro defined as+1). Similarly, the program fragment 1E1 is parsed as a preprocessing number (one
that is a valid floating constant token), whether or not E is a macro name.

EXAMPLE 2 The program fragment x+++++y is parsed as x ++ ++ + y, which violates a constraint on increment operators,
even though the parse x ++ + ++ y might yield a correct expression.

Forward references: character constants (6.4.4.4), comments (6.4.9), expressions (6.5), floating
constants (6.4.4.2), header names (6.4.7), macro replacement (6.10.3), postfix increment and decre-
ment operators (6.5.2.4), prefix increment and decrement operators (6.5.3.1), preprocessing directives
(6.10), preprocessing numbers (6.4.8), string literals (6:4-5)-6.4.5).

73 An additional category, placemarkers, is used internally in translation phase 4 (see 6.10.3.3); it cannot occur in source
files.

48 Language §6.4

2434 C17..C201909

6.4.1 Keywords

Syntax
1 keyword: one of

LR SR

Semantics

working draft — September 25, 2019

case
char
const
continue
default
do
double
else
enum
extern
float
for

goto

if
inline
int

long
register
restrict
return
short
signed
sizeof

ISO/IEC 9899:202x (E)

static
struct
switch
typedef
union
unsigned
void
volatile
while
_Alignas
_Alignof
—Atomic
—Bool
—Complex
_Decimall28
_Decimal32
_Decimalé64
_Generic
_Imaginary
—Noreturn
_Static_assert
—Thread_local

2 The above tokens (case sensitive) are reserved (in translation phases 7 and 8) for use as keywords
except in an attribute token, and shall not be used otherwise. The keyword _Imaginary is reserved

for specifying imaginary types.”®
6.4.2 Identifiers
6.4.2.1 General
Syntax

1 identifier:

identifier-nondigit

identifier identifier-nondigit

identifier digit

identifier-nondigit:
nondigit

universal-character-name
other implementation-defined characters

nondigit: one of

=259
o wWo T
UWOAOHOT O
o U Qo o
A m-= O

(7 T B I
- O+

hijklm
UVvwXxyz
HIJKLM
UVWXYZ

78One possible specification for imaginary types appears in Annex G.

§6.4.2.1

Language

49

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

digit: one of
0123456789

Semantics

An identifier is a sequence of nondigit characters (including the underscore _, the lowercase and
uppercase Latin letters, and other characters) and digits, which designates one or more entities as
described in 6.2.1. Lowercase and uppercase letters are distinct. There is no specific limit on the
maximum length of an identifier.

The use of universal character names in identifiers is specified in Annex D: Each universal character
name in an identifier shall designate a character whose encoding in ISO/IEC 10646 falls into
one of the ranges specified in D.1.”Y The initial character shall not be a universal character
name designating a character whose encoding falls into one of the ranges specified in D.2. An
implementation may allow multibyte characters that are not part of the basic source character set to
appear in identifiers; which characters and their correspondence to universal character names is
implementation-defined.

When preprocessing tokens are converted to tokens during translation phase 7, if a preprocessing
token could be converted to either a keyword or an identifier, it is converted to a keyword except in
an attribute token.

Implementation limits

As discussed in 5.2.4.1, an implementation may limit the number of significant initial characters
in an identifier; the limit for an external name (an identifier that has external linkage) may be more
restrictive than that for an internal name (a macro name or an identifier that does not have external
linkage). The number of significant characters in an identifier is implementation-defined.

Any identifiers that differ in a significant character are different identifiers. If two identifiers differ
only in nonsignificant characters, the behavior is undefined.

Forward references: universal character names (6.4.3), macro replacement (6.10.3).

6.4.2.2 Predefined identifiers
Semantics

The identifier __func_ shall be implicitly declared by the translator as if, immediately following
the opening brace of each function definition, the declaration

\ static const char __func__[] = "function-name";

appeared, where function-name is the name of the lexically-enclosing function.”®)

This name is encoded as if the implicit declaration had been written in the source character set and
then translated into the execution character set as indicated in translation phase 5.

EXAMPLE Consider the code fragment:

#include <stdio.h>

void myfunc(void)

{
printf("%ss\n", __func__);
/* ... %/

Each time the function is called, it will print to the standard output stream:

75)On systems in which linkers cannot accept extended characters, an encoding of the universal character name can be used
in forming valid external identifiers. For example, some otherwise unused character or sequence of characters can be used to
encode the \u in a universal character name. Extended characters can produce a long external identifier.

70)Since the name —func_ is reserved for any use by the implementation (7.1.3), if any other identifier is explicitly declared
using the name __func__, the behavior is undefined.

50 Language §64.22

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

\ myfunc

Forward references: function definitions (6.9.1).

6.4.3 Universal character names

Syntax

universal-character-name:
\u hex-quad
\U hex-quad hex-quad

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

Constraints

A universal character name shall not specify a character whose short identifier is less than 00A0
other than 0024 ($), 0040 (@), or 0060 (“), nor one in the range D800 through DFFF inclusive.””

Description

Universal character names may be used in identifiers, character constants, and string literals to
designate characters that are not in the basic character set.

Semantics

The universal character name \Unnnnnnnn designates the character whose eight-digit short identifier
(as specified by ISO/IEC 10646) is nnnnnnnn.”® Similarly, the universal character name \unnnn
designates the character whose four-digit short identifier is nnnn (and whose eight-digit short
identifier is 0000nnnn).

"DThe disallowed characters are the characters in the basic character set and the code positions reserved by ISO/IEC 10646
for control characters, the character DELETE, and the S-zone (reserved for use by UTF-16).
7®Short identifiers for characters were first specified in ISO/IEC 10646-1:1993/ Amd 9:1997.

§64.3 Language 51

1

1

ISO/IEC 9899:202x (E) working draft — September 25, 2019

6.4.4 Constants

Syntax
constant:
integer-constant
floating-constant
enumeration-constant
character-constant
Constraints

C17..C201909 2434

Each constant shall have a type and the value of a constant shall be in the range of representable

values for its type.

Semantics

Each constant has a type, determined by its form and value, as detailed later.

6.4.4.1 Integer constants
Syntax

integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit
hexadecimal-constant hexadecimal-digit

hexadecimal-prefix: one of
-0%-0x 06X

nonzero-digit: one of
123456789

octal-digit: one of
01234567

hexadecimal-digit: one of

012
b
B

3456789

abcdef

ABCDEF

integer-suffix:
unsigned-suffix long-suffixopt
unsigned-suffix long-long-suffix
long-suffix unsigned-suffixopt
long-long-suffix unsigned-suffixopt

52 Language

§6.4.4.1

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

unsigned-suffix: one of
ul

long-suffix: one of
1L

long-long-suffix: one of
1 LL

Description
An integer constant begins with a digit, but has no period or exponent part. It may have a prefix
that specifies its base and a suffix that specifies its type.

A decimal constant begins with a nonzero digit and consists of a sequence of decimal digits. An
octal constant consists of the prefix 0 optionally followed by a sequence of the digits 0 through 7
only. A hexadecimal constant consists of the prefix @x or X followed by a sequence of the decimal
digits and the letters a (or A) through f (or F) with values 10 through 15 respectively.

Semantics
The value of a decimal constant is computed base 10; that of an octal constant, base 8; that of a
hexadecimal constant, base 16. The lexically first digit is the most significant.

The type of an integer constant is the first of the corresponding list in which its value can be
represented.

Octal or Hexadecimal

Suffix Decimal Constant Constant
none int int
long int unsigned int
long long int long int

unsigned long int
long long int
unsigned long long int

uor U unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int | unsigned long long int
lor L long int long int
long long int unsigned long int

long long int
unsigned long long int

Both uor U unsigned long int unsigned long int
and lor L unsigned long long int | unsigned long long int
1lor LL long long int long long int

unsigned long long int
Both uor U unsigned long long int | unsigned long long int
and 1lor LL

If an integer constant cannot be represented by any type in its list, it may have an extended integer
type, if the extended integer type can represent its value. If all of the types in the list for the constant
are signed, the extended integer type shall be signed. If all of the types in the list for the constant
are unsigned, the extended integer type shall be unsigned. If the list contains both signed and
unsigned types, the extended integer type may be signed or unsigned. If an integer constant cannot
be represented by any type in its list and has no extended integer type, then the integer constant has
no type.

Forward references: preprocessing numbers (6.4.8), numeric conversion functions (7.22.1).

§64.4.1 Language 53

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

6.4.4.2 Floating constants
Syntax
floating-constant:

decimal-floating-constant
hexadecimal-floating-constant

decimal-floating-constant:
fractional-constant exponent-partop floating-suffixopt
digit-sequence exponent-part floating-suffix,p.

hexadecimal-floating-constant:
hexadecimal-prefix hexadecimal-fractional-constant
binary-exponent-part floating-suffixop:
hexadecimal-prefix hexadecimal-digit-sequence
binary-exponent-part floating-suffixop:

fractional-constant:
digit-sequenceqp . digit-sequence
digit-sequence .

exponent-part:
e signep: digit-sequence
E signop digit-sequence

sign: one of

digit-sequence:
digit
digit-sequence digit

hexadecimal-fractional-constant:

hexadecimal-digit-sequenceqpt
hexadecimal-digit-sequence
hexadecimal-digit-sequence .

binary-exponent-part:
P signop: digit-sequence
P signep digit-sequence

hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit

floating-suffix: one of
f LF L df dd dl DF DD DL

Constraints_

A floating suffix df, dd, d1, DF, DD, or DL shall not be used in a hexadecimal floating constant.

Description
A floating constant has a significand part that may be followed by an exponent part and a suffix that

specifies its type. The components of the significand part may include a digit sequence representing
the whole-number part, followed by a period (.), followed by a digit sequence representing the
fraction part. The components of the exponent part are an e, E, p, or P followed by an exponent

54 Language §6.4.4.2

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

consisting of an optionally signed digit sequence. Either the whole-number part or the fraction part
has to be present; for decimal floating constants, either the period or the exponent part has to be
present.

Semantics

The significand part is interpreted as a (decimal or hexadecimal) rational number; the digit sequence
in the exponent part is interpreted as a decimal integer. For decimal floating constants, the exponent
indicates the power of 10 by which the significand part is to be scaled. For hexadecimal floating
constants, the exponent indicates the power of 2 by which the significand part is to be scaled. For
decimal floating constants, and also for hexadecimal floating constants when FLT_RADIX is not a
power of 2, the result is either the nearest representable value, or the larger or smaller representable
value immediately adjacent to the nearest representable value, chosen in an implementation-defined
manner. For hexadecimal floating constants when FLT_RADIX is a power of 2, the result is correctly
rounded.

An unsuffixed floating constant has type double. If suffixed by theletter—for—F—-a floating suffix it
has a type according to the following table: ithas-type-—Ifsuffixed-bytheletter torLithastype:

Suffixes for floating-point constants

Suffix | Type
f, F float

LL long double
df, DF | _Decimal32

dd, DD | _Decimal64
dl, DL | _Decimall28

~AAAAAAR

The values of floating constants may be represented in greater range and precision than that
required by the type (determined by the suffix); the types are not changed thereby. See 5.2.4.2.2

regarding evaluation formats.”®

Floating constants of decimal floating type that have the same numerical value but different
quantum exponents have distinguishable internal representations. The value shall be correctly
rounded as _specified in IEC 60559. The coefficient ¢ and the quantum exponent ¢ of a finite
converted decimal floating-point number (see 5.2.4.2.3) are determined as follows:_

— ¢ is set to the value of sign,,; digit-sequence in the exponent part, if any, or to 0, otherwise.

— If there is a fractional constant, g is decreased by the number of digits to the right of the period
and the period is removed to form a digit sequence.

— cis set to the value of the digit sequence (after any period has been removed).

— Rounding required because of insufficient precision or range in the type of the result will
round c to the full precision available in the type, and will adjust ¢ accordingly within the
limits of the type, provided the rounding does not yield an infinity (in which case the result
is an appropriately signed internal representation of infinity). If the full precision of the t
would require q to be smaller than the minimum for the type, then ¢ is pinned at the minimum
and ¢ is adjusted through the subnormal range accordingly, perhaps to zero.

Floating constants are converted to internal format as if at translation-time. The conversion of a
floating constant shall not raise an exceptional condition or a floating-point exception at execution

79)

Hexadecimal floating constants can be used to obtain exact values in the semantic type that are independent of the
evaluation format. Casts produce values in the semantic type, though depend on the rounding mode and may raise the
inexact floating-point exception.

§6.4.4.2 Language 55

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

80)

time. All floating constants of the same source form®” shall convert to the same internal format with

the same value.

EXAMPLE Following are floating constants of type _Decimal64 and their values as triples (s,c,q). Note that for
=Decimal64, the precision (maximum coefficient length) is 16 and the quantum exponent range is ~398 < ¢ < 369.

0.4d (1,0.0)

©.00dd. (1,0.-2)

123.4d. (1,123,0)

1.23E3dd_ (1,123,1)

12.04d_ (1,120, -1)

12.3dd_ (1,123, °1)

©.00123dd (1,123, 75)

OE7dd_ (1.0.7

12345678901234567890.dd (1,1234567890123457, 4) assuming default rounding and DEC_EVAL_METHOD is 0

or 18D

1234E-402dd (1,0, ~398) assuming default rounding and DEC_EVAL_METHOD is 0 or 1

0001dd (,1-1)

0001e0dd L1-1

©.0001dd_ (14

60.0001dd 1,14

00.00dd 1,0.~2

00.dd. 1,0.0)

.00dd (1,0,—2)

00.e-5dd _ 1,05

80e-5dd 107

Recommended practice

The implementation should produce a diagnostic message if a hexadecimal constant cannot be
represented exactly in its evaluation format; the implementation should then proceed with the
translation of the program.

The translation-time conversion of floating constants should match the execution-time conversion
of character strings by library functions, such as strtod, given matching inputs suitable for both
conversions, the same result format, and default execution-time rounding.gz)

Forward references: preprocessing numbers (6.4.8), numeric conversion functions (7.22.1).

6.4.4.3 Enumeration constants
Syntax

enumeration-constant:
identifier

80)1,23,1.230, 123e-2, 123e-02, and 1.23L are all different source forms and thus need not convert to the same internal
format and value.

8D That is, assuming the default translation rounding-direction mode is not changed by an FENV_DEC_ROUND pragma (7.6.3).

82)The specification for the library functions recommends more accurate conversion than required for floating constants
(see 7.22.1.5).

56 Language §6.4.43

1

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Semantics
An identifier declared as an enumeration constant has type int.

Forward references: enumeration specifiers (6.7.2.2).

6.4.4.4 Character constants
Syntax
character-constant:

~—e-char-sequence—— " _c-char-sequence '
: — L' c-char-sequence '
-w—e-char-sequence——u'_c-char-sequence '

: "~ U’ c-char-sequence '
c-char-sequence:

c-char
c-char-sequence c-char
c-char:
any member of the source character set except
the single-quote ', backslash \, or new-line character
escape-sequernce

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

simple-escape-sequence: one of
A VAN
\a\b\f\n\r\t\v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Description

An integer character constant is a sequence of one or more multibyte characters enclosed in single-
quotes, as in'x’ . A wide character constant is the same, except prefixed by the letter L, u, or U. With
a few exceptions detailed later, the elements of the sequence are any members of the source character
set; they are mapped in an implementation-defined manner to members of the execution character
set.

The single-quote ’, the double-quote ", the question-mark ?, the backslash \, and arbitrary integer
values are representable according to the following table of escape sequences:

single quote ’ \’
double quote " \"
question mark ? \7?
backslash \ \\
octal character \octal digits

hexadecimal character \x hexadecimal digits

§64.44 Language 57

10

11

12
13

14

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

The double-quote " and question-mark ? are representable either by themselves or by the escape
sequences \" and \?, respectively, but the single-quote " and the backslash \ shall be represented,
respectively, by the escape sequences \ ' and \\.

The octal digits that follow the backslash in an octal escape sequence are taken to be part of the
construction of a single character for an integer character constant or of a single wide character for a
wide character constant. The numerical value of the octal integer so formed specifies the value of
the desired character or wide character.

The hexadecimal digits that follow the backslash and the letter x in a hexadecimal escape sequence
are taken to be part of the construction of a single character for an integer character constant or of a
single wide character for a wide character constant. The numerical value of the hexadecimal integer
so formed specifies the value of the desired character or wide character.

Each octal or hexadecimal escape sequence is the longest sequence of characters that can constitute
the escape sequence.

In addition, characters not in the basic character set are representable by universal character names
and certain nongraphic characters are representable by escape sequences consisting of the backslash \
followed by a lowercase letter: \a, \b, \f, \n, \r, \'t, and \v.5?

Constraints

The value of an octal or hexadecimal escape sequence shall be in the range of representable values
for the corresponding type:

PrefixPrefix | Corresponding Type

nenenone | unsigned char
L the unsigned type corresponding to wchar_t
u charlé_t
u char32_t
Semantics

An integer character constant has type int. The value of an integer character constant containing
a single character that maps to a single-byte execution character is the numerical value of the
representation of the mapped character interpreted as an integer. The value of an integer character
constant containing more than one character (e.g.,"ab’), or containing a character or escape sequence
that does not map to a single-byte execution character, is implementation-defined. If an integer
character constant contains a single character or escape sequence, its value is the one that results
when an object with type char whose value is that of the single character or escape sequence is
converted to type int.

A wide character constant prefixed by the letter L has type wchar_t, an integer type defined in the

<stddef.h> header; a wide character constant prefixed by the letter u or U has type charl6_t or

char32_t, respectively, unsigned integer types defined in the <uchar.h> header. The value of a
wide character constant containing a single multibyte character that maps to a single member of the
extended execution character set is the wide character corresponding to that multibyte character,
as defined by the mbtowc, mbrtocl6, or mbrtoc32 function as appropriate for its type, with an
implementation-defined current locale. The value of a wide character constant containing more
than one multibyte character or a single multibyte character that maps to multiple members of
the extended execution character set, or containing a multibyte character or escape sequence not
represented in the extended execution character set, is implementation-defined.

EXAMPLE 1 The construction’\0"’ is commonly used to represent the null character.

EXAMPLE 2 Consider implementations that use two’s complement representation for integers and eight bits for objects
that have type char. In an implementation in which type char has the same range of values as signed char, the integer
character constant '\xFF' has the value —1; if type char has the same range of values as unsigned char, the character
constant '\xFF’ has the value +255.

EXAMPLE 3 Even if eight bits are used for objects that have type char, the construction ' \x123" specifies an integer character
constant containing only one character, since a hexadecimal escape sequence is terminated only by a non-hexadecimal

83)The semantics of these characters were discussed in 5.2.2. If any other character follows a backslash, the result is not a
token and a diagnostic is required. See “future language directions” (6.11.4).

58 Language §64.44

15

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

character. To specify an integer character constant containing the two characters whose values are '\x12’ and '3’ , the
construction '\0223" can be used, since an octal escape sequence is terminated after three octal digits. (The value of this
two-character integer character constant is implementation-defined.)

EXAMPLE 4 Even if 12 or more bits are used for objects that have type wchar_t, the construction L'\1234" specifies the
implementation-defined value that results from the combination of the values 6123 and 4’ .

Forward references: common definitions <stddef.h> (7.19), the mbtowc function (7.22.7.2), Uni-
code utilities <uchar.h> (7.28).

6.4.5 String literals
Syntax

string-literal:

encoding-prefiXopy—s-char-seqiteticecpr- " _s-char-sequenceop; "

encoding-prefix:

us

u

U

L
s-char-sequence:

s-char

s-char-sequence s-char

s-char:
any member of the source character set except
the double-quote ", backslash \, or new-line character
escape-sequence

Constraints

A sequence of adjacent string literal tokens shall not include both a wide string literal and a UTF-8
string literal.

Description

A character string literal is a sequence of zero or more multibyte characters enclosed in double-quotes,
asin "xyz". A UTF-8 string literal is the same, except prefixed by u8. A wide string literal is the same,
except prefixed by the letter L, u, or U.

The same considerations apply to each element of the sequence in a string literal as if it were in an
integer character constant (for a character or UTF-8 string literal) or a wide character constant (for a
wide string literal), except that the single-quote ' is representable either by itself or by the escape
sequence \ ', but the double-quote " shall be represented by the escape sequence \".

Semantics

In translation phase 6, the multibyte character sequences specified by any sequence of adjacent
character and identically-prefixed string literal tokens are concatenated into a single multibyte
character sequence. If any of the tokens has an encoding prefix, the resulting multibyte character
sequence is treated as having the same prefix; otherwise, it is treated as a character string literal.
Whether differently-prefixed wide string literal tokens can be concatenated and, if so, the treatment
of the resulting multibyte character sequence are implementation-defined.

In translation phase 7, a byte or code of value zero is appended to each multibyte character sequence
that results from a string literal or literals.® The multibyte character sequence is then used to
initialize an array of static storage duration and length just sufficient to contain the sequence. For
character string literals, the array elements have type char, and are initialized with the individual
bytes of the multibyte character sequence. For UTF-8 string literals, the array elements have type

84 A string literal might not be a string (see 7.1.1), because a null character can be embedded in it by a \0 escape sequence.

§6.4.5 Language 59

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

char, and are initialized with the characters of the multibyte character sequence, as encoded in
UTF-8. For wide string literals prefixed by the letter L, the array elements have type wchar_t
and are initialized with the sequence of wide characters corresponding to the multibyte character
sequence, as defined by the mbstowcs function with an implementation-defined current locale.
For wide string literals prefixed by the letter u or U, the array elements have type charl6_t or

char32_t, respectively, and are initialized with the sequence of wide characters corresponding
to the multibyte character sequence, as defined by successive calls to the mbrtocl6, or mbrtoc32
function as appropriate for its type, with an implementation-defined current locale. The value of a
string literal containing a multibyte character or escape sequence not represented in the execution
character set is implementation-defined.

It is unspecified whether these arrays are distinct provided their elements have the appropriate
values. If the program attempts to modify such an array, the behavior is undefined.

EXAMPLE 1 This pair of adjacent character string literals

| "\x12" "3"

produces a single character string literal containing the two characters whose values are '\x12’ and '3’ , because escape
sequences are converted into single members of the execution character set just prior to adjacent string literal concatenation.

EXAMPLE 2 Each of the sequences of adjacent string literal tokens

"a" "b" L"c"
"a" L"b" "c"
L"a" "b" L"c"
L"a" L"b" L"c"

is equivalent to the string literal

Luabcu

Likewise, each of the sequences

ngn mpe uucu
nan uubu "e
u"a" ||b|| u"c"

u'a" uubu u'c"

is equivalent to

i U"abc"
L

Forward references: common definitions <stddef.h> (7.19), the mbstowcs function (7.22.8.1),
Unicode utilities <uchar.h> (7.28).

6.4.6 Punctuators
Syntax

punctuator: one of

60 Language §6.4.6

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Semantics

2 A punctuator is a symbol that has independent syntactic and semantic significance. Depending on
context, it may specify an operation to be performed (which in turn may yield a value or a function
designator, produce a side effect, or some combination thereof) in which case it is known as an
operator (other forms of operator also exist in some contexts). An operand is an entity on which an
operator acts.

3 Inall aspects of the language, the six tokens®

—%6>—S6+—%1%1— <: > <% %> %! %:%:
behave, respectively, the same as the six tokens
3 3F—#—# | { # __##
except for their spelling.5
Forward references: expressions (6.5), declarations (6.7), preprocessing directives (6.10), statements
(6.8).
6.4.7 Header names

Syntax

1 header-name:
< h-char-sequence >
" g-char-sequence "

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except

the new-line character and >

g-char-sequence:

g-char
g-char-sequence g-char
g-char:
any member of the source character set except
the new-line character and "
Semantics

2 The sequences in both forms of header names are mapped in an implementation-defined manner to
headers or external source file names as specified in 6.10.2.

3 If the characters’,\, ", //, or /* occur in the sequence between the < and > delimiters, the behavior
is undefined. Similarly, if the characters ', \, //, or /* occur in the sequence between the "
delimiters, the behavior is undefined.?” Header name preprocessing tokens are recognized only
within #include preprocessing directives and in implementation-defined locations within #pragma
directives.8®)

4 EXAMPLE The following sequence of characters:

\ 0x3<1/a.h>1e2

85)These tokens are sometimes called “digraphs”.

86)Thus [and <: behave differently when “stringized” (see 6.10.3.2), but can otherwise be freely interchanged.
87)Thus, sequences of characters that resemble escape sequences cause undefined behavior.

88)For an example of a header name preprocessing token used in a #pragma directive, see 6.10.9.

§64.7 Language 61

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

\ #include <1/a.h> |
\ #define const.member@$ ‘

forms the following sequence of preprocessing tokens (with each individual preprocessing token delimited by a { on the left
and a / on the right).

{0x3H{<}H1}{/Ha}{.H{h}{>}{1le2}
{#}{include} {<1/a.h>}
{#}{define} {const}{.}{member}{@}{$}

Forward references: source file inclusion (6.10.2).

6.4.8 Preprocessing numbers

Syntax

pp-number:
digit
—,_digit
pp-number digit
pp-number identifier-nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number — .

Description
A preprocessing number begins with a digit optionally preceded by a period (.) and may be followed
by valid identifier characters and the character sequences e+, e-, E+, E-, p+, p-, P+, or P-.

Preprocessing number tokens lexically include all floating and integer constant tokens.

Semantics

A preprocessing number does not have type or a value; it acquires both after a successful conversion
(as part of translation phase 7) to a floating constant token or an integer constant token.

6.4.9 Comments

Except within a character constant, a string literal, or a comment, the characters /* introduce a
comment. The contents of such a comment are examined only to identify multibyte characters and
to find the characters / that terminate it.5?)

Except within a character constant, a string literal, or a comment, the characters // introduce a
comment that includes all multibyte characters up to, but not including, the next new-line character.
The contents of such a comment are examined only to identify multibyte characters and to find the
terminating new-line character.

EXAMPLE
"a//b" // four-character string literal
#include "//e" // undefined behavior
/] *x/ // comment, not syntax error
f = qg/*x//h; // equivalent to f =g / h;
//\
i(); // part of a two-line comment
/\
/ 30); // part of a two-line comment
#define glue(x,y) x##y

89)Thus, /* ...*/ comments do not nest.

62 Language §6.4.9

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)
\ glue(/,/) k(); // syntax error, not comment \
\ /x/7%/ 1(); // equivalent to 1(); \
\ m = n//xx/o |
\ + p; // equivalent to m =n + p; ‘
§6.4.9 Language 63

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

6.5 Expressions

An expression is a sequence of operators and operands that specifies computation of a value,”” or
that designates an object or a function, or that generates side effects, or that performs a combination
thereof. The value computations of the operands of an operator are sequenced before the value
computation of the result of the operator.

If a side effect on a scalar object is unsequenced relative to either a different side effect on the
same scalar object or a value computation using the value of the same scalar object, the behavior
is undefined. If there are multiple allowable orderings of the subexpressions of an expression, the
behavior is undefined if such an unsequenced side effect occurs in any of the orderings.”?

The grouping of operators and operands is indicated by the syntax.

%2 Except as specified later, side effects and value computations of subexpressions are unse-

quenced.®®

Some operators (the unary operator ~, and the binary operators <<, >>, & *, and |, collectively
described as bitwise operators) are required to have operands that have integer type. These operators
yield values that depend on the internal representations of integers, and have implementation-
defined and undefined aspects for signed types.

If an exceptional condition occurs during the evaluation of an expression (that is, if the result is not
mathematically defined or not in the range of representable values for its type), the behavior is
undefined.

The effective type of an object for an access to its stored value is the declared type of the object, if
any? If a value is stored into an object having no declared type through an Ivalue having a type
that is not a character type, then the type of the Ivalue becomes the effective type of the object for
that access and for subsequent accesses that do not modify the stored value. If a value is copied into
an object having no declared type using memcpy or memmove, or is copied as an array of character
type, then the effective type of the modified object for that access and for subsequent accesses that
do not modify the value is the effective type of the object from which the value is copied, if it has
one. For all other accesses to an object having no declared type, the effective type of the object is
simply the type of the lvalue used for the access.

An object shall have its stored value accessed only by an lvalue expression that has one of the
following types:”

— a type compatible with the effective type of the object,

%) Annex H documents the extent to which the C language supports the ISO/IEC 10967-1 standard for language-
independent arithmetic (LIA-1).
9DThis paragraph renders undefined statement expressions such as

i=++1 +1;
ali++] = 1i;

while allowing

92)The syntax specifies the precedence of operators in the evaluation of an expression, which is the same as the order of the
major subclauses of this subclause, highest precedence first. Thus, for example, the expressions allowed as the operands
of the binary + operator (6.5.6) are those expressions defined in 6.5.1 through 6.5.6. The exceptions are cast expressions
(6.5.4) as operands of unary operators (6.5.3), and an operand contained between any of the following pairs of operators:
grouping parentheses () (6.5.1), subscripting brackets [] (6.5.2.1), function-call parentheses () (6.5.2.2), and the conditional
operator ?: (6.5.15).

Within each major subclause, the operators have the same precedence. Left- or right-associativity is indicated in each
subclause by the syntax for the expressions discussed therein.

%3)In an expression that is evaluated more than once during the execution of a program, unsequenced and indeterminately
sequenced evaluations of its subexpressions need not be performed consistently in different evaluations.

Y Allocated objects have no declared type.

%)The intent of this list is to specify those circumstances in which an object can or cannot be aliased.

64 Language §6.5

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

— a qualified version of a type compatible with the effective type of the object,
— atype that is the signed or unsigned type corresponding to the effective type of the object,

— a type that is the signed or unsigned type corresponding to a qualified version of the effective
type of the object,

— an aggregate or union type that includes one of the aforementioned types among its members
(including, recursively, a member of a subaggregate or contained union), or

— a character type.

A floating expression may be contracted, that is, evaluated as though it were a single opera-
tion, thereby omitting rounding errors implied by the source code and the expression evaluation
method.”® The FP_CONTRACT pragma in <math.h> provides a way to disallow contracted ex-
pressions. Otherwise, whether and how expressions are contracted is implementation-defined.’”)

Operators involving decimal floating types are evaluated according to the semantics of IEC 60559,
including production of results with the preferred quantum exponent as specified in IEC 60559.

Forward references: the FP_CONTRACT pragma (7.12.2), copying functions (7.24.2).

6.5.1 Primary expressions
Syntax
primary-expression:
identifier
constant
string-literal
(expression)
generic-selection

Semantics

An identifier is a primary expression, provided it has been declared as designating an object (in
which case it is an lvalue) or a function (in which case it is a function designator).%)

A constant is a primary expression. Its type depends on its form and value, as detailed in 6.4.4.

A string literal is a primary expression. It is an lvalue with type as detailed in 6.4.5.

A parenthesized expression is a primary expression. Its type and value are identical to those of
the unparenthesized expression. It is an lvalue, a function designator, or a void expression if the
unparenthesized expression is, respectively, an Ivalue, a function designator, or a void expression.

A generic selection is a primary expression. Its type and value depend on the selected generic
association, as detailed in the following subclause.

Forward references: declarations (6.7).

6.5.1.1 Generic selection
Syntax

generic-selection:
—Generic (assignment-expression , generic-assoc-list)

%)The intermediate operations in the contracted expression are evaluated as if to infinite range and precision, while the
final operation is rounded to the format determined by the expression evaluation method. A contracted expression might
also omit the raising of floating-point exceptions.

97)This license is specifically intended to allow implementations to exploit fast machine instructions that combine multiple
C operators. As contractions potentially undermine predictability, and can even decrease accuracy for containing expressions,
their use needs to be well-defined and clearly documented.

98)Thus, an undeclared identifier is a violation of the syntax.

§6.5.1.1 Language 65

1

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

generic-assoc-list:
generic-association
generic-assoc-list , generic-association
generic-association:
type-name : assignment-expression
default : assignment-expression

Constraints

A generic selection shall have no more than one default generic association. The type name in a
generic association shall specify a complete object type other than a variably modified type. No two
generic associations in the same generic selection shall specify compatible types. The type of the
controlling expression is the type of the expression as if it had undergone an lvalue conversion,”
array to pointer conversion, or function to pointer conversion. That type shall be compatible with at
most one of the types named in the generic association list. If a generic selection has no default
generic association, its controlling expression shall have type compatible with exactly one of the
types named in its generic association list.

Semantics

The controlling expression of a generic selection is not evaluated. If a generic selection has a generic
association with a type name that is compatible with the type of the controlling expression, then the
result expression of the generic selection is the expression in that generic association. Otherwise, the
result expression of the generic selection is the expression in the default generic association. None
of the expressions from any other generic association of the generic selection is evaluated.

The type and value of a generic selection are identical to those of its result expression. It is an
lvalue, a function designator, or a void expression if its result expression is, respectively, an lvalue, a
function designator, or a void expression.

EXAMPLE The ebrt-chrt type-generic macro could be implemented as follows:

. . .

. #define cbrt(X) _Generic((X), _ ______________\
long double: cbhrtl, \
default: cbhrt, \
float: cbhrtf \

) (X)

See 7.25 how such a macro could be implemented with the required rounding properties.

6.5.2 Postfix operators

Syntax

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (argument-expression-listop:)
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression — ==
(type-name) { initializer-list }
(type-name) { initializer-list , }

argument-expression-list:
assignment-expression
arqument-expression-list , assignment-expression

%) An lvalue conversion drops type qualifiers.

66 Language §6.5.2

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

6.5.2.1 Array subscripting
Constraints

One of the expressions shall have type “pointer to complete object type”, the other expression shall
have integer type, and the result has type “type”.

Semantics

A postfix expression followed by an expression in square brackets [] is a subscripted designation of
an element of an array object. The definition of the subscript operator [] is that E1[E2] is identical
to (*((E1)+(E2))). Because of the conversion rules that apply to the binary+ operator, if E1 is an
array object (equivalently, a pointer to the initial element of an array object) and E2 is an integer,
E1[E2] designates the E2 -th element of E1 (counting from zero).

Successive subscript operators designate an element of a multidimensional array object. If E is an
n-dimensional array (n > 2) with dimensions ¢ x j x --- x k, then E (used as other than an lvalue) is
converted to a pointer to an (n — 1)-dimensional array with dimensions j x - -- x k. If the unary *
operator is applied to this pointer explicitly, or implicitly as a result of subscripting, the result is the
referenced (n — 1)-dimensional array, which itself is converted into a pointer if used as other than an
lvalue. It follows from this that arrays are stored in row-major order (last subscript varies fastest).

EXAMPLE Consider the array object defined by the declaration

| int x[31[5];

Here x
isa 3 x 5 array of

int s; more precisely, x is an array of three element objects, each of which is an array of five int s. In the expression x[i],
which is equivalent to (*((x)+(1))), x is first converted to a pointer to the initial array of five int s. Then i is adjusted
according to the type of x, which conceptually entails multiplying i by the size of the object to which the pointer points,
namely an array of five int objects. The results are added and indirection is applied to yield an array of five int s. When
used in the expression x[1][]], that array is in turn converted to a pointer to the first of the int s, so x[1][j] yields an int.

Forward references: additive operators (6.5.6), address and indirection operators (6.5.3.2), array
declarators (6.7.6.2).

6.5.2.2 Function calls

Constraints

The expression that denotes the called function'®? shall have type pointer to function returning

void or returning a complete object type other than an array type.

If the expression that denotes the called function has a type that includes a prototype, the number of
arguments shall agree with the number of parameters. Each argument shall have a type such that its
value may be assigned to an object with the unqualified version of the type of its corresponding
parameter.

Semantics

A postfix expression followed by parentheses () containing a possibly empty, comma-separated
list of expressions is a function call. The postfix expression denotes the called function. The list of
expressions specifies the arguments to the function.

An argument may be an expression of any complete object type. In preparing for the call to a
function, the arguments are evaluated, and each parameter is assigned the value of the corresponding
argument.'oV)

If the expression that denotes the called function has type pointer to function returning an object
type, the function call expression has the same type as that object type, and has the value determined

100)Most often, this is the result of converting an identifier that is a function designator.

10D A function can change the values of its parameters, but these changes cannot affect the values of the arguments. On the
other hand, it is possible to pass a pointer to an object, and the function can then change the value of the object pointed to. A
parameter declared to have array or function type is adjusted to have a pointer type as described in 6.9.1.

§6.5.22 Language 67

10

11

12

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

as specified in 6.8.6.4. Otherwise, the function call has type void.

If the expression that denotes the called function has a type that does not include a prototype, the
integer promotions are performed on each argument, and arguments that have type float are
promoted to double. These are called the default argument promotions. If the number of arguments
does not equal the number of parameters, the behavior is undefined. If the function is defined with
a type that includes a prototype, and either the prototype ends with an ellipsis (, ...) or the types
of the arguments after promotion are not compatible with the types of the parameters, the behavior
is undefined. If the function is defined with a type that does not include a prototype, and the types
of the arguments after promotion are not compatible with those of the parameters after promotion,
the behavior is undefined, except for the following cases:

— one promoted type is a signed integer type, the other promoted type is the corresponding
unsigned integer type, and the value is representable in both types;

— both types are pointers to qualified or unqualified versions of a character type or void.

If the expression that denotes the called function has a type that does include a prototype, the
arguments are implicitly converted, as if by assignment, to the types of the corresponding parameters,
taking the type of each parameter to be the unqualified version of its declared type. The ellipsis
notation in a function prototype declarator causes argument type conversion to stop after the last
declared parameter. The default argument promotions are performed on trailing arguments.

No other conversions are performed implicitly; in particular, the number and types of arguments are
not compared with those of the parameters in a function definition that does not include a function
prototype declarator.

If the function is defined with a type that is not compatible with the type (of the expression) pointed
to by the expression that denotes the called function, the behavior is undefined.

There is a sequence point after the evaluations of the function designator and the actual arguments
but before the actual call. Every evaluation in the calling function (including other function calls)
that is not otherwise specifically sequenced before or after the execution of the body of the called
function is indeterminately sequenced with respect to the execution of the called function.!*?

Recursive function calls shall be permitted, both directly and indirectly through any chain of other
functions.

EXAMPLE In the function call

\ (xpf[f10)1) (f2(), f3() + f4())

the functions f1, f2, 3, and f4 can be called in any order. All side effects have to be completed before the function pointed
toby pf[f1()]is called.

Forward references: function declarators (including prototypes) (6.7.6.3), function definitions
(6.9.1), the return statement (6.8.6.4), simple assignment (6.5.16.1).

6.5.2.3 Structure and union members

Constraints

The first operand of the . operator shall have an atomic, qualified, or unqualified structure or union
type, and the second operand shall name a member of that type.

The first operand of the-> operator shall have type “pointer to atomic, qualified, or unqualified
structure” or “pointer to atomic, qualified, or unqualified union”, and the second operand shall
name a member of the type pointed to.

Semantics

A postfix expression followed by the . operator and an identifier designates a member of a structure
or union object. The value is that of the named member,'®® and is an lvalue if the first expression is

102)[n other words, function executions do not “interleave” with each other.
103)1f the member used to read the contents of a union object is not the same as the member last used to store a value in the
object, the appropriate part of the object representation of the value is reinterpreted as an object representation in the new

68 Language §6.5.2.3

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

an lvalue. If the first expression has qualified type, the result has the so-qualified version of the type
of the designated member.

A postfix expression followed by the-> operator and an identifier designates a member of a structure
or union object. The value is that of the named member of the object to which the first expression
points, and is an lvalue.!® If the first expression is a pointer to a qualified type, the result has the
so-qualified version of the type of the designated member.

Accessing a member of an atomic structure or union object results in undefined behavior.!%%

One special guarantee is made in order to simplify the use of unions: if a union contains several
structures that share a common initial sequence (see below), and if the union object currently contains
one of these structures, it is permitted to inspect the common initial part of any of them anywhere
that a declaration of the completed type of the union is visible. Two structures share a common initial
sequence if corresponding members have compatible types (and, for bit-fields, the same widths) for a
sequence of one or more initial members.

EXAMPLE 1 If f is a function returning a structure or union, and x is a member of that structure or union, f() .x is a valid
postfix expression but is not an lvalue.

EXAMPLE 2 In:

struct s { int i; const int ci; };
struct s s;

const struct s cs;

volatile struct s vs;

the various members have the types:

s.i int
s.ci const int
cs.i const int

cs.ci const int
vs.i volatile int
vs.ci volatile const int

EXAMPLE 3 The following is a valid fragment:

union {
struct {
int alltypes;
}on;
struct {
int type;
int intnode;
} ni;
struct {
int type;
double doublenode;
} nf;
}ou;
u.nf.type = 1;
u.nf.doublenode = 3.14;
VA V4
if (u.n.alltypes == 1)
if (sin(u.nf.doublenode) == 0.0)
/% .. %/

The following is not a valid fragment (because the union type is not visible within function f):

type as described in 6.2.6 (a process sometimes called “type punning”). This might be a trap representation.

109)1f &E is a valid pointer expression (where & is the “address-of” operator, which generates a pointer to its operand), the
expression (&E) ->MOS is the same as E.MOS.

105For example, a data race would occur if access to the entire structure or union in one thread conflicts with access to a
member from another thread, where at least one access is a modification. Members can be safely accessed using a non-atomic
object which is assigned to or from the atomic object.

§6.5.2.3 Language 69

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

struct t1 { int m; };
struct t2 { int m; };
int f(struct tl *pl, struct t2 *p2)
{
if (pl->m < 0)
p2->m = -p2->m;
return pl->m;
h
int g()
{
union {
struct tl sl;
struct t2 s2;
Tou;
/* ... %/
return f(&u.sl, &u.s2);
)

Forward references: address and indirection operators (6.5.3.2), structure and union specifiers
(6.7.2.1).

6.5.2.4 Postfix increment and decrement operators
Constraints

The operand of the postfix increment or decrement operator shall have atomic, qualified, or unquali-
fied real or pointer type, and shall be a modifiable lvalue.

Semantics

The result of the postfix++ operator is the value of the operand. As a side effect, the value of the
operand object is incremented (that is, the value 1 of the appropriate type is added to it). See the
discussions of additive operators and compound assignment for information on constraints, types,
and conversions and the effects of operations on pointers. The value computation of the result is
sequenced before the side effect of updating the stored value of the operand. With respect to an
indeterminately-sequenced function call, the operation of postfix++ is a single evaluation. Postfix

++ on an object with atomic type is a read-modify-write operation with memory_order_seq_cst
memory order semantics.'%®

The postfix- - operator is analogous to the postfix++ operator, except that the value of the operand
is decremented (that is, the value 1 of the appropriate type is subtracted from it).

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).

6.5.2.5 Compound literals

Constraints

The type name shall specify a complete object type or an array of unknown size, but not a variable
length array type.

All the constraints for initializer lists in 6.7.9 also apply to compound literals.

190)Where a pointer to an atomic object can be formed and E has integer type, E++ is equivalent to the following code
sequence where T is the type of E:

T xaddr = &E;
T old = xaddr;
T new;

do {

new = old + 1;
} while ('atomic_compare_exchange_strong(addr, &old, new));

with old being the result of the operation.
Special care is necessary if E has floating type; see 6.5.16.2.

70 Language §6.5.25

10

11

12

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Semantics

A postfix expression that consists of a parenthesized type name followed by a brace-enclosed list of

initializers is a compound literal. It provides an unnamed object whose value is given by the initializer
list.107)

If the type name specifies an array of unknown size, the size is determined by the initializer list as
specified in 6.7.9, and the type of the compound literal is that of the completed array type. Otherwise
(when the type name specifies an object type), the type of the compound literal is that specified by
the type name. In either case, the result is an lvalue.

The value of the compound literal is that of an unnamed object initialized by the initializer list. If
the compound literal occurs outside the body of a function, the object has static storage duration;
otherwise, it has automatic storage duration associated with the enclosing block.

All the semantic rules for initializer lists in 6.7.9 also apply to compound literals.!%®

String literals, and compound literals with const-qualified types, need not designate distinct ob-
i cts 109)
jects.

EXAMPLE 1 The file scope definition

\ int #p = (int [1){2, 4};

initializes p to point to the first element of an array of two ints, the first having the value two and the second, four. The
expressions in this compound literal are required to be constant. The unnamed object has static storage duration.

EXAMPLE 2 In contrast, in

void f(void)
{
int *p;
/*...%/
p = (int [2]){*p};
[*.0.0.0%/
}

p is assigned the address of the first element of an array of two ints, the first having the value previously pointed to by p and
the second, zero. The expressions in this compound literal need not be constant. The unnamed object has automatic storage
duration.

EXAMPLE 3 Initializers with designations can be combined with compound literals. Structure objects created using
compound literals can be passed to functions without depending on member order:

drawline((struct point){.x=1, .y=1},
(struct point){.x=3, .y=4});

Or, if drawline instead expected pointers to struct point:

drawline(&(struct point){.x=1, .y=1},
&(struct point){.x=3, .y=4});

EXAMPLE 4 A read-only compound literal can be specified through constructions like:

(const float []){1le0, lel, le2, le3, led4, le5, le6}

EXAMPLE 5 The following three expressions have different meanings:

"/tmp/ fileXXXXXX"
(char [1){"/tmp/fileXXXXXX"}
(const char []){"/tmp/fileXXXXXX"}

107)Note that this differs from a cast expression. For example, a cast specifies a conversion to scalar types or void only, and
the result of a cast expression is not an Ivalue.

199)For example, subobjects without explicit initializers are initialized to zero.

199This allows implementations to share storage for string literals and constant compound literals with the same or
overlapping representations.

§6.5.25 Language 71

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

The first always has static storage duration and has type array of char, but need not be modifiable; the last two have
automatic storage duration when they occur within the body of a function, and the first of these two is modifiable.

EXAMPLE 6 Like string literals, const-qualified compound literals can be placed into read-only memory and can even be
shared. For example,

(const char []){"abc"} == "abc"

might yield 1 if the literals’ storage is shared.

EXAMPLE 7 Since compound literals are unnamed, a single compound literal cannot specify a circularly linked object. For
example, there is no way to write a self-referential compound literal that could be used as the function argument in place of
the named object endless_zeros below:

struct int_list { int car; struct int_list xcdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval(endless_zeros);

EXAMPLE 8 Each compound literal creates only a single object in a given scope:

struct s { int i; };

int f (void)

{
struct s *xp = 0, xq;
int j = 0;
again:
q=p, p==&((struct s){ j++ });
if (j < 2) goto again;
return p == q & q->1i == 1;
}

The function f () always returns the value 1.

Note that if an iteration statement were used instead of an explicit goto and a labeled statement, the lifetime of the unnamed
object would be the body of the loop only, and on entry next time around p would have an indeterminate value, which would
result in undefined behavior.

Forward references: type names (6.7.7), initialization (6.7.9).

6.5.3 Unary operators

Syntax

unary-expression:
postfix-expression
++ unary-expression
— == unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)
—Alignof (type-name)

unary-operator: one of
S+ & x + - ~

6.5.3.1 Prefix increment and decrement operators
Constraints

The operand of the prefix increment or decrement operator shall have atomic, qualified, or unquali-
fied real or pointer type, and shall be a modifiable lvalue.

72 Language §6.5.3.1

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Semantics

The value of the operand of the prefix++ operator is incremented. The result is the new value of the
operand after incrementation. The expression++E is equivalent to (E+=1). See the discussions of
additive operators and compound assignment for information on constraints, types, side effects,
and conversions and the effects of operations on pointers.

The prefix- - operator is analogous to the prefix++ operator, except that the value of the operand is
decremented.

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).

6.5.3.2 Address and indirection operators
Constraints

The operand of the unary & operator shall be either a function designator, the result of a [] or unary
* operator, or an lvalue that designates an object that is not a bit-field and is not declared with the
register storage-class specifier.

The operand of the unary * operator shall have pointer type.

Semantics

The unary & operator yields the address of its operand. If the operand has type “type”, the result has
type “pointer to type”. If the operand is the result of a unary * operator, neither that operator nor
the & operator is evaluated and the result is as if both were omitted, except that the constraints on
the operators still apply and the result is not an lvalue. Similarly, if the operand is the result of a []
operator, neither the & operator nor the unary * that is implied by the [] is evaluated and the result
is as if the & operator were removed and the [] operator were changed to a+ operator. Otherwise,
the result is a pointer to the object or function designated by its operand.

The unary * operator denotes indirection. If the operand points to a function, the result is a function
designator; if it points to an object, the result is an lvalue designating the object. If the operand has
type “pointer to type”, the result has type “type”. If an invalid value has been assigned to the pointer,
the behavior of the unary * operator is undefined.!'?

Forward references: storage-class specifiers (6.7.1), structure and union specifiers (6.7.2.1).

6.5.3.3 Unary arithmetic operators
Constraints

The operand of the unary+ or- operator shall have arithmetic type; of the ~ operator, integer type;
of the ! operator, scalar type.

Semantics

The result of the unary + operator is the value of its (promoted) operand. The integer promotions
are performed on the operand, and the result has the promoted type.

The result of the unary- operator is the negative of its (promoted) operand. The integer promotions
are performed on the operand, and the result has the promoted type.

The result of the ~ operator is the bitwise complement of its (promoted) operand (that is, each bit in
the result is set if and only if the corresponding bit in the converted operand is not set). The integer
promotions are performed on the operand, and the result has the promoted type. If the promoted
type is an unsigned type, the expression ~E is equivalent to the maximum value representable in
that type minus E.

The result of the logical negation operator ! is 0 if the value of its operand compares unequal to
0, 1 if the value of its operand compares equal to 0. The result has type int. The expression !E is

10 Thus, &+E is equivalent to E (even if E is a null pointer), and &(E1[E2]) to ((E1)+(E2)). Itis always true that if Eis a
function designator or an lvalue that is a valid operand of the unary & operator, *&E is a function designator or an lvalue
equal to E. If xP is an Ivalue and T is the name of an object pointer type, * (T)P is an lvalue that has a type compatible with
that to which T points.

Among the invalid values for dereferencing a pointer by the unary * operator are a null pointer, an address inappropriately
aligned for the type of object pointed to, and the address of an object after the end of its lifetime.

§6.5.33 Language 73

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

equivalent to (0==E).

6.5.3.4 The sizeof and _Alignof operators
Constraints

The sizeof operator shall not be applied to an expression that has function type or an incomplete
type, to the parenthesized name of such a type, or to an expression that designates a bit-field member.
The _Alignof operator shall not be applied to a function type or an incomplete type.

Semantics

The sizeof operator yields the size (in bytes) of its operand, which may be an expression or the
parenthesized name of a type. The size is determined from the type of the operand. The result
is an integer. If the type of the operand is a variable length array type, the operand is evaluated;
otherwise, the operand is not evaluated and the result is an integer constant.

The _Alignof operator yields the alignment requirement of its operand type. The operand is not
evaluated and the result is an integer constant. When applied to an array type, the result is the
alignment requirement of the element type.

When sizeof is applied to an operand that has type char, unsigned char, or signed char, (or
a qualified version thereof) the result is 1. When applied to an operand that has array type, the
result is the total number of bytes in the array.'') When applied to an operand that has structure or
union type, the result is the total number of bytes in such an object, including internal and trailing
padding.

The value of the result of both operators is implementation-defined, and its type (an unsigned
integer type) is size_t, defined in <stddef.h> (and other headers).

EXAMPLE 1 A principal use of the sizeof operator is in communication with routines such as storage allocators and I/O
systems. A storage-allocation function might accept a size (in bytes) of an object to allocate and return a pointer to void. For
example:

extern void *alloc(size_t);
double *dp = alloc(sizeof x*dp);

The implementation of the alloc function presumably ensures that its return value is aligned suitably for conversion to a
pointer to double.

EXAMPLE 2 Another use of the sizeof operator is to compute the number of elements in an array:

sizeof array / sizeof array[0]

EXAMPLE 3 In this example, the size of a variable length array is computed and returned from a function:

#include <stddef.h>
size_t fsize3(int n)
{
char b[n+3]; // variable length array
return sizeof b; // execution time sizeof
}
int main()
{
size_t size;
size = fsize3(10); // fsize3 returns 13
return 0;
}

Forward references: common definitions <stddef.h> (7.19), declarations (6.7), structure and union
specifiers (6.7.2.1), type names (6.7.7), array declarators (6.7.6.2).

1IWhen applied to a parameter declared to have array or function type, the sizeof operator yields the size of the adjusted
(pointer) type (see 6.9.1).

74 Language §6.5.34

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

6.5.4 Cast operators

Syntax

cast-expression:
UNAry-expression
(type-name ') cast-expression

Constraints
Unless the type name specifies a void type, the type name shall specify atomic, qualified, or
unqualified scalar type, and the operand shall have scalar type.

Conversions that involve pointers, other than where permitted by the constraints of 6.5.16.1, shall
be specified by means of an explicit cast.

A pointer type shall not be converted to any floating type. A floating type shall not be converted to
any pointer type.

Semantics

Preceding an expression by a parenthesized type name converts the value of the expression to the
unqualified version of the named type. This construction is called a cast.!'? A cast that specifies no
conversion has no effect on the type or value of an expression.

If the value of the expression is represented with greater range or precision than required by the type
named by the cast (6.3.1.8), then the cast specifies a conversion even if the type of the expression is
the same as the named type and removes any extra range and precision.

Forward references: equality operators (6.5.9), function declarators (including prototypes) (6.7.6.3),
simple assignment (6.5.16.1), type names (6.7.7).

6.5.5 Multiplicative operators

Syntax

multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

Constraints

Each of the operands shall have arithmetic type. The operands of the % operator shall have integer
type.

If either operand has decimal floating type, the other operand shall not have standard floating type,
Semantics

The usual arithmetic conversions are performed on the operands.
The result of the binary * operator is the product of the operands.

The result of the / operator is the quotient from the division of the first operand by the second; the
result of the % operator is the remainder. In both operations, if the value of the second operand is
zero, the behavior is undefined.

When integers are divided, the result of the / operator is the algebraic quotient with any fractional
part discarded.!® If the quotient a/b is representable, the expression (a/b)*b + a%b shall equal a;

112 A cast does not yield an Ivalue.
13)This is often called “truncation toward zero”.

§6.5.5 Language 75

10

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

otherwise, the behavior of both a/b and a%b is undefined.

6.5.6 Additive operators

Syntax

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

Constraints

For addition, either both operands shall have arithmetic type, or one operand shall be a pointer to a
complete object type and the other shall have integer type. (Incrementing is equivalent to adding 1.)

For subtraction, one of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible complete object
types; or

— the left operand is a pointer to a complete object type and the right operand has integer type.

(Decrementing is equivalent to subtracting 1.)

If either operand has decimal floating type, the other operand shall not have standard floating type,

Semantics
If both operands have arithmetic type, the usual arithmetic conversions are performed on them.

The result of the binary + operator is the sum of the operands.

The result of the binary- operator is the difference resulting from the subtraction of the second
operand from the first.

For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

When an expression that has integer type is added to or subtracted from a pointer, the result has the
type of the pointer operand. If the pointer operand points to an element of an array object, and the
array is large enough, the result points to an element offset from the original element such that the
difference of the subscripts of the resulting and original array elements equals the integer expression.
In other words, if the expression P points to the i-th element of an array object, the expressions
(P)+N (equivalently, N+(P)) and (P) -N (where N has the value n) point to, respectively, the i + n-th
and i — n-th elements of the array object, provided they exist. Moreover, if the expression P points to
the last element of an array object, the expression (P)+1 points one past the last element of the array
object, and if the expression Q points one past the last element of an array object, the expression
(Q) -1 points to the last element of the array object. If both the pointer operand and the result point
to elements of the same array object, or one past the last element of the array object, the evaluation
shall not produce an overflow; otherwise, the behavior is undefined. If the result points one past
the last element of the array object, it shall not be used as the operand of a unary * operator that is
evaluated.

When two pointers are subtracted, both shall point to elements of the same array object, or one past
the last element of the array object; the result is the difference of the subscripts of the two array
elements. The size of the result is implementation-defined, and its type (a signed integer type) is
ptrdiff_t defined in the <stddef.h>header. If the result is not representable in an object of that
type, the behavior is undefined. In other words, if the expressions P and Q point to, respectively, the

76 Language §6.5.6

11

12

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

i-th and j-th elements of an array object, the expression (P) - (Q) has the value i — j provided the
value fits in an object of type ptrdiff_t. Moreover, if the expression P points either to an element of
an array object or one past the last element of an array object, and the expression Q points to the last
element of the same array object, the expression ((Q)+1) - (P) has the same value as ((Q) - (P))+1
and as- ((P)-((Q)+1)) , and has the value zero if the expression P points one past the last element
of the array object, even though the expression (Q)+1 does not point to an element of the array
object.!¥

EXAMPLE Pointer arithmetic is well defined with pointers to variable length array types.

{
intn=4, m=3;
int a[n][m];
int (xp)[m] = a; // p == &a[0]
p += 1; // p == &a[1l]
(xp)[2] = 99; // al[l][2] == 99
n=p-a; // n ==

}

If array a in the above example were declared to be an array of known constant size, and pointer p were declared to be a
pointer to an array of the same known constant size (pointing to a), the results would be the same.

Forward references: array declarators (6.7.6.2), common definitions <stddef . h> (7.19).

6.5.7 Bitwise shift operators
Syntax
shift-expression:
additive-expression
shift-expression « <<_additive-expression
shift-expression - >>_additive-expression

Constraints
Each of the operands shall have integer type.

Semantics

The integer promotions are performed on each of the operands. The type of the result is that of the
promoted left operand. If the value of the right operand is negative or is greater than or equal to the
width of the promoted left operand, the behavior is undefined.

The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are filled with zeros. If E1 has
an unsigned type, the value of the result is E1 x 22, reduced modulo one more than the maximum
value representable in the result type. If E1 has a signed type and nonnegative value, and E1 x 252 is
representable in the result type, then that is the resulting value; otherwise, the behavior is undefined.

The result of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if E1 has a
signed type and a nonnegative value, the value of the result is the integral part of the quotient of
E1/2%2. If E1 has a signed type and a negative value, the resulting value is implementation-defined.

6.5.8 Relational operators

Syntax
relational-expression:
shift-expression
relational-expression < shift-expression

114 Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this scheme the
integer expression added to or subtracted from the converted pointer is first multiplied by the size of the object originally
pointed to, and the resulting pointer is converted back to the original type. For pointer subtraction, the result of the difference
between the character pointers is similarly divided by the size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which can overlap another object in the
program) just after the end of the object in order to satisfy the “one past the last element” requirements.

§6.5.8 Language 77

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

Constraints
2 One of the following shall hold:

— both operands have real type; or

— both operands are pointers to qualified or unqualified versions of compatible object types.

3 If either operand has decimal floating type, the other operand shall not have standard floating type.

Semantics
4 If both of the operands have arithmetic type, the usual arithmetic conversions are performed.

5 For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

6 When two pointers are compared, the result depends on the relative locations in the address space
of the objects pointed to. If two pointers to object types both point to the same object, or both point
one past the last element of the same array object, they compare equal. If the objects pointed to
are members of the same aggregate object, pointers to structure members declared later compare
greater than pointers to members declared earlier in the structure, and pointers to array elements
with larger subscript values compare greater than pointers to elements of the same array with lower
subscript values. All pointers to members of the same union object compare equal. If the expression
P points to an element of an array object and the expression Q points to the last element of the same
array object, the pointer expression Q+1 compares greater than P. In all other cases, the behavior is
undefined.

7 Each of the operators< (less than), > (greater than), <= (less than or equal to), and >= (greater than or
equal to) shall yield 1 if the specified relation is true and 0 if it is false.!!> The result has type int.

6.5.9 Equality operators

Syntax
1 equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression = relational-expression
Constraints

2 One of the following shall hold:

— both operands have arithmetic type;
— both operands are pointers to qualified or unqualified versions of compatible types;

— one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified
version of void; or

— one operand is a pointer and the other is a null pointer constant.

3 If either operand has decimal floating type, the other operand shall not have standard floating type,

115 The expression a<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it means (a<b)<c; in other
words, “if a is less than b, compare 1 to c; otherwise, compare 0 to c”.

78 Language §6.5.9

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Semantics

The == (equal to) and != (not equal to) operators are analogous to the relational operators except for
their lower precedence.!'® Each of the operators yields 1 if the specified relation is true and 0 if it is
false. The result has type int. For any pair of operands, exactly one of the relations is true.

If both of the operands have arithmetic type, the usual arithmetic conversions are performed. Values
of complex types are equal if and only if both their real parts are equal and also their imaginary parts
are equal. Any two values of arithmetic types from different type domains are equal if and only
if the results of their conversions to the (complex) result type determined by the usual arithmetic
conversions are equal.

Otherwise, at least one operand is a pointer. If one operand is a pointer and the other is a null
pointer constant, the null pointer constant is converted to the type of the pointer. If one operand is a
pointer to an object type and the other is a pointer to a qualified or unqualified version of void, the
former is converted to the type of the latter.

Two pointers compare equal if and only if both are null pointers, both are pointers to the same object
(including a pointer to an object and a subobject at its beginning) or function, both are pointers to
one past the last element of the same array object, or one is a pointer to one past the end of one array
object and the other is a pointer to the start of a different array object that happens to immediately
follow the first array object in the address space.!'”)

For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

6.5.10 Bitwise AND operator
Syntax

AND-expression:
equality-expression
AND-expression & equality-expression

Constraints
Each of the operands shall have integer type.

Semantics
The usual arithmetic conversions are performed on the operands.

The result of the binary & operator is the bitwise AND of the operands (that is, each bit in the result
is set if and only if each of the corresponding bits in the converted operands is set).

6.5.11 Bitwise exclusive OR operator
Syntax

exclusive-OR-expression:
AND-expression
exclusive-OR-expression -~ AND-expression

Constraints
Each of the operands shall have integer type.

Semantics
The usual arithmetic conversions are performed on the operands.

116)Because of the precedences, a<b == c<d is 1 whenever a<b and c<d have the same truth-value.

17 Two objects can be adjacent in memory because they are adjacent elements of a larger array or adjacent members
of a structure with no padding between them, or because the implementation chose to place them so, even though they
are unrelated. If prior invalid pointer operations (such as accesses outside array bounds) produced undefined behavior,
subsequent comparisons also produce undefined behavior.

§6.5.11 Language 79

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

The result of the ~ operator is the bitwise exclusive OR of the operands (that is, each bit in the result
is set if and only if exactly one of the corresponding bits in the converted operands is set).

6.5.12 Bitwise inclusive OR operator
Syntax
inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

Constraints
Each of the operands shall have integer type.

Semantics
The usual arithmetic conversions are performed on the operands.

The result of the | operator is the bitwise inclusive OR of the operands (that is, each bit in the result
is set if and only if at least one of the corresponding bits in the converted operands is set).

6.5.13 Logical AND operator

Syntax
logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && && inclusive-OR-expression

Constraints
Each of the operands shall have scalar type.

Semantics
The && operator shall yield 1 if both of its operands compare unequal to 0; otherwise, it yields 0. The
result has type int.

Unlike the bitwise binary & operator, the && operator guarantees left-to-right evaluation; if the
second operand is evaluated, there is a sequence point between the evaluations of the first and
second operands. If the first operand compares equal to 0, the second operand is not evaluated.

6.5.14 Logical OR operator

Syntax
logical-OR-expression:
logical-AND-expression
logical-OR-expression || logical-AND-expression

Constraints
Each of the operands shall have scalar type.

Semantics

The | | operator shall yield 1 if either of its operands compare unequal to 0; otherwise, it yields 0.
The result has type int.

Unlike the bitwise | operator, the || operator guarantees left-to-right evaluation; if the second
operand is evaluated, there is a sequence point between the evaluations of the first and second
operands. If the first operand compares unequal to 0, the second operand is not evaluated.

80 Language §6.5.14

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

6.5.15 Conditional operator
Syntax

conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

Constraints
The first operand shall have scalar type.

One of the following shall hold for the second and third operands:

— both operands have arithmetic type;

— both operands have the same structure or union type;

— both operands have void type;

— both operands are pointers to qualified or unqualified versions of compatible types;
— one operand is a pointer and the other is a null pointer constant; or

— one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified
version of void.

If either of the second or third operands has decimal floating type, the other operand shall not have
standard floating type, complex type, or imaginary type.

Semantics

The first operand is evaluated; there is a sequence point between its evaluation and the evaluation
of the second or third operand (whichever is evaluated). The second operand is evaluated only if
the first compares unequal to 0; the third operand is evaluated only if the first compares equal to 0;
the result is the value of the second or third operand (whichever is evaluated), converted to the type
described below.!'®

If both the second and third operands have arithmetic type, the result type that would be determined
by the usual arithmetic conversions, were they applied to those two operands, is the type of the
result. If both the operands have structure or union type, the result has that type. If both operands
have void type, the result has void type.

If both the second and third operands are pointers or one is a null pointer constant and the other
is a pointer, the result type is a pointer to a type qualified with all the type qualifiers of the types
referenced by both operands. Furthermore, if both operands are pointers to compatible types or to
differently qualified versions of compatible types, the result type is a pointer to an appropriately
qualified version of the composite type; if one operand is a null pointer constant, the result has the
type of the other operand; otherwise, one operand is a pointer to void or a qualified version of void,
in which case the result type is a pointer to an appropriately qualified version of void.

EXAMPLE The common type that results when the second and third operands are pointers is determined in two independent
stages. The appropriate qualifiers, for example, do not depend on whether the two pointers have compatible types.

Given the declarations

const void *c_vp;
void *vp;

const int xc_ip;
volatile int *v_ip;
int xip;

const char xc_cp;

118) A conditional expression does not yield an lvalue.

§6.5.15 Language 81

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

the third column in the following table is the common type that is the result of a conditional expression in which the first two
columns are the second and third operands (in either order):

c_.vp c_ip const void *

v_ip 0 volatile int =

c_ip v_ip const volatile int x
vp c_cp const void x

ip c_ip const int x*

vp ip void *

6.5.16 Assignment operators
Syntax

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= pe= /: = += = = = &: = I: = k= /= %= +=

&= "=

<<= >>=

Constraints

An assignment operator shall have a modifiable Ivalue as its left operand.

Semantics

An assignment operator stores a value in the object designated by the left operand. An assignment
expression has the value of the left operand after the assignment,' but is not an lvalue. The type of
an assignment expression is the type the left operand would have after Ivalue conversion. The side
effect of updating the stored value of the left operand is sequenced after the value computations of
the left and right operands. The evaluations of the operands are unsequenced.

6.5.16.1 Simple assignment
Constraints
One of the following shall hold:'?”

— the left operand has atomic, qualified, or unqualified arithmetic type, and the right has
arithmetic type;

— the left operand has an atomic, qualified, or unqualified version of a structure or union type
compatible with the type of the right;

— the left operand has atomic, qualified, or unqualified pointer type, and (considering the type
the left operand would have after lvalue conversion) both operands are pointers to qualified
or unqualified versions of compatible types, and the type pointed to by the left has all the
qualifiers of the type pointed to by the right;

— the left operand has atomic, qualified, or unqualified pointer type, and (considering the type
the left operand would have after Ivalue conversion) one operand is a pointer to an object type,
and the other is a pointer to a qualified or unqualified version of veid, and the type pointed to
by the left has all the qualifiers of the type pointed to by the right;

— the left operand is an atomic, qualified, or unqualified pointer, and the right is a null pointer
constant; or

— the left operand has type atomic, qualified, or unqualified _Bool, and the right is a pointer.

119)The implementation is permitted to read the object to determine the value but is not required to, even when the object
has volatile-qualified type.

120)The asymmetric appearance of these constraints with respect to type qualifiers is due to the conversion (specified in
6.3.2.1) that changes lvalues to “the value of the expression” and thus removes any type qualifiers that were applied to the
type category of the expression (for example, it removes const but not volatile from the type int volatile * const).

82 Language §6.5.16.1

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Semantics
In simple assignment (=), the value of the right operand is converted to the type of the assignment
expression and replaces the value stored in the object designated by the left operand.

If the value being stored in an object is read from another object that overlaps in any way the
storage of the first object, then the overlap shall be exact and the two objects shall have qualified or
unqualified versions of a compatible type; otherwise, the behavior is undefined.

EXAMPLE 1 In the program fragment

int f(void);

char c;

/* .. %/

if ((c = f()) == -1)
/*x ... %/

the int value returned by the function could be truncated when stored in the char, and then converted back to int width
prior to the comparison. In an implementation in which “plain” char has the same range of values as unsigned char (and
char is narrower than int), the result of the conversion cannot be negative, so the operands of the comparison can never
compare equal. Therefore, for full portability, the variable c would be declared as int.

EXAMPLE 2 In the fragment:

char c;
int i;
long 1;

the value of i is converted to the type of the assignment expression ¢ = i, that is, char type. The value of the expression
enclosed in parentheses is then converted to the type of the outer assignment expression, that is, long int type.

EXAMPLE 3 Consider the fragment:

const char *xxcpp;

char xp;

const char c = 'A’;

cpp = &p; // constraint violation
xcpp = &C; // valid

*p = 0; // valid

The first assignment is unsafe because it would allow the following valid code to attempt to change the value of the const
object c.

6.5.16.2 Compound assignment
Constraints

For the operators+= and-= only, either the left operand shall be an atomic, qualified, or unqualified
pointer to a complete object type, and the right shall have integer type; or the left operand shall have
atomic, qualified, or unqualified arithmetic type, and the right shall have arithmetic type.

For the other operators, the left operand shall have atomic, qualified, or unqualified arithmetic type,
and (considering the type the left operand would have after lvalue conversion) each operand shall
have arithmetic type consistent with those allowed by the corresponding binary operator. _

If either operand has decimal floating type, the other operand shall not have standard floating type,

Semantics

A compound assignment of the form E1 op= E2 is equivalent to the simple assignment expression
El = E1l op (E2), except that the lvalue E1 is evaluated only once, and with respect to an inde-
terminately-sequenced function call, the operation of a compound assignment is a single evalu-
ation. If E1 has an atomic type, compound assignment is a read-modify-write operation with
memory_order_seq_cst memory order semantics.

§6.5.16.2 Language 83

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

5 NOTE Where a pointer to an atomic object can be formed and E1 and E2 have integer type, this is equivalent to the following
code sequence where T1 is the type of E1 and T2 is the type of E2:

T1 *addr = &E1;
T2 val = (E2);
T1 old = xaddr;
T1 new;
do {
new = old op val;
} while ('atomic_compare_exchange_strong(addr, &old, new));

with new being the result of the operation.

If E1 or E2 has floating type, then exceptional conditions or floating-point exceptions encountered during discarded
evaluations of new would also be discarded in order to satisfy the equivalence of E1 op= E2 and E1 = E1l op (E2). For
example, if Annex F is in effect, the floating types involved have IEC 60559 formats, and FLT_EVAL_METHOD is O, the
equivalent code would be:

#include <fenv.h>
#pragma STDC FENV_ACCESS ON
/* .. %/
fenv_t fenv;
T1 *addr = &E1;
T2 val = E2;
T1 old = x*addr;
T1 new;
feholdexcept (&fenv);
for (;;) {
new = old op val;
if (atomic_compare_exchange_strong(addr, &old, new))
break;
feclearexcept (FE_ALL_EXCEPT) ;
}

feupdateenv (&fenv) ;

If FLT_EVAL_METHOD is not 0, then T2 is expected to be a type with the range and precision to which E2 is evaluated in order
to satisfy the equivalence.

6.5.17 Comma operator

Syntax
1 expression:
assignment-expression
expression , assignment-expression
Semantics

2 The left operand of a comma operator is evaluated as a void expression; there is a sequence point
between its evaluation and that of the right operand. Then the right operand is evaluated; the result
has its type and value.!?!

3 EXAMPLE As indicated by the syntax, the comma operator (as described in this subclause) cannot appear in contexts where
a comma is used to separate items in a list (such as arguments to functions or lists of initializers). On the other hand, it can be

used within a parenthesized expression or within the second expression of a conditional operator in such contexts. In the
function call

| f(a, (t=3, t+2),)

the function has three arguments, the second of which has the value 5.

Forward references: initialization (6.7.9).

12) A comma operator does not yield an lvalue.

84 Language §6.5.17

10

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

6.6 Constant expressions
Syntax

constant-expression:
conditional-expression

Description

A constant expression can be evaluated during translation rather than runtime, and accordingly
may be used in any place that a constant may be.

Constraints

Constant expressions shall not contain assignment, increment, decrement, function-call, or comma
operators, except when they are contained within a subexpression that is not evaluated.!??

Each constant expression shall evaluate to a constant that is in the range of representable values for
its type.

Semantics

An expression that evaluates to a constant is required in several contexts. If a floating expression
is evaluated in the translation environment, the arithmetic range and precision shall be at least as
great as if the expression were being evaluated in the execution environment.!?3)

An integer constant expression'?® shall have integer type and shall only have operands that are integer

constants, enumeration constants, character constants, sizeof expressions whose results are integer
constants, _Alignof expressions, and floating constants that are the immediate operands of casts.
Cast operators in an integer constant expression shall only convert arithmetic types to integer types,
except as part of an operand to the sizeof or _Alignof operator.

More latitude is permitted for constant expressions in initializers. Such a constant expression shall
be, or evaluate to, one of the following:

— an arithmetic constant expression,
— anull pointer constant,
— an address constant, or

— an address constant for a complete object type plus or minus an integer constant expression.

An arithmetic constant expression shall have arithmetic type and shall only have operands that are
integer constants, ﬂoating constants, enumeration constants, character constants, sizeof expressions
whose results are integer constants, and _Alignof expressions. Cast operators in an arithmetic
constant expression shall only convert arithmetic types to arithmetic types, except as part of an
operand to a sizeof or _Alignof operator.

An address constant is a null pointer, a pointer to an lvalue designating an object of static storage
duration, or a pointer to a function designator; it shall be created explicitly using the unary &
operator or an integer constant cast to pointer type, or implicitly by the use of an expression of array
or function type. The array-subscript [] and member-access . and-> operators, the address & and
indirection * unary operators, and pointer casts may be used in the creation of an address constant,
but the value of an object shall not be accessed by use of these operators.

An implementation may accept other forms of constant expressions.

122)The operand of a sizeof or _Alignof operator is usually not evaluated (6.5.3.4).

123)The use of evaluation formats as characterized by FLT_EVAL_METHOD also applies to evaluation in the translation
environment.

124) An integer constant expression is required in a number of contexts such as the size of a bit-field member of a structure,
the value of an enumeration constant, and the size of a non-variable length array. Further constraints that apply to the integer
constant expressions used in conditional-inclusion preprocessing directives are discussed in 6.10.1.

§6.6 Language 85

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

11 The semantic rules for the evaluation of a constant expression are the same as for nonconstant
expressions.!?

Forward references: array declarators (6.7.6.2), initialization (6.7.9).

125)Thus, in the following initialization,

[
static int i =2 || 1 / 0;

the expression is a valid integer constant expression with value one.

86 Language §6.6

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

6.7 Declarations
Syntax

-deelaration:= no-leading-attribute-declaration:
declaration-specifiers init-declarator-listop—- 3

static_assert-declaration
declaration;
10 leading attribute-declaration
attribute-specifier-sequence declaration-specifiers init-declarator-list ;
attribute-declaration
declaration-specifiers:

storage-elass-specifier—declaration-speeifiers declaration-specifier attribute-specifier-sequenceqpt

type-specifier—declaration-specifiers-opr declaration-specifier_declaration-specifiers_
declaration-specifier:

WW%M%%%%%%MWW

Wﬁﬁﬁ%%%%ﬁﬂﬁeﬁﬁ%rmm

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

attribute-specifier-sequence ;

Constraints

A declaration other than a static_assert or attribute declaration shall declare at least a declarator
(other than the parameters of a function or the members of a structure or union), a tag, or the
members of an enumeration.

If an identifier has no linkage, there shall be no more than one declaration of the identifier (in a
declarator or type specifier) with the same scope and in the same name space, except that:

— atypedef name may be redefined to denote the same type as it currently does, provided that
type is not a variably modified type;

— tags may be redeclared as specified in 6.7.2.3 .

All declarations in the same scope that refer to the same object or function shall specify compatible
types.

Semantics

A declaration specifies the interpretation and attributes-properties of a set of identifiers. A definition
of an identifier is a declaration for that identifier that:

— for an object, causes storage to be reserved for that object;
— for a function, includes the function body;!?®
— for an enumeration constant, is the (only) declaration of the identifier;

— for a typedef name, is the first (or only) declaration of the identifier.

The declaration specifiers consist of a sequence of specifiers, followed by an optional attribute
specifier sequence, that indicate the linkage, storage duration, and part of the type of the entities that

126) Function definitions have a different syntax, described in 6.9.1.

§6.7 Language 87

10

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

the declarators denote. The init-declarator-list-init declarator list is a comma-separated sequence
of declarators, each of which may have additional type information, or an initializer, or both. The
declarators contain the identifiers (if any) being declared. The optional attribute specifier sequence

appertains to each of the entities declared by the declarators of the init declarator list.

If an identifier for an object is declared with no linkage, the type for the object shall be complete
by the end of its declarator, or by the end of its init-declarator if it has an initializer; in the case of
function parameters (including in prototypes), it is the adjusted type (see 6.7.6.3) that is required to
be complete.

The_optional attribute specifier sequence terminating a_sequence of declaration specifiers
appertains to the type determined by the preceding sequence of declaration specifiers. The
attribute_specifier sequence affects the type only for the declaration it appears in, not other
declarations involving the same type.

Except where specified otherwise, the meaning of an attribute declaration is implementa-
tion-defined.

EXAMPLE In the declaration for an entity, attributes appertaining to that entity may appear at the start of the declaration
and after the identifier for that declaration.

‘%W deprecated]] void f [[deprecated (void); // valid

Forward references: declarators (6.7.6), enumeration specifiers (6.7.2.2), initialization (6.7.9), type
names (6.7.7), type qualifiers (6-7:3)-6.7.3). _

6.7.1 Storage-class specifiers
Syntax

storage-class-specifier:
typedef
extern
static
—Thread_local
auto
register

Constraints

At most, one storage-class specifier may be given in the declaration specifiers in a declaration, except
that_Thread_local may appear with static or extern.!?”)

In the declaration of an object with block scope, if the declaration specifiers include _Thread_local,
they shall also include either static or extern. If _Thread_local appears in any declaration of an
object, it shall be present in every declaration of that object.

—Thread_local shall not appear in the declaration specifiers of a function declaration.

Semantics

The typedef specifier is called a “storage-class specifier” for syntactic convenience only; it is
discussed in 6.7.8 . The meanings of the various linkages and storage durations were discussed in
6.2.2 and 6.2.4.

A declaration of an identifier for an object with storage-class specifier register suggests that
access to the object be as fast as possible. The extent to which such suggestions are effective is
implementation-defined.'?

127)See “future language directions” (6.11.5).

128)The implementation can treat any register declaration simply as an auto declaration. However, whether or not
addressable storage is actually used, the address of any part of an object declared with storage-class specifier register
cannot be computed, either explicitly (by use of the unary & operator as discussed in 6.5.3.2) or implicitly (by converting
an array name to a pointer as discussed in 6.3.2.1). Thus, the only operator that can be applied to an array declared with
storage-class specifier register is sizeof.

88 Language §6.7.1

1

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

The declaration of an identifier for a function that has block scope shall have no explicit storage-class
specifier other than extern.

If an aggregate or union object is declared with a storage-class specifier other than typedef, the
properties resulting from the storage-class specifier, except with respect to linkage, also apply to the
members of the object, and so on recursively for any aggregate or union member objects.

Forward references: type definitions (6.7.8).

6.7.2 Type specifiers
Syntax
type-specifier:

void
char
short
int
long
float
double
signed
unsigned
—Bool
—Complex
—Decimal3z
_Decimalé4
_Decimall2s
atomic-type-specifier
struct-or-union-specifier
enum-specifier
typedef-name

Constraints

At least one type specifier shall be given in the declaration specifiers in each declaration, and in the
specifier-qualifier list in each struetmember declaration and type name. Each list of type specifiers
shall be one of the following multisets (delimited by commas, when there is more than one multiset
per item); the type specifiers may occur in any order, possibly intermixed with the other declaration
specifiers.

— void

— char

— signed char

— unsigned char

— short, signed short, short int, or signed short int
— unsigned short, or unsigned short int

— int, signed, or signed int

— unsigned, or unsigned int

— long, signed long, long int, or signed long int

— unsigned long, or unsigned long int

— long long, signed long long, long long int, or signed long long int
— unsigned long long, or unsigned long long int

— float

§6.7.2 Language 89

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

— double

— long double

— _Decimal32

— _Decimal64

— _Decimal12g

— _Bool

— float _Complex

— double _Complex

— long double _Complex
— atomic type specifier

— struct or union specifier
— enum specifier

— typedef name

The type specifier _Complex shall not be used if the implementation does not support complex
types, and the type specifiers _Decimal32, _Decimal64, and _Decimall28 shall not be used if the
implementation does not support decimal floatin es (see 6.10.8.3).

Semantics

Specifiers for structures, unions, enumerations, and atomic types are discussed in 6:72-1-through
6:7246.7.2.1 through 6.7.2.4. Declarations of typedef names are discussed in 6.7.8 . The characteris-
tics of the other types are discussed in 6.2.5.

Each of the comma-separated multisets designates the same type, except that for bit-fields, it is
implementation-defined whether the specifier int designates the same type as signed int or the
same type as unsigned int.

Forward references: atomic type specifiers (6.7.2.4), enumeration specifiers (6.7.2.2), structure and
union specifiers (6.7.2.1), tags (6.7.2.3), type definitions (6.7.8).
6.7.2.1 Structure and union specifiers

Syntax
struct-or-union-specifier:

striet-or-union—itdentifierspr{-struct-deelaration-tist—} struct-or-union_attribute-specifier-sequence,

struct-or-union attribute-specifier-sequenceqy identifier

struct-or-union:
struct
union

Sﬁ%&f—d&dﬂﬂ‘ﬂ-ﬁﬂi‘k member declamtzon
struet-declaration-list—struct-declaration- member-declaration-list_member-declaration

-striet-declaration— member-declaration:

Hﬁ%ﬁ%ﬁfﬂ%ﬁ—ﬁ&t—sﬁm&t—d&&ﬂ% attribute-specifier-sequence
ecifier-qualifier-list member-declarator-listopt ;

static_assert-declaration

specifier-qualifier-list:
+type-specifier-specifier-quatifier-tst type-specifier-qualifier attribute-specifier-sequenceopt

90 Language §6.7.2.1

iden

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

alignment-specifier-specifier-qualifier-tistopr

&ta%c—t—deelaﬁ%e% member-declamtor
struet-declarator-list——struct-declarator- member-declarator-list ,_member-declarator

struct-declarator— member-declarator:
declarator
declaratorop; = constant-expression

Constraints

A struet-deelaration-member declaration that does not declare an anonymous structure or anony-
mous union shall contain a struet-deelarator-listmember declarator list.

A structure or union shall not contain a member with incomplete or function type (hence, a structure
shall not contain an instance of itself, but may contain a pointer to an instance of itself), except that
the last member of a structure with more than one named member may have incomplete array type;
such a structure (and any union containing, possibly recursively, a member that is such a structure)
shall not be a member of a structure or an element of an array.

The expression that specifies the width of a bit-field shall be an integer constant expression with a
nonnegative value that does not exceed the width of an object of the type that would be specified
were the colon and expression omitted.’?? If the value is zero, the declaration shall have no
declarator.

A bit-field shall have a type that is a qualified or unqualified version of _Bool, signed int,
unsigned int, or some other implementation-defined type. It is implementation-defined whether
atomic types are permitted.

An attribute specifier sequence shall not appear in a struct-or-union specifier without a member
declaration list, except in a declaration of the form:

struct-or-union_attribute-specifier-sequence identifier ;

The attributes in the attribute specifier sequence, if any, are thereafter considered attributes of the
struct or union whenever it is named.

Semantics

As discussed in 6.2.5, a structure is a type consisting of a sequence of members, whose storage is
allocated in an ordered sequence, and a union is a type consisting of a sequence of members whose
storage overlap.

Structure and union specifiers have the same form. The keywords struct and union indicate that
the type being specified is, respectively, a structure type or a union type.

The optional attribute specifier sequence in a struct-or-union specifier appertains to the structure
or union type being declared. The optional attribute specifier sequence in a member declaration
appertains to each of the members declared by the member declarator list; it shall not appear if the
optional member declarator list is omitted. The optional attribute specifier sequence in a specifier
qualifier list appertains to the type denoted by the preceding type specifier qualifiers. The attribute
specifier sequence affects the type only for the member declaration or type name it appears in, not

129While the number of bits in a _Bool object is at least CHAR_BIT, the width of a _Bool can be just 1 bit.

§6.7.2.1 Language 91

10

11

12

13

14

15

16

17

18

19
20

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

other types or declarations involving the same type.

The presence of a striet-declaration-listina-struet-or-union-speeifiermember declaration list in a
struct-or-union specifier declares a new type, within a translation unit. The struet-ceclaration-list

member declaration list is a sequence of declarations for the members of the structure or union.
If the struet-deelaration-listmember declaration list does not contain any named members, either
directly or via an anonymous structure or anonymous union, the behavior is undefined. The type is
incomplete until immediately after the } that terminates the list, and complete thereafter.

A member of a structure or union may have any complete object type other than a variably modified
type.®® In addition, a member may be declared to consist of a specified number of bits (including
a sign bit, if any). Such a member is called a bit-field;'3" its width is preceded by a colon.

A bit-field is interpreted as having a signed or unsigned integer type consisting of the specified
number of bits.!? If the value 0 or 1 is stored into a nonzero-width bit-field of type _Bool, the
value of the bit-field shall compare equal to the value stored; a _Bool bit-field has the semantics of a
—Bool.

An implementation may allocate any addressable storage unit large enough to hold a bit-field. If
enough space remains, a bit-field that immediately follows another bit-field in a structure shall be
packed into adjacent bits of the same unit. If insufficient space remains, whether a bit-field that
does not fit is put into the next unit or overlaps adjacent units is implementation-defined. The
order of allocation of bit-fields within a unit (high-order to low-order or low-order to high-order) is
implementation-defined. The alignment of the addressable storage unit is unspecified.

A bit-field declaration with no declarator, but only a colon and a width, indicates an unnamed
bit-field.!*® As a special case, a bit-field structure member with a width of 0 indicates that no
further bit-field is to be packed into the unit in which the previous bit-field, if any, was placed.

An unnamed member whose type specifier is a structure specifier with no tag is called an anonymous
structure; an unnamed member whose type specifier is a union specifier with no tag is called an
anonymous union. The members of an anonymous structure or union are considered to be members of
the containing structure or union, keeping their structure or union layout. This applies recursively
if the containing structure or union is also anonymous.

Each non-bit-field member of a structure or union object is aligned in an implementation-defined
manner appropriate to its type.

Within a structure object, the non-bit-field members and the units in which bit-fields reside have
addresses that increase in the order in which they are declared. A pointer to a structure object,
suitably converted, points to its initial member (or if that member is a bit-field, then to the unit in
which it resides), and vice versa. There may be unnamed padding within a structure object, but not
at its beginning.

The size of a union is sufficient to contain the largest of its members. The value of at most one of the
members can be stored in a union object at any time. A pointer to a union object, suitably converted,
points to each of its members (or if a member is a bit-field, then to the unit in which it resides), and
vice versa.

There may be unnamed padding at the end of a structure or union.

As a special case, the last member of a structure with more than one named member may have an
incomplete array type; this is called a flexible array member. In most situations, the flexible array
member is ignored. In particular, the size of the structure is as if the flexible array member were
omitted except that it may have more trailing padding than the omission would imply. However,
when a . (or->) operator has a left operand that is (a pointer to) a structure with a flexible array

130) A structure or union cannot contain a member with a variably modified type because member names are not ordinary
identifiers as defined in 6.2.3.

13D The unary & (address-of) operator cannot be applied to a bit-field object; thus, there are no pointers to or arrays of bit-field
objects.

132) As specified in 6.7.2 above, if the actual type specifier used is int or a typedef-name defined as int, then it is implemen-
tation-defined whether the bit-field is signed or unsigned.

133) An unnamed bit-field structure member is useful for padding to conform to externally imposed layouts.

92 Language §6.7.2.1

21

22

23

24

25

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

member and the right operand names that member, it behaves as if that member were replaced with
the longest array (with the same element type) that would not make the structure larger than the
object being accessed; the offset of the array shall remain that of the flexible array member, even if
this would differ from that of the replacement array. If this array would have no elements, it behaves
as if it had one element but the behavior is undefined if any attempt is made to access that element
or to generate a pointer one past it.

EXAMPLE 1 The following declarations illustrate the behavior when an attribute is written on a tag declaration:

_.___struct [[deprecated]] S; // valid deprecated]] appertains to struct S
_.___void f(struct S *s); // valid, the struct S type has the [[deprecated

// attribute

_.___Struct S // valid, struct S inherits the [[deprecated]] attribute
e __.___int a; // from the previous declaration
o Hi
__.___void g(struct [[deprecated]] S s); // invalid
EXAMPLE 2 The following illustrates anonymous structures and unions:
struct v {
union { // anonymous union
struct { int i, j; }; // anonymous structure
struct { long k, 1; } w;
b
int m;
} vl
vli.i = 2; // valid
vl.k = 3; // invalid: 1inner structure is not anonymous
vl.w.k = 5; // valid

EXAMPLE 3 After the declaration:

‘ struct s { int n; double d[]; };

the structure struct s has a flexible array member d. A typical way to use this is:

int m = /x some value */;
struct s *xp = malloc(sizeof (struct s) + sizeof (double [m]));

and assuming that the call to malloc succeeds, the object pointed to by p behaves, for most purposes, as if p had been
declared as:

i struct { int n; double d[m]; } x*p;

(there are circumstances in which this equivalence is broken; in particular, the offsets of member d might not be the same).

Following the above declaration:

struct s t1 = { 0 }; // valid

struct s t2 = { 1, { 4.2 }}; // invalid

tl.n = 4; // valid

tl.d[0] = 4.2; // might be undefined behavior

The initialization of t2 is invalid (and violates a constraint) because struct s is treated as if it did not contain member d.
The assignment to t1.d[0] is probably undefined behavior, but it is possible that

sizeof (struct s) >= offsetof(struct s, d) + sizeof (double)

in which case the assignment would be legitimate. Nevertheless, it cannot appear in strictly conforming code.

After the further declaration:

\ struct ss { int n; };

§6.7.2.1 Language 93

26

27

28

29

1

ISO/IEC 9899:202x (E) working draft — September 25, 2019

the expressions:

C17..C201909 2434

sizeof (struct s) >= sizeof (struct ss)

sizeof (struct s) >= offsetof(struct s, d)

are always equal to 1.

If sizeof (double) is §, then after the following code is executed:

struct s *sl;
struct s *s2;
sl = malloc(sizeof (struct s) + 64);
s2 = malloc(sizeof (struct s) + 46);

and assuming that the calls to malloc succeed, the objects pointed to by s1 and s2 behave, for most purposes, as if the

identifiers had been declared as:

struct { int n; double d[8]; } x*s1;
struct { int n; double d[5]; } *s2;

Following the further successful assignments:

sl
s2

malloc(sizeof (struct s) + 10);
malloc(sizeof (struct s) + 6);

they then behave as if the declarations were:

struct { int n; double d[1]; } =*sl1l, x*s2;

and:
double *dp;
dp = &(s1->d[0]); // valid
xdp = 42; // valid
dp = &(s2->d[0]); // valid
xdp = 42; // undefined behavior

The assignment:

[
*S1 = *52;
L

only copies the member n; if any of the array elements are within the first sizeof (struct s) bytes of the structure, they

might be copied or simply overwritten with indeterminate values.

EXAMPLE 4 Because members of anonymous structures and unions are considered to be members of the containing
structure or union, struct s in the following example has more than one named member and thus the use of a flexible array

member is valid:

struct s {
struct { int i; };
int all;

}

Forward references: declarators (6.7.6), tags (6.7.2.3).

6.7.2.2 Enumeration specifiers
Syntax
enum-specifier:

enum_attribute-specifier-sequence,y, identifierop, { enumerator-list }
enum_attribute-specifier-sequenceny identifierops { enumerator-list , }

enum identifier
enumerator-list:
enumerator

94 Language

§6.7.2.2

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

enumerator-list , enumerator

enumerator:

enumeration-constant attribute-specifier-sequenceqpt

enumeration-constant attribute-specifier-sequenceyy, = constant-expression
Constraints

The expression that defines the value of an enumeration constant shall be an integer constant
expression that has a value representable as an int.

Semantics

The optional attribute specifier sequence in the enum specifier appertains to the enumeration; the
attributes in that attribute specifier sequence are thereafter considered attributes of the enumeration
whenever it is named. The optional attribute specifier sequence in the enumerator appertains to

that enumerator.

The identifiers in an enumerator list are declared as constants that have type int and may appear
wherever such are permitted.’® An enumerator with = defines its enumeration constant as the
value of the constant expression. If the first enumerator has no =, the value of its enumeration
constant is 0. Each subsequent enumerator with no = defines its enumeration constant as the value
of the constant expression obtained by adding 1 to the value of the previous enumeration constant.
(The use of enumerators with = may produce enumeration constants with values that duplicate
other values in the same enumeration.) The enumerators of an enumeration are also known as its
members.

Each enumerated type shall be compatible with char, a signed integer type, or an unsigned integer
type. The choice of type is implementation-defined,'® but shall be capable of representing the
values of all the members of the enumeration. The enumerated type is incomplete until immediately
after the } that terminates the list of enumerator declarations, and complete thereafter.

EXAMPLE The following fragment:

enum hue { chartreuse, burgundy, claret=20, winedark };
enum hue col, *cp;
col = claret;

cp = &col;
if (xcp != burgundy)
/*x ... %/

makes hue the tag of an enumeration, and then declares col as an object that has that type and cp as a pointer to an object
that has that type. The enumerated values are in the set {0, 1,20, 21}.

Forward references: tags (6.7.2.3).
6.7.2.3 Tags

Constraints
A specific type shall have its content defined at most once.

Where two declarations that use the same tag declare the same type, they shall both use the same
choice of struct, union, or enum.

A type specifier of the form
enum identifier

without an enumerator list shall only appear after the type it specifies is complete.

A type specifier of the form
struct-or-union attribute-specifier-sequence,y; identifier

13%)Thus, the identifiers of enumeration constants declared in the same scope are all required to be distinct from each other
and from other identifiers declared in ordinary declarators.
135 An implementation can delay the choice of which integer type until all enumeration constants have been seen.

§6.7.2.3 Language 95

10

11

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

136)

shall not contain an attribute specifier sequence.

Semantics

All declarations of structure, union, or enumerated types that have the same scope and use the same
tag declare the same type. Irrespective of whether there is a tag or what other declarations of the
type are in the same translation unit, the type is incomplete!®” until immediately after the closing
brace of the list defining the content, and complete thereafter.

Two declarations of structure, union, or enumerated types which are in different scopes or use
different tags declare distinct types. Each declaration of a structure, union, or enumerated type
which does not include a tag declares a distinct type.

A type specifier of the form

struct-or-union _attribute-specifier-sequenceyy. identifieropy { —striet-declarationtist—
nmember-declaration-list }

or

enum_attribute-specifier-sequence,y, identifierope { enumerator-list }

or

enum_attribute-specifier-sequence,y, identifierops { enumerator-list , }

declares a structure, union, or enumerated type. The list defines the structure content, union content,
or enumeration content. If an identifier is provided,'® the type specifier also declares the identifier to

be the tag of that type. The optional attribute specifier sequence appertains to the structure, union,
or enumeration type being declared; the attributes in that attribute specifier sequence are thereafter
considered attributes of the structure, union, or enumeration type whenever it is named.

A declaration of the form

struct-or-union attribute-specifier-sequenceqy identifier ;

specifies a structure or union type and declares the identifier as a tag of that type.’* The optional

attribute specifier sequence appertains to the structure or union type being declared; the attributes
in that attribute specifier sequence are thereafter considered attributes of the structure or union
type whenever it is named.

If a type specifier of the form

struct-or-union attribute-specifier-sequenceqy identifier

occurs other than as part of one of the above forms, and no other declaration of the identifier as a
tag is visible, then it declares an incomplete structure or union type, and declares the identifier as
the tag of that type.!®

If a type specifier of the form

struct-or-union attribute-specifier-sequenceqy identifier
or

enum identifier

occurs other than as part of one of the above forms, and a declaration of the identifier as a tag is
visible, then it specifies the same type as that other declaration, and does not redeclare the tag.

EXAMPLE 1 This mechanism allows declaration of a self-referential structure.

136) As specified in 6.7.2.1 above, the type specifier may be followed by a ; or a member declaration list.

137) An incomplete type can only be used when the size of an object of that type is not needed. It is not needed, for example,
when a typedef name is declared to be a specifier for a structure or union, or when a pointer to or a function returning a
structure or union is being declared. (See incomplete types in 6.2.5.) The specification has to be complete before such a
function is called or defined.

138)If there is no identifier, the type can, within the translation unit, only be referred to by the declaration of which it is a part.
Of course, when the declaration is of a typedef name, subsequent declarations can make use of that typedef name to declare
objects having the specified structure, union, or enumerated type.

139 A similar construction with enum does not exist.

96 Language §6.7.23

12

13

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

struct tnode {
int count;
struct tnode xleft, *right;

B8

specifies a structure that contains an integer and two pointers to objects of the same type. Once this declaration has been
given, the declaration

struct tnode s, *sp;
L

declares s to be an object of the given type and sp to be a pointer to an object of the given type. With these declarations, the
expression sp->left refers to the left struct tnode pointer of the object to which sp points; the expression s. right->count
designates the count member of the right struct tnode pointed to from s.

The following alternative formulation uses the typedef mechanism:

typedef struct tnode TNODE;
struct tnode {

int count;

TNODE *left, *right;
}
TNODE s, *sp;

EXAMPLE 2 To illustrate the use of prior declaration of a tag to specify a pair of mutually referential structures, the
declarations

struct sl { struct s2 xs2p; /+x ... x/ }; // D1
struct s2 { struct sl xslp; /* ... %/ }; // D2

specify a pair of structures that contain pointers to each other. Note, however, that if s2 were already declared as a tag in an
enclosing scope, the declaration D1 would refer to it, not to the tag s2 declared in D2. To eliminate this context sensitivity, the
declaration

struct s2;
L

can be inserted ahead of D1. This declares a new tag s2 in the inner scope; the declaration D2 then completes the specification
of the new type.

Forward references: declarators (6.7.6), type definitions (6.7.8).

6.7.2.4 Atomic type specifiers
Syntax
atomic-type-specifier:
—Atomic (type-name)

Constraints
Atomic type specifiers shall not be used if the implementation does not support atomic types (see
6.10.8.3).

The type name in an atomic type specifier shall not refer to an array type, a function type, an atomic
type, or a qualified type.

Semantics

The properties associated with atomic types are meaningful only for expressions that are Ivalues.
If the _Atomic keyword is immediately followed by a left parenthesis, it is interpreted as a type
specifier (with a type name), not as a type qualifier.

6.7.3 Type qualifiers

Syntax

type-qualifier:
const

§6.7.3 Language 97

10

11

12

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

restrict
volatile
_Atomic

Constraints
Types other than pointer types whose referenced type is an object type shall not be restrict-qualified.

The _Atomic qualifier shall not be used if the implementation does not support atomic types
(see 6.10.8.3).

The type modified by the _Atomic qualifier shall not be an array type or a function type.

Semantics

The properties associated with qualified types are meaningful only for expressions that are lval-
140)
ues.

If the same qualifier appears more than once in the same specifier-qualifier list or as declaration
specifiers, either directly or via one or more typedefs, the behavior is the same as if it appeared only
once. If other qualifiers appear along with the _Atomic qualifier the resulting type is the so-qualified
atomic type.

If an attempt is made to modify an object defined with a const-qualified type through use of an
Ivalue with non-const-qualified type, the behavior is undefined. If an attempt is made to refer to an
object defined with a volatile-qualified type through use of an lvalue with non-volatile-qualified
type, the behavior is undefined.!*!)

An object that has volatile-qualified type may be modified in ways unknown to the implementation
or have other unknown side effects. Therefore any expression referring to such an object shall be
evaluated strictly according to the rules of the abstract machine, as described in 5.1.2.3. Furthermore,
at every sequence point the value last stored in the object shall agree with that prescribed by the
abstract machine, except as modified by the unknown factors mentioned previously.'*? What
constitutes an access to an object that has volatile-qualified type is implementation-defined.

An object that is accessed through a restrict-qualified pointer has a special association with that
pointer. This association, defined in 6.7.3.1 below, requires that all accesses to that object use, directly
or indirectly, the value of that particular pointer.'*® The intended use of the restrict qualifier (like
the register storage class) is to promote optimization, and deleting all instances of the qualifier
from all preprocessing translation units composing a conforming program does not change its
meaning (i.e., observable behavior).

If the specification of an array type includes any type qualifiers, the element type is so-qualified, not
the array type. If the specification of a function type includes any type qualifiers, the behavior is
undefined.!*¥

For two qualified types to be compatible, both shall have the identically qualified version of a
compatible type; the order of type qualifiers within a list of specifiers or qualifiers does not affect the
specified type.

EXAMPLE 1 An object declared

\ extern const volatile int real_time_clock;

might be modifiable by hardware, but cannot be assigned to, incremented, or decremented.

140 The implementation can place a const object that is not volatile in a read-only region of storage. Moreover, the
implementation need not allocate storage for such an object if its address is never used.

14DThis applies to those objects that behave as if they were defined with qualified types, even if they are never actually
defined as objects in the program (such as an object at a memory-mapped input/output address).

142) A volatile declaration can be used to describe an object corresponding to a memory-mapped input/output port or an
object accessed by an asynchronously interrupting function. Actions on objects so declared are not allowed to be “optimized
out” by an implementation or reordered except as permitted by the rules for evaluating expressions.

143)For example, a statement that assigns a value returned by malloc to a single pointer establishes this association between
the allocated object and the pointer.

1449 Both of these can occur through the use of typedef s.

98 Language §6.7.3

2434

working draft — September 25, 2019 ISO/IEC 9899:202x (E)

13 EXAMPLE 2 The following declarations and expressions illustrate the behavior when type qualifiers modify an aggregate

type:

const struct s { int mem; } cs = { 1 };
struct s ncs; // the object ncs is modifiable
typedef int A[2][3];

const A a = {{4, 5, 6}, {7, 8, 9}}; // array of array of const int
int *pi;

const int *pci;

ncs = cs; // valid

CS = Nncs; // violates modifiable lvalue constraint for =

pi = &ncs.mem; // valid

pi = &cs.mem; // violates type constraints for =

pci = &cs.
pi = al@];

mem; // valid
// invalid: al[0] has type “const int x”

14 EXAMPLE 3 The declaration

_Atomic volatile int xp;

specifies that p has the type “pointer to volatile atomic int”, a pointer to a volatile-qualified atomic type.

§6.7.3

Language

99

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

6.7.3.1 Formal definition of restrict

Let D be a declaration of an ordinary identifier that provides a means of designating an object P as a
restrict-qualified pointer to type T.

If D appears inside a block and does not have storage class extern, let B denote the block. If D
appears in the list of parameter declarations of a function definition, let B denote the associated block.
Otherwise, let B denote the block of main (or the block of whatever function is called at program
startup in a freestanding environment).

In what follows, a pointer expression E is said to be based on object P if (at some sequence point in
the execution of B prior to the evaluation of E) modifying P to point to a copy of the array object into
which it formerly pointed would change the value of E.!*> Note that “based” is defined only for
expressions with pointer types.

During each execution of B, let L be any lvalue that has &L based on P. If L is used to access the
value of the object X that it designates, and X is also modified (by any means), then the following
requirements apply: T shall not be const-qualified. Every other lvalue used to access the value of

X shall also have its address based on P. Every access that modifies X shall be considered also to
modify P, for the purposes of this subclause. If P is assigned the value of a pointer expression E that
is based on another restricted pointer object P2, associated with block B2, then either the execution
of B2 shall begin before the execution of B, or the execution of B2 shall end prior to the assignment.
If these requirements are not met, then the behavior is undefined.

Here an execution of B means that portion of the execution of the program that would correspond to
the lifetime of an object with scalar type and automatic storage duration associated with B.

A translator is free to ignore any or all aliasing implications of uses of restrict.
EXAMPLE 1 The file scope declarations

int * restrict a;
int * restrict b;
extern int c[];

assert that if an object is accessed using one of a, b, or ¢, and that object is modified anywhere in the program, then it is never
accessed using either of the other two.

EXAMPLE 2 The function parameter declarations in the following example

void f(int n, int * restrict p, int x restrict q)
{
while (n-- > 0)
*pP++ = kQ++;
}

assert that, during each execution of the function, if an object is accessed through one of the pointer parameters, then it is

not also accessed through the other. The translator can make this no-aliasing inference based on the parameter declarations
alone, without analyzing the function body.

The benefit of the restrict qualifiers is that they enable a translator to make an effective dependence analysis of function f
without examining any of the calls of f in the program. The cost is that the programmer has to examine all of those calls to
ensure that none give undefined behavior. For example, the second call of f in g has undefined behavior because each of
d[1] through d[49] is accessed through both p and q.

void g(void)
{

extern int d[100];

f(50, d + 50, d); // valid

f(50, d + 1, d); // undefined behavior
}

145)[n other words, E depends on the value of P itself rather than on the value of an object referenced indirectly through P.
For example, if identifier p has type (int **restrict), then the pointer expressions p and p+1 are based on the restricted
pointer object designated by p, but the pointer expressions*p and p[1] are not.

100 Language §6.7.3.1

10

11

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

EXAMPLE 3 The function parameter declarations

void h(int n, int * restrict p, int x restrict g, int x* restrict r)
{
int i;
for (1 =0; i < n; i++)
pli]l = q[i] + r[i];
}

illustrate how an unmodified object can be aliased through two restricted pointers. In particular, if a and b are disjoint arrays,
a call of the form h(100, a, b, b) has defined behavior, because array b is not modified within function h.

EXAMPLE 4 The rule limiting assignments between restricted pointers does not distinguish between a function call and
an equivalent nested block. With one exception, only “outer-to-inner” assignments between restricted pointers declared in
nested blocks have defined behavior.

{
int * restrict pl;
int x restrict ql;
pl = ql; // undefined behavior
{
int x restrict p2 = pl; // valid
int x restrict g2 = ql; // valid
pl = q2; // undefined behavior
p2 = q2; // undefined behavior
}
}

12 The one exception allows the value of a restricted pointer to be carried out of the block in which it (or, more precisely, the

13

14

ordinary identifier used to designate it) is declared when that block finishes execution. For example, this permits new_vector
to return a vector.

typedef struct { int n; float * restrict v; } vector;
vector new_vector(int n)
{
vector t;
t.n =n;
t.v = malloc(n * sizeof (float));
return t;
}

EXAMPLE 5 Suppose that a programmer knows that references of the form p[i] and q[j] are never aliases in the body of

| __.___void f(int n, int xp, int xq) { /* ... x/ }

There are several ways that this information could be conveyed to a translator using the restrict qualifier. Example 2

shows the most effective way, qualifying all pointer parameters, and can be used provided that neither p nor g becomes

based on the other in the function body. A potentially effective alternative is:

\NAﬂvvvvoid f(int n, int x restrict int * const q) [*X ... *[)

Again it is possible for a translator to make the no-aliasing inference based on the parameter declarations alone, though now
it must use subtler reasoning: that the const-qualification of g precludes it becoming based on p. There is also a requirement
that g is not modified, so this alternative cannot be used for the function in Example 2, as written.

EXAMPLE 6 Another potentially effective alternative is:

‘xA”VVVVOid f(int n, int xp, int const * restrict q) (¥ .. %[}

Again it is possible for a translator to make the no-aliasing inference based on the parameter declarations alone, though
now it must use even subtler reasoning: that this combination of restrict and const means that objects referenced usin
g cannot be modified, and so no modified object can be referenced using both p and g.

§6.7.3.1 Language 101

15

10

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

EXAMPLE 7 The least effective alternative is;

| __.___void f(int n, int * restrict int * /* ... %/ }

Here the translator can make the no-aliasing inference only by analyzing the body of the function and proving that g cannot
become based on p. Some translator designs may choose to exclude this analysis, given availability of the more effective
alternatives above, Such a translator is required to assume that aliases are present because assuming that aliases are not
present may result in an incorrect translation. Also, a translator that attempts the analysis may not succeed in all cases and.
thus need to conservatively assume that aliases are present.

6.7.4 Function specifiers
Syntax
function-specifier:
inline
—Noreturn
Constraints

Function specifiers shall be used only in the declaration of an identifier for a function.

An inline definition of a function with external linkage shall not contain a definition of a modifiable
object with static or thread storage duration, and shall not contain a reference to an identifier with
internal linkage.

In a hosted environment, no function specifier(s) shall appear in a declaration of main.

Semantics

A function specifier may appear more than once; the behavior is the same as if it appeared only
once.

A function declared with an inline function specifier is an inline function. Making a function an
inline function suggests that calls to the function be as fast as possible.1*® The extent to which such
suggestions are effective is implementation-defined.!*”)

Any function with internal linkage can be an inline function. For a function with external linkage,
the following restrictions apply: If a function is declared with an inline function specifier, then it
shall also be defined in the same translation unit. If all of the file scope declarations for a function in
a translation unit include the inline function specifier without extern, then the definition in that
translation unit is an inline definition. An inline definition does not provide an external definition
for the function, and does not forbid an external definition in another translation unit. An inline
definition provides an alternative to an external definition, which a translator may use to implement
any call to the function in the same translation unit. It is unspecified whether a call to the function
uses the inline definition or the external definition.!*®

A function declared with a _Noreturn function specifier shall not return to its caller.

Recommended practice
The implementation should produce a diagnostic message for a function declared with a_Noreturn
function specifier that appears to be capable of returning to its caller.

EXAMPLE 1 The declaration of an inline function with external linkage can result in either an external definition, or a
definition available for use only within the translation unit. A file scope declaration with extern creates an external definition.
The following example shows an entire translation unit.

146)By using, for example, an alternative to the usual function call mechanism, such as “inline substitution”. Inline
substitution is not textual substitution, nor does it create a new function. Therefore, for example, the expansion of a macro
used within the body of the function uses the definition it had at the point the function body appears, and not where the
function is called; and identifiers refer to the declarations in scope where the body occurs. Likewise, the function has a single
address, regardless of the number of inline definitions that occur in addition to the external definition.

147)For example, an implementation might never perform inline substitution, or might only perform inline substitutions to
calls in the scope of an inline declaration.

148)Gince an inline definition is distinct from the corresponding external definition and from any other corresponding inline
definitions in other translation units, all corresponding objects with static storage duration are also distinct in each of the
definitions.

102 Language §6.7.4

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

inline double fahr(double t)

{
return (9.0 x t) / 5.0 + 32.0;
}
inline double cels(double t)
{
return (5.0 x (t - 32.0)) / 9.0;
}
extern double fahr(double); // creates an external definition

double convert(int is_fahr, double temp)

{
/* A translator may perform inline substitutions x*/
return is_fahr ? cels(temp): fahr(temp);

11 Note that the definition of fahr is an external definition because fahr is also declared with extern, but the definition of cels

12

is an inline definition. Because cels has external linkage and is referenced, an external definition has to appear in another
translation unit (see 6.9); the inline definition and the external definition are distinct and either can be used for the call.

EXAMPLE 2

_Noreturn void f () {
abort(); // ok
}

_Noreturn void g (int i) { // causes undefined behavior if i <= 0
if (i > 0) abort();

}

Forward references: function definitions (6.9.1).

6.7.5 Alignment specifier

Syntax

alignment-specifier:
—Alignas (type-name)
—Alignas (constant-expression)

Constraints

An alignment specifier shall appear only in the declaration specifiers of a declaration, or in the
specifier-qualifier list of a member declaration, or in the type name of a compound literal. An
alignment specifier shall not be used in conjunction with either of the storage-class specifiers
typedef or register, nor in a declaration of a function or bit-field.

The constant expression shall be an integer constant expression. It shall evaluate to a valid funda-
mental alignment, or to a valid extended alignment supported by the implementation for an object
of the storage duration (if any) being declared, or to zero.

An object shall not be declared with an over-aligned type with an extended alignment requirement
not supported by the implementation for an object of that storage duration.

The combined effect of all alignment specifiers in a declaration shall not specify an alignment that is
less strict than the alignment that would otherwise be required for the type of the object or member
being declared.

§6.7.5 Language 103

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

Semantics
6 The first form is equivalent to _Alignas (_Alignof (type-name)).

7 The alignment requirement of the declared object or member is taken to be the specified alignment.
An alignment specification of zero has no effect.'*” When multiple alignment specifiers occur in a
declaration, the effective alignment requirement is the strictest specified alignment.

8 If the definition of an object has an alignment specifier, any other declaration of that object shall
either specify equivalent alignment or have no alignment specifier. If the definition of an object does
not have an alignment specifier, any other declaration of that object shall also have no alignment
specifier. If declarations of an object in different translation units have different alignment specifiers,
the behavior is undefined.

6.7.6 Declarators

Syntax
1 declarator:
pointerop direct-declarator

direct-declarator:

identifier_attribute-specifier-sequenceop
(declarator)
array-declarator_attribute-specifier-sequenceop;.

direct-declarator (identifier-listoy;)

direct-declarator [type-qualifier-listop, assignment-expressionqp 1
direct-declarator [static type-qualifier-listop assignment-expression]
direct-declarator [type-qualifier-list static assignment-expression]
direct-declarator [type-qualifier-listope *]

unction-declarator:
direct-declarator (-identifier-tistopr parameter-type-list)

pointer:

*_attribute-specifier-sequenceop type-qualifier-listop

*_attribute-specifier-sequenceop type-qualifier-listop pointer
type-qualifier-list:

type-qualifier

type-qualifier-list type-qualifier
parameter-type-list:

parameter-list

parameter-list ,
parameter-list:

parameter-declaration

parameter-list , parameter-declaration
parameter-declaration:

attribute-specifier-sequenceqy: declaration-specifiers declarator
attribute-specifier-sequenceqy declaration-specifiers abstract-declaratorpt

identifier
identifier-list , identifier

identifier-list:

149) An alignment specification of zero also does not affect other alignment specifications in the same declaration.

104 Language §6.7.6

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Semantics

Each declarator declares one identifier, and asserts that when an operand of the same form as
the declarator appears in an expression, it designates a function or object with the scope, storage
duration, and type indicated by the declaration specifiers.

A full declarator is a declarator that is not part of another declarator. If, in the nested sequence of
declarators in a full declarator, there is a declarator specifying a variable length array type, the type
specified by the full declarator is said to be variably modified. Furthermore, any type derived by
declarator type derivation from a variably modified type is itself variably modified.

In the following subclauses, consider a declaration
TD1

where T contains the declaration specifiers that specify a type T (such as int) and D1 is a declarator
that contains an identifier ident. The type specified for the identifier ident in the various forms of
declarator is described inductively using this notation.

If, in the declaration “T D1”, D1 has the form

identifier_attribute-specifier-sequenceqps

then the type specified for ident is T and the optional attribute specifier sequence appertains to D1 .
If, in the declaration “T D1”, D1 has the form

(D)

then ident has the type specified by the declaration “T D”. Thus, a declarator in parentheses is
identical to the unparenthesized declarator, but the binding of complicated declarators may be
altered by parentheses.

Implementation limits

As discussed in 5.2.4.1, an implementation may limit the number of pointer, array, and function
declarators that modify an arithmetic, structure, union, or void type, either directly or via one or
more typedef s.

Forward references: array declarators (6.7.6.2), type definitions (6.7.8).

6.7.6.1 Pointer declarators
Semantics
If, in the declaration “T D1”, D1 has the form

*_attribute-specifier-sequencegp type-qualifier-listope D

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T”, then the type
specified for ident is “derived-declarator-type-list type-qualifier-list pointer to T”. For each type qualifier

in the list, ident is a so-qualified pointer. The optional attribute specifier sequence appertains to the
ointer and not the object pointed to.

For two pointer types to be compatible, both shall be identically qualified and both shall be pointers
to compatible types.

2

EXAMPLE The following pair of declarations demonstrates the difference between a “variable pointer to a constant value”
and a “constant pointer to a variable value”.

const int *ptr_to_constant;
int xconst constant_ptr;

The contents of any object pointed to by ptr_to_constant cannot be modified through that pointer, but ptr_to_constant
itself can be changed to point to another object. Similarly, the contents of the int pointed to by constant_ptr can be
modified, but constant_ptr itself always points to the same location.

The declaration of the constant pointer constant_ptr can be clarified by including a definition for the type “pointer to int”.

typedef int *xint_ptr;
const int_ptr constant_ptr;

§6.7.6.1 Language 105

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

declares constant_ptr as an object that has type “const-qualified pointer to int”.

6.7.6.2 Array declarators
Constraints

In addition to optional type qualifiers and the keyword static, the [and] may delimit an expres-
sion or *. If they delimit an expression (which specifies the size of an array), the expression shall
have an integer type. If the expression is a constant expression, it shall have a value greater than
zero. The element type shall not be an incomplete or function type. The optional type qualifiers and
the keyword static shall appear only in a declaration of a function parameter with an array type,
and then only in the outermost array type derivation.

If an identifier is declared as having a variably modified type, it shall be an ordinary identifier (as
defined in 6.2.3), have no linkage, and have either block scope or function prototype scope. If an
identifier is declared to be an object with static or thread storage duration, it shall not have a variable
length array type.

Semantics
If, in the declaration “T D1”, D1 has one of the forms:

D [type-qualifier-listop: assignment-expressionep: 1 attribute-specifier-sequenceqy

D [static type-qualifier-list,,, assignment-expression 1 attribute-specifier-sequenceqps
D [type-qualifier-list static assignment-expression 1 attribute-specifier-sequenceqp
D [type-qualifier-listopr —4-*__ 1 attribute-specifier-sequenceop.

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T”, then the
type specified for ident is “derived-declarator-type-list array of T”.'> The optional attribute specifier
sequence appertains to the array. (See 6.7.6.3 for the meaning of the optional type qualifiers and the
keyword static.)

If the size is not present, the array type is an incomplete type. If the size is * instead of being an
expression, the array type is a variable length array type of unspecified size, which can only be used in
declarations or type names with function prototype scope;'>) such arrays are nonetheless complete
types. If the size is an integer constant expression and the element type has a known constant size,
the array type is not a variable length array type; otherwise, the array type is a variable length array
type. (Variable length arrays are a conditional feature that implementations need not support; see
6.10.8.3.)

If the size is an expression that is not an integer constant expression: if it occurs in a declaration at
function prototype scope, it is treated as if it were replaced by *; otherwise, each time it is evaluated
it shall have a value greater than zero. The size of each instance of a variable length array type
does not change during its lifetime. Where a size expression is part of the operand of a sizeof
operator and changing the value of the size expression would not affect the result of the operator, it
is unspecified whether or not the size expression is evaluated. Where a size expression is part of the

operand of an _Alignof operator, that expression is not evaluated.

For two array types to be compatible, both shall have compatible element types, and if both size
specifiers are present, and are integer constant expressions, then both size specifiers shall have
the same constant value. If the two array types are used in a context which requires them to be
compatible, it is undefined behavior if the two size specifiers evaluate to unequal values.

EXAMPLE 1

\ float fa[1l], *afp[17];

declares an array of float numbers and an array of pointers to float numbers.

EXAMPLE 2 Note the distinction between the declarations

extern int xx;
extern int y[];

150)When several “array of” specifications are adjacent, a multidimensional array is declared.
15)Thus, * can be used only in function declarations that are not definitions (see 6.7.6.3).

106 Language §6.7.6.2

10

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

The first declares x to be a pointer to int; the second declares y to be an array of int of unspecified size (an incomplete type),
the storage for which is defined elsewhere.

EXAMPLE 3 The following declarations demonstrate the compatibility rules for variably modified types.

extern int n;
extern int m;
void fcompat(void)
{
int a[n][6][m];
int (*p)[4][n+1];
int c[n][n][6][m];
int (xr)[nl[n][n+1];
p = a; // invalid: not compatible because 4 '= 6
r=c; // compatible, but defined behavior only if
// n==6 and m == n+l
}

EXAMPLE 4 All declarations of variably modified (VM) types have to be at either block scope or function prototype scope.
Array objects declared with the _Thread_local, static, or extern storage-class specifier cannot have a variable length
array (VLA) type. However, an object declared with the static storage-class specifier can have a VM type (that is, a pointer
to a VLA type). Finally, all identifiers declared with a VM type have to be ordinary identifiers and cannot, therefore, be
members of structures or unions.

extern int n;

int A[n]; // invalid: file scope VLA
extern int (xp2)[n]; // invalid: file scope VM
int B[100]; // valid: file scope but not VM
void fvla(int m, int C[m][m]); // valid: VLA with prototype scope
void fvla(int m, int C[m][m]) // valid: adjusted to auto pointer to VLA
{
typedef int VLA[m][m]; // valid: block scope typedef VLA
struct tag {
int (xy)[n]; // invalid: 'y not ordinary identifier
int z[n]; // invalid: z not ordinary identifier
b8
int D[m]; // valid: auto VLA
static int E[m]; // invalid: static block scope VLA
extern int F[m]; // invalid: F has linkage and is VLA
int (xs)[m]; // valid: auto pointer to VLA
extern int (xr)[m]; // invalid: r has linkage and points to VLA
static int (xq)[m] = &B; // valid: q is a static block pointer to VLA

Forward references: function declarators (6.7.6.3), function definitions (6.9.1), initialization (6.7.9).

6.7.6.3 Function declarators (including prototypes)

Constraints

A function declarator shall not specify a return type that is a function type or an array type.

The only storage-class specifier that shall occur in a parameter declaration is register.

An identifier list in a function declarator that is not part of a definition of that function shall be
empty.

After adjustment, the parameters in a parameter type list in a function declarator that is part of a
definition of that function shall not have incomplete type.

§6.7.6.3 Language 107

10

11

12

13

14

15

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

Semantics
If, in the declaration “T D1”, D1 has the form

D (parameter-type-list) attribute-specifier-sequenceqn

D (identifier-listop)

or

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T”, then the
type specified for ident is “derived-declarator-type-list function returning the unqualified version of T”.

The optional attribute specifier sequence appertains to the function type.

A parameter type list specifies the types of, and may declare identifiers for, the parameters of the
function.

A declaration of a parameter as “array of type” shall be adjusted to “qualified pointer to type”, where
the type qualifiers (if any) are those specified within the [and] of the array type derivation. If the
keyword static also appears within the [and] of the array type derivation, then for each call to
the function, the value of the corresponding actual argument shall provide access to the first element
of an array with at least as many elements as specified by the size expression.

A declaration of a parameter as “function returning type” shall be adjusted to “pointer to function
returning type”, as in 6.3.2.1.

If the list terminates with an ellipsis (, ...), no information about the number or types of the
parameters after the comma is supplied.!>?

The special case of an unnamed parameter of type void as the only item in the list specifies that the
function has no parameters.

If, in a parameter declaration, an identifier can be treated either as a typedef name or as a parameter
name, it shall be taken as a typedef name.

If the function declarator is not part of a definition of that function, parameters may have incomplete
type and may use the [*] notation in their sequences of declarator specifiers to specify variable
length array types.

The storage-class-storage class specifier in the declaration specifiers for a parameter declaration,
if present, is ignored unless the declared parameter is one of the members of the parameter type

list for a function definition. The optional attribute specifier sequence in a parameter declaration
appertains to the parameter.

An identifier list declares only the identifiers of the parameters of the function. An empty list in
a function declarator that is part of a definition of that function specifies that the function has no
parameters. The empty list in a function declarator that is not part of a definition of that function
specifies that no information about the number or types of the parameters is supplied.!>®

For two function types to be compatible, both shall specify compatible return types.!® Moreover,
the parameter type lists, if both are present, shall agree in the number of parameters and in use
of the ellipsis terminator; corresponding parameters shall have compatible types. If one type has
a parameter type list and the other type is specified by a function declarator that is not part of a
function definition and that contains an empty identifier list, the parameter list shall not have an
ellipsis terminator and the type of each parameter shall be compatible with the type that results
from the application of the default argument promotions. If one type has a parameter type list and
the other type is specified by a function definition that contains a (possibly empty) identifier list,
both shall agree in the number of parameters, and the type of each prototype parameter shall be
compatible with the type that results from the application of the default argument promotions to the
type of the corresponding identifier. (In the determination of type compatibility and of a composite
type, each parameter declared with function or array type is taken as having the adjusted type
and each parameter declared with qualified type is taken as having the unqualified version of its
declared type.)

152)The macros defined in the <stdarg.h> header (7.16) can be used to access arguments that correspond to the ellipsis.
153)See “future language directions” (6.11.6).
139)1f both function types are “old style”, parameter types are not compared.

108 Language §6.7.6.3

16

17

18

19

20

21

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

EXAMPLE 1 The declaration

‘ int f(void), *fip(), (*pfi)();

declares a function f with no parameters returning an int, a function fip with no parameter specification returning a pointer
to an int, and a pointer pfi to a function with no parameter specification returning an int. It is especially useful to compare
the last two. The binding of *fip () is*(fip()), so that the declaration suggests, and the same construction in an expression
requires, the calling of a function fip, and then using indirection through the pointer result to yield an int. In the declarator
(xpfi) (), the extra parentheses are necessary to indicate that indirection through a pointer to a function yields a function
designator, which is then used to call the function; it returns an int.

If the declaration occurs outside of any function, the identifiers have file scope and external linkage. If the declaration
occurs inside a function, the identifiers of the functions f and fip have block scope and either internal or external linkage
(depending on what file scope declarations for these identifiers are visible), and the identifier of the pointer pfi has block
scope and no linkage.

EXAMPLE 2 The declaration

| int (*apfi[3]) (int *x, int *y);

declares an array apfi of three pointers to functions returning int. Each of these functions has two parameters that are
pointers to int. The identifiers x and y are declared for descriptive purposes only and go out of scope at the end of the
declaration of apfi.

EXAMPLE 3 The declaration

| int (xfpfi(int (x)(long), int))(int, ...);

declares a function fpfi that returns a pointer to a function returning an int. The function fpfi has two parameters: a
pointer to a function returning an int (with one parameter of type long int), and an int. The pointer returned by fpfi
points to a function that has one int parameter and accepts zero or more additional arguments of any type.

EXAMPLE 4 The following prototype has a variably modified parameter.

void addscalar(int n, int m,
double a[n][nxm+300], double x);

int main()

{
double b[4][308];
addscalar(4, 2, b, 2.17);
return 0;

}

void addscalar(int n, int m,
double a[n][n*m+300], double x)

{
for (int 1 = 0; i < n; i++)
for (int j = 0, k = nxm+300; j < k; j++)
// a 1s a pointer to a VLA with nxm+300 elements
alilljl += x;
}

EXAMPLE 5 The following are all compatible function prototype declarators.

double maximum(int n, int m, double a[n][m]);
double maximum(int n, int m, double a[x][x*]);
double maximum(int n, int m, double a[]1[*]);
double maximum(int n, int m, double a[]1[m]);

as are:

void f(double (* restrict a)[5]);

void f(double a[restrict][5]);

void f(double a[restrict 3][5]);

void f(double al[restrict static 3][5]);

§6.7.6.3 Language 109

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

(Note that the last declaration also specifies that the argument corresponding to a in any call to f can be expected to be a
non-null pointer to the first of at least three arrays of 5 doubles, which the others do not.)

Forward references: function definitions (6.9.1), type names (6.7.7).

6.7.7 'Type names
Syntax

type-name:

specifier-qualifier-list abstract-declaratorop;
abstract-declarator:

pointer

pointerqp direct-abstract-declarator
direct-abstract-declarator:

(abstract-declarator)

—direct-abstract-declaratorssr————type-guatifier-list__array-abstract-declarator

attribute-specifier-sequenceqpt
unction-abstract-declarator attribute-specifier-sequence
array-abstract-declarator:

direct-abstract-declaratoropn, [type-qualifier-listop; assignment-expressionpt 1

direct-abstract-declaratorop, [— static type-qualifier-listop
assignment-expression]
direct-abstract-declaratorope [type-qualifier-list static
assignment-expression]
direct-abstract-declaratoropy [*]

unction-abstract-declarator:

direct-abstract-declarator,p, (parameter-type-listop:)

Semantics

In several contexts, it is necessary to specify a type. This is accomplished using a type name, which
is syntactically a declaration for a function or an object of that type that omits the identifier.!>)

The optional attribute specifier sequence in a direct abstract declarator appertains to the precedin
array or function type. The attribute specifier sequence affects the type only for the declaration it
appears in, not other declarations involving the same type.

EXAMPLE The constructions

(a) int

(b) int x

(c) int *[3]

(d) int (*)[3]

(e) int (*)[*]

(f) int x()

(9) int (%) (void)

(h) int (xconst [])(unsigned int, ...)

name respectively the types (a) int, (b) pointer to int, (c) array of three pointers to int, (d) pointer to an array of three int s,
(e) pointer to a variable length array of an unspecified number of int s, (f) function with no parameter specification returning
a pointer to int, (g) pointer to function with no parameters returning an int, and (h) array of an unspecified number of
constant pointers to functions, each with one parameter that has type unsigned int and an unspecified number of other
parameters, returning an int.

6.7.8 Type definitions
Syntax

typedef-name:
identifier

155 As indicated by the syntax, empty parentheses in a type name are interpreted as “function with no parameter specifica-
tion”, rather than redundant parentheses around the omitted identifier.

110 Language §6.7.8

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Constraints
If a typedef name specifies a variably modified type then it shall have block scope.

Semantics

In a declaration whose storage-class specifier is typedef, each declarator defines an identifier to
be a typedef name that denotes the type specified for the identifier in the way described in 6.7.6 .
Any array size expressions associated with variable length array declarators are evaluated each time
the declaration of the typedef name is reached in the order of execution. A typedef declaration
does not introduce a new type, only a synonym for the type so specified. That is, in the following
declarations:

typedef T type_ident;
type_ident D;

type_ident is defined as a typedef name with the type specified by the declaration specifiers in T
(known as T), and the identifier in D has the type “derived-declarator-type-list T” where the derived-
declarator-type-list is specified by the declarators of D. A typedef name shares the same name space
as other identifiers declared in ordinary declarators.

EXAMPLE 1 After

typedef int MILES, KLICKSP();
typedef struct { double hi, lo; } range;

the constructions

MILES distance;

extern KLICKSP smetricp;
range X;

range z, *zp;

are all valid declarations. The type of distance is int, that of metricp is “pointer to function with no parameter specification
returning int”, and that of x and z is the specified structure; zp is a pointer to such a structure. The object distance has a
type compatible with any other int object.

EXAMPLE 2 After the declarations

typedef struct sl { int x; } tl1, *tpl;
typedef struct s2 { int x; } t2, *tp2;

type t1 and the type pointed to by tp1 are compatible. Type t1 is also compatible with type struct s1, but not compatible
with the types struct s2, t2, the type pointed to by tp2, or int.

EXAMPLE 3 The following obscure constructions

typedef signed int t;

typedef int plain;

struct tag {
unsigned t:4;
const t:5;
plain r:5;

i

declare a typedef name t with type signed int, a typedef name plain with type int, and a structure with three bit-field
members, one named t that contains values in the range [0, 15], an unnamed const-qualified bit-field which (if it could
be accessed) would contain values in either the range [—15, 4+15] or [~16, +15], and one named r that contains values in
one of the ranges [0, 31], [—-15, +15], or [—16, +15]. (The choice of range is implementation-defined.) The first two bit-field
declarations differ in that unsigned is a type specifier (which forces t to be the name of a structure member), while const is
a type qualifier (which modifies t which is still visible as a typedef name). If these declarations are followed in an inner scope

by

§6.7.8 Language 111

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

\ t f(t (t));
\ long t;

then a function f is declared with type “function returning signed int with one unnamed parameter with type pointer
to function returning signed int with one unnamed parameter with type signed int”, and an identifier t with type
long int.

7 EXAMPLE 4 On the other hand, typedef names can be used to improve code readability. All three of the following
declarations of the signal function specify exactly the same type, the first without making use of any typedef names.

typedef void fv(int), (xpfv)(int);

void (*signal(int, void (x)(int))) (int);
fv ksignal(int, fv x);
pfv signal(int, pfv);

8 EXAMPLE 5 If a typedef name denotes a variable length array type, the length of the array is fixed at the time the typedef
name is defined, not each time it is used:

void copyt(int n)

{
typedef int B[n]; // B is n ints, n evaluated now
n += 1;
B a; // a 1is n ints, n without += 1
int b[n]; // a and b are different sizes
for (int 1 = 1; i < n; i++)

ali-1] = b[i];
}

6.7.9 Initialization

Syntax
1 initializer:
assignment-expression
{ initializer-list }
{ initializer-list , }

initializer-list:
designationp initializer

initializer-list , designation,p, initializer

designation:
designator-list =

designator-list:

designator
designator-list designator
designator:
[constant-expression]
identifier
Constraints

2 No initializer shall attempt to provide a value for an object not contained within the entity being
initialized.

3 The type of the entity to be initialized shall be an array of unknown size or a complete object type
that is not a variable length array type.

4 All the expressions in an initializer for an object that has static or thread storage duration shall be
constant expressions or string literals.

112 Language §6.7.9

10

11

12
13

14

15

16

17

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

If the declaration of an identifier has block scope, and the identifier has external or internal linkage,
the declaration shall have no initializer for the identifier.

If a designator has the form
[constant-expression 1]

then the current object (defined below) shall have array type and the expression shall be an integer
constant expression. If the array is of unknown size, any nonnegative value is valid.

If a designator has the form
. identifier

then the current object (defined below) shall have structure or union type and the identifier shall be
the name of a member of that type.

Semantics

An initializer specifies the initial value stored in an object.

Except where explicitly stated otherwise, for the purposes of this subclause unnamed members
of objects of structure and union type do not participate in initialization. Unnamed members of
structure objects have indeterminate value even after initialization.

If an object that has automatic storage duration is not initialized explicitly, its value is indeterminate.
If an object that has static or thread storage duration is not initialized explicitly, then:

— if it has pointer type, it is initialized to a null pointer;
— if it has arithmetic type, it is initialized to (positive or unsigned) zero;

— if it is an aggregate, every member is initialized (recursively) according to these rules, and any
padding is initialized to zero bits;

— ifitis a union, the first named member is initialized (recursively) according to these rules, and
any padding is initialized to zero bits;

The initializer for a scalar shall be a single expression, optionally enclosed in braces. The initial value
of the object is that of the expression (after conversion); the same type constraints and conversions
as for simple assignment apply, taking the type of the scalar to be the unqualified version of its
declared type.

The rest of this subclause deals with initializers for objects that have aggregate or union type.

The initializer for a structure or union object that has automatic storage duration shall be either
an initializer list as described below, or a single expression that has compatible structure or union
type. In the latter case, the initial value of the object, including unnamed members, is that of the
expression.

An array of character type may be initialized by a character string literal or UTF-8 string literal,
optionally enclosed in braces. Successive bytes of the string literal (including the terminating null
character if there is room or if the array is of unknown size) initialize the elements of the array.

An array with element type compatible with a qualified or unqualified version of wchar_t, charl6_t,
or char32_t may be initialized by a wide string literal with the corresponding encoding prefix (L,
u, or U, respectively), optionally enclosed in braces. Successive wide characters of the wide string
literal (including the terminating null wide character if there is room or if the array is of unknown
size) initialize the elements of the array.

Otherwise, the initializer for an object that has aggregate or union type shall be a brace-enclosed list
of initializers for the elements or named members.

Each brace-enclosed initializer list has an associated current object. When no designations are present,
subobjects of the current object are initialized in order according to the type of the current object:
array elements in increasing subscript order, structure members in declaration order, and the first

§6.7.9 Language 113

18

19

20

21

22

23

24

25

26

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

named member of a union.’® In contrast, a designation causes the following initializer to begin
initialization of the subobject described by the designator. Initialization then continues forward in
order, beginning with the next subobject after that described by the designator.!>”)

Each designator list begins its description with the current object associated with the closest sur-
rounding brace pair. Each item in the designator list (in order) specifies a particular member of its
current object and changes the current object for the next designator (if any) to be that member.!>®)
The current object that results at the end of the designator list is the subobject to be initialized by the
following initializer.

The initialization shall occur in initializer list order, each initializer provided for a particular subobject
overriding any previously listed initializer for the same subobject;'®” all subobjects that are not
initialized explicitly shall be initialized implicitly the same as objects that have static storage duration.

If the aggregate or union contains elements or members that are aggregates or unions, these rules
apply recursively to the subaggregates or contained unions. If the initializer of a subaggregate or
contained union begins with a left brace, the initializers enclosed by that brace and its matching right
brace initialize the elements or members of the subaggregate or the contained union. Otherwise, only
enough initializers from the list are taken to account for the elements or members of the subaggregate
or the first member of the contained union; any remaining initializers are left to initialize the next
element or member of the aggregate of which the current subaggregate or contained union is a part.

If there are fewer initializers in a brace-enclosed list than there are elements or members of an
aggregate, or fewer characters in a string literal used to initialize an array of known size than there
are elements in the array, the remainder of the aggregate shall be initialized implicitly the same as
objects that have static storage duration.

If an array of unknown size is initialized, its size is determined by the largest indexed element with
an explicit initializer. The array type is completed at the end of its initializer list.

The evaluations of the initialization list expressions are indeterminately sequenced with respect to
one another and thus the order in which any side effects occur is unspecified.'*?)

EXAMPLE 1 Provided that <complex.h> has been #included, the declarations

int i = 3.5;
double complex ¢ =5 + 3 * I;

define and initialize i with the value 3 and ¢ with the value 5.0 + 3.0.

EXAMPLE 2 The declaration

‘ int x[1=1{1, 3, 5 };

defines and initializes x as a one-dimensional array object that has three elements, as no size was specified and there are three
initializers.

EXAMPLE 3 The declaration

156)If the initializer list for a subaggregate or contained union does not begin with a left brace, its subobjects are initialized as
usual, but the subaggregate or contained union does not become the current object: current objects are associated only with
brace-enclosed initializer lists.

157) After a union member is initialized, the next object is not the next member of the union; instead, it is the next subobject of
an object containing the union.

138)Thus, a designator can only specify a strict subobject of the aggregate or union that is associated with the surrounding
brace pair. Note, too, that each separate designator list is independent.

159) Any initializer for the subobject which is overridden and so not used to initialize that subobject might not be evaluated at
all.

160)In particular, the evaluation order need not be the same as the order of subobject initialization.

114 Language §6.7.9

27

28

29

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

is a definition with a fully bracketed initialization: 1, 3, and 5 initialize the first row of y (the array object y[0]), namely
y[01[0],y[0][1],and y[0][2]. Likewise the next two lines initialize y[1] and y[2]. The initializer ends early, so y[3] is
initialized with zeros. Precisely the same effect could have been achieved by

int y[4][3] = {
1, 3, 5,2, 4,6, 3,5, 7
I

The initializer for y[0] does not begin with a left brace, so three items from the list are used. Likewise the next three are
taken successively for y[1] and y[2].

EXAMPLE 4 The declaration

int z[4][3] = {
{1} {2} {33} {41}

Y

initializes the first column of z as specified and initializes the rest with zeros.

EXAMPLE 5 The declaration

| struct { int a[3], b; }wll ={ {1} 2}

is a definition with an inconsistently bracketed initialization. It defines an array with two element structures: w[0] .a[0] is 1
andw[1].a[0] is 2; all the other elements are zero.

EXAMPLE 6 The declaration

short q[4][31[2] = {
{1},
{2, 3},
{4,561}
I3

contains an incompletely but consistently bracketed initialization. It defines a three-dimensional array object: q[0][0][0]
is1,q[1]1[0][0] is2, q[1][0][1] is 3, and 4, 5, and 6 initialize q[2]1[0][0], q[2][0][1], and q[2][1][0], respectively;
all the rest are zero. The initializer for q[0][0] does not begin with a left brace, so up to six items from the current list
could be used. There is only one, so the values for the remaining five elements are initialized with zero. Likewise, the
initializers for q[11[0] and q[2][0] do not begin with a left brace, so each uses up to six items, initializing their respective
two-dimensional subaggregates. If there had been more than six items in any of the lists, a diagnostic message would have
been issued. The same initialization result could have been achieved by:

short q[4][3][2] = {
1, 0, 0, 6, 0, 0O,
2, 3, 6, 0, 0, 0,
4, 5, 6
b
or by:
short q[4][3][2] = {
{
{11},
b
{
12,31,
b
{
{4,51,
{61,
}

i

in a fully bracketed form.

30 Note that the fully bracketed and minimally bracketed forms of initialization are, in general, less likely to cause confusion.

§6.7.9 Language 115

31

32

33

34

35

36

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

EXAMPLE 7 One form of initialization that completes array types involves typedef names. Given the declaration

typedef int A[]; // OK - declared with block scope

the declaration

‘ Aa={1,2} b={3, 4,51}

is identical to

| intall={1, 2}, b[l={3, 4,5}

due to the rules for incomplete types.
EXAMPLE 8 The declaration

char s[] = "abc", t[3] = "abc";

defines “plain” char array objects s and t whose elements are initialized with character string literals. This declaration is
identical to

char s[]
t[] =

rar’ Ibl’ ICI, 1\01 },
IaI' Ibl, lcr };

The contents of the arrays are modifiable. On the other hand, the declaration

| char xp = "abc";

defines p with type “pointer to char” and initializes it to point to an object with type “array of char” with length 4 whose
elements are initialized with a character string literal. If an attempt is made to use p to modify the contents of the array, the
behavior is undefined.

EXAMPLE 9 Arrays can be initialized to correspond to the elements of an enumeration by using designators:

enum { member_one, member_two };
const char xnm[] = {
[member_two] = "member two",
[member_one] = "member one",

}i

EXAMPLE 10 Structure members can be initialized to nonzero values without depending on their order:

[
div_t answer = {.quot = 2, .rem = -1 };
L

EXAMPLE 11 Designators can be used to provide explicit initialization when unadorned initializer lists might be misunder-
stood:

struct { int a[3], b; } w[] =
{ [0].a = {1}, [1].a[0] =2 };

EXAMPLE 12
struct T {
int k;
int 1;
};
struct S {
int i;
struct T t;
+

struct T x = {.1 = 43, .k =42, };

void f(void)

116 Language §6.7.9

37

38

39

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

| |
\ struct S 1 ={1, .t =x, .t.1 =41, }; \
| |
L |

The value of 1. t.kis 42, because implicit initialization does not override explicit initialization.

EXAMPLE 13 Space can be “allocated” from both ends of an array by using a single designator:

int a[MAX] = {
1, 3, 5, 7, 9, [MAX-5] =8, 6, 4, 2, 0

Y

In the above, if MAX is greater than ten, there will be some zero-valued elements in the middle; if it is less than ten, some of
the values provided by the first five initializers will be overridden by the second five.

EXAMPLE 14 Any member of a union can be initialized:

i union { /x ... %/ } u = {.any_member = 42 }; |

Forward references: common definitions <stddef.h> (7.19).

6.7.10 Static assertions

Syntax

static_assert-declaration:
_Static_assert (constant-expression , string-literal) ;

_Static_assert (constant-expression) ;

Constraints
The constant expression shall compare unequal to 0.

Semantics

The constant expression shall be an integer constant expression. If the value of the constant expres-
sion compares unequal to 0, the declaration has no effect. Otherwise, the constraint is violated and
the implementation shall produce a diagnostic message that includes the text of the string literal, if
present, except that characters not in the basic source character set are not required to appear in the
message.

Forward references: diagnostics (7.2).

6.7.11 Attributes

Attributes specify additional information for various source constructs such as types, variables,
identifiers, or blocks. They are identified by an_atiribute token, which can_either be a
attribute prefixed token _(for implementation-specific attributes) or a_standard attribute specified
by an identifier (for attributes specified in this document).

Support for any of the standard attributes specified in this document is implementation-defined
and optional. For an attribute token (including an attribute prefixed token) not specified in this
document, the behavior is implementation-defined. Any attribute token that is not supported by
the implementation is ignored.

Attributes are said to appertain to some source construct, identified by the syntactic context where
they appear, and for each individual attribute, the corresponding clause constrains the syntactic
context in which this appertainance is valid. The attribute specifier sequence appertaining to some
source construct shall contain only attributes that are allowed to apply to that source construct.

In all aspects of the language, a standard attribute specified by this document as an identifier attr

and an identifier of the form __attr__ shall behave the same when used as an attribute token,
except for the spelling.'oV

16D)Thus, the attributes [[nodiscard]] and [[__nodiscard__]] can be freely interchanged. Implementations are
encouraged to behave similarly for attribute tokens (including attribute prefixed tokens) they provide.

§6.7.11 Language 117

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

Recommended practice

It is recommended that implementations support all standard attributes as defined in this
document,

6.7.11.1 General
Syntax

e At TIDUEC O

attribute-token attribute-arqument-clause
standard-attribute

T attribute-prefixed-token

standard-attribute:

T IbUL-prEfix i i identifier
o Adentifier
o balanced-token-sequenceop)
balanced-token-sequence:

balanced-token

%—se uence balanced-token
balanced-token:

8 balanced-token-sequericeop:)
ok balanced-token-sequericeop: 1
X balanced-token-sequenceog }
o 2ny token other than a parenthesis, a bracket, or a brace

Constraints

The identifier in a standard attribute shall be one of:

deprecated =~ nodiscard
maybe_unused

Semantics

An attribute specifier that contains no attributes has no effect. The order in which attribute
tokens appear in an attribute list is not significant. If a keyword (6.4.1) that satisfies the syntactic

requirements of an identifier (6.4.2) is contained in an attribute token, it is considered an identifier.

A strictly conforming program using a standard attribute remains strictly conforming in the

absence of that attribute.'*?

NOTE For each standard attribute, the form of the balanced token sequence, if any, will be specified.
Recommended Practice

162)Standard attributes specified by this document can be parsed but ignored by an implementation without changing the
semantics of a correct program; the same is not true for attributes not specified by this document.

118 Language §6.7.11.1

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Each implementation should choose a distinctive name for the attribute prefix in an attribute
refixed token. Implementations should not define attributes without an attribute prefix unless
it is a standard attribute as specified in this document.

EXAMPLE 1 Suppose that an implementation chooses the attribute prefix hal and provides specific attributes named
daisyand rosie.

[[deprecated, hal::daisy]] double ninel000(double);
deprecated hal::daisy]] double ninel@00(double);
[deprecated double ninelG0O [[hal::dais double);

Then all the following declarations should be equivalent aside from the spelling:

[[__deprecated__, __hal__:: _daisy__ double ninel000(double);
[[__deprecated__]] [[__hal__:: _daisy__ double ninel000(double);
__deprecated__]] double ninel000 [[__hal _:: daisy 1] (double);

These use the alternate spelling that is required for all standard attributes and recommended for prefixed attributes.
These may be better-suited for use in header files, where the use of the alternate spelling avoids naming conflicts with
user-provided macros.

EXAMPLE 2 For the same implementation, the following two declarations are equivalent, because the ordering inside
attribute lists is not important.

[[hal::dais hal::rosie]] double nine999(double);
[[hal::rosie, hal::daisy]] double nine999(double);

On the other hand the following two declarations are not equivalent, because the ordering of different attribute specifiers
may affect the semantics.

[[hal::dais hal::rosie]] double nine999(double);
[[hal::rosie hal::daisy]] double nine999(double); // ma

have different semantics

6.7.11.2 The nodiscard attribute
Constraint

The nodiscard attribute shall be applied to the identifier in a function declarator or to the definition
of a structure, union, or enumeration type. It shall appear at most once in each attribute list and no
attribute areument clause shall be present.

Semantics

A name or entity declared without the nodiscard attribute can later be redeclared with the attribute
and vice versa. An entity is considered marked after the first declaration that marks it.
Recommended Practice

Anodiscard call is a function call expression that calls a function previously declared with attribute
nodiscard, or whose return type is a structure, union, or enumeration type marked with attribute
nodiscard. Evaluation of a nodiscard call as a void expression (6.8.3) is discouraged unless
explicitly cast to void. Implementations are encouraged to issue a diagnostic in such cases. This
is typically because immediately discarding the return value of a nodiscard call has surprising
consequences.

EXAMPLE 1

___Struct nodiscard]] error_info { /*...x/ };
. ..struct error_info enable missile safety mode(void);
.. void test_missiles(void) {

o_.___enable_missile_safety_mode();

A diagnostic for the call to enable_missile_safety_mode is encouraged.

§6.7.11.2 Language 119

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

EXAMPLE 2

_.___IInodiscard]] int important func(void);
_.___void call(void) {
____int i = important_func();

e
ok

No diagnostic for the call to important_func is encouraged despite the value of i not being used.

6.7.11.3 The maybe_unused attribute
Constraint

The maybe_unused attribute shall be applied to the declaration of a structure, a union, a typedef
name, a variable, a structure or union member, a function, an enumeration, or an enumerator. It

shall appear at most once in each attribute list and no attribute argument clause shall be present.
Semantics

The maybe_unused attribute indicates that a name or entity is possibly intentionally unused. A
name or entity declared without the maybe_unused attribute can later be redeclared with the

attribute and vice versa. An entity is considered marked with the attribute after the first declaration
that marks it.

Recommended Practice

For an entity marked maybe_unused, implementations are encouraged not to emit a diagnostic that
the entity is unused, or that the entity is used despite the presence of the attribute.
EXAMPLE

—_.___IImaybe_unused]] void f([[maybe unused]] int i) {
e Imaybe_unused]] int j = i + 100;

o assert(j);

ok

Implementations are encouraged not to diagnose that j is unused, whether or not NDEBUG is defined.
6.7.11.4 The deprecated attribute

The deprecated attribute shall be applied to the declaration of a structure, a union, a typedef

name, a variable, a structure or union member, a function, an enumeration, or an enumerator, It

shall appear at most once in each attribute list.
If an attribute arcument clause is present, it shall have the form:
string-literal)

Semantics

The deprecated attribute can be used to mark names and entities whose use is still allowed, but is

discouraged for some reason.'*”
A name or entity declared without the deprecated attribute can later be redeclared with the

attribute and vice versa. An entity is considered marked with the attribute after the first declaration
that marks it.

Recommended Practice

Implementations should use the deprecated attribute to produce a diagnostic message in case the
program refers to a name or entity other than to declare it, after a declaration that specifies the
attribute, when the reference to the name or entity is not within the context of a related deprecated
entity. The diagnostic message may include text provided by the string literal within the attribute
argument clause of any deprecated attribute applied to the name or entity.

163)

In particular, deprecated is appropriate for names and entities that are obsolescent, insecure, unsafe, or otherwise unfit
for purpose..

120 Language §6.7.114

6

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

EXAMPLE

__.___Struct [[deprecated]] S {

A A A A

___enum [[deprecated]] E1 {

A A A A

o ENUM B2 {
e _two [[deprecated("use 'three’ instead")]],

A~ A A A

_.___Ildeprecated]] typedef int Foo;

__.___void fl(struct S s) { // Diagnose use of S
e int i = one; // Diagnose use of El
e_.___int j = two; // Diagnose use of two: "use 'three’ instead"

e LT K = three;

... _Foo f; // Diagnose use of Foo

—_.___IIdeprecated]] void f2(struct S s
e INE L = ODE;
e AN S = two

A A A A

A A A A

____Struct [[deprecated]] T {
Foo f;
struct S_s;

A~ A A A

A~ A A A

Implementations are encouraged to diagnose the use of deprecated entities within a context which is not itself deprecated,
as indicated for function f1, but not to diagnose within function f2 and struct T, as they are themselves deprecated.

§6.7.114 Language 121

1

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

6.8 Statements and blocks

Syntax

statement:
labeled-statement

“eotpoutd-statement- expression-statement

-expressior-statenrent- attribute-specifier-sequenceqy, compound-statement
_attribute-specifier-sequenceqy; selection-statement
attribute-specifier-sequencey iteration-statement
attribute-specifier-sequenceop jump-statement

Semantics
A statement specifies an action to be performed. Except as indicated, statements are executed in
sequence. The optional attribute specifier sequence appertains to the respective statement.

A block allows a set of declarations and statements to be grouped into one syntactic unit. The
initializers of objects that have automatic storage duration, and the variable length array declarators
of ordinary identifiers with block scope, are evaluated and the values are stored in the objects
(including storing an indeterminate value in objects without an initializer) each time the declaration
is reached in the order of execution, as if it were a statement, and within each declaration in the
order that declarators appear.

A full expression is an expression that is not part of another expression, nor part of a declarator
or abstract declarator. There is also an implicit full expression in which the non-constant size
expressions for a variably modified type are evaluated; within that full expression, the evaluation of
different size expressions are unsequenced with respect to one another. There is a sequence point
between the evaluation of a full expression and the evaluation of the next full expression to be
evaluated.

NOTE Each of the following is a full expression:
— a full declarator for a variably modified type,
— an initializer that is not part of a compound literal,
— the expression in an expression statement,
— the controlling expression of a selection statement (if or switch),
— the controlling expression of a while or do statement,
— each of the (optional) expressions of a for statement,

— the (optional) expression in a return statement.

While a constant expression satisfies the definition of a full expression, evaluating it does not depend on nor produce any
side effects, so the sequencing implications of being a full expression are not relevant to a constant expression.

Forward references: expression and null statements (6.8.3), selection statements (6.8.4), iteration
statements (6.8.5), the return statement (6.8.6.4).

6.8.1 Labeled statements

Syntax
labeled-statement:

attribute-specifier-sequenceyy identifier : statement
attribute-specifier-sequence,,; case constant-expression : statement
attribute-specifier-sequencey: default : statement

Constraints

A case or default label shall appear only in a switch statement. Further constraints on such labels
are discussed under the switch statement.

Label names shall be unique within a function.

122 Language §6.8.1

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Semantics
Any statement may be preceded by a prefix that declares an identifier as a label name. The optional
attribute specifier sequence appertains to the label. Labels in themselves do not alter the flow of

control, which continues unimpeded across them.

Forward references: the goto statement (6.8.6.1), the switch statement (6.8.4.2).

6.8.2 Compound statement

Syntax

compound-statement:
{ block-item-list,p; }
block-item-list:

block-item

block-item-list block-item
block-item:

declaration

statement
Semantics

A compound statement is a block.

6.8.3 Expression and null statements

Syntax

expression-statement:
expressionopt ;

attribute-specifier-sequence expression ;

Semantics

The attribute specifier sequence appertains to the expression. The expression in an expression

statement is evaluated as a void expression for its side effects.!¢%

A null statement (consisting of just a semicolon) performs no operations.

EXAMPLE 1 If a function call is evaluated as an expression statement for its side effects only, the discarding of its value can
be made explicit by converting the expression to a void expression by means of a cast:

i int p(int);
\ /* .. %/
\ (void)p(0);

EXAMPLE 2 In the program fragment

char x*s;
/x ... x/
while (*s++ != '\0")

’

a null statement is used to supply an empty loop body to the iteration statement.

EXAMPLE 3 A null statement can also be used to carry a label just before the closing } of a compound statement.

while (loopl) {

/* ... %/
while (loop2) {
/*x ... %/

if (want_out)
goto end_loopl;
/*x ... %/
}
/* ... x/

164Such as assignments, and function calls which have side effects.

§6.8.3 Language 123

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

\ end_loopl:;
\ }

Forward references: iteration statements (6.8.5).

6.8.4 Selection statements

Syntax

selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

Semantics

A selection statement selects among a set of statements depending on the value of a controlling
expression.

A selection statement is a block whose scope is a strict subset of the scope of its enclosing block. Each
associated substatement is also a block whose scope is a strict subset of the scope of the selection
statement.

6.8.4.1 The if statement
Constraints
The controlling expression of an if statement shall have scalar type.

Semantics

In both forms, the first substatement is executed if the expression compares unequal to 0. In the
else form, the second substatement is executed if the expression compares equal to 0. If the first
substatement is reached via a label, the second substatement is not executed.

An else is associated with the lexically nearest preceding if that is allowed by the syntax.

6.8.4.2 The switch statement
Constraints
The controlling expression of a switch statement shall have integer type.

If a switch statement has an associated case or default label within the scope of an identifier with
a variably modified type, the entire switch statement shall be within the scope of that identifier.!

The expression of each case label shall be an integer constant expression and no two of the case
constant expressions in the same switch statement shall have the same value after conversion.
There may be at most one default label in a switch statement. (Any enclosed switch statement
may have a default label or case constant expressions with values that duplicate case constant
expressions in the enclosing switch statement.)

Semantics

A switch statement causes control to jump to, into, or past the statement that is the switch body,
depending on the value of a controlling expression, and on the presence of a default label and the
values of any case labels on or in the switch body. A case or default label is accessible only within
the closest enclosing switch statement.

The integer promotions are performed on the controlling expression. The constant expression in
each case label is converted to the promoted type of the controlling expression. If a converted value
matches that of the promoted controlling expression, control jumps to the statement following the
matched case label. Otherwise, if there is a default label, control jumps to the labeled statement. If
no converted case constant expression matches and there is no default label, no part of the switch
body is executed.

165)That is, the declaration either precedes the switch statement, or it follows the last case or default label associated with
the switch that is in the block containing the declaration.

124 Language §6.8.4.2

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Implementation limits

As discussed in 5.2.4.1, the implementation may limit the number of case values in a switch
statement.

§6.8.4.2 Language 125

7

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

EXAMPLE In the artificial program fragment

switch (expr)
{
int i = 4;
f(i);
case 0:
i=17;
/*x falls through into default code */
default:
printf("%d\n", 1i);

the object whose identifier is i exists with automatic storage duration (within the block) but is never initialized, and thus if
the controlling expression has a nonzero value, the call to the printf function will access an indeterminate value. Similarly,
the call to the function f cannot be reached.

6.8.5 Iteration statements

Syntax
iteration-statement:
while (expression) statement
do statement while (expression) ;
for (expressionopt ; expressionopt H expressionopt) statement
for (declaration expressionep ; expressionep:) statement
Constraints
The controlling expression of an iteration statement shall have scalar type.

The declaration part of a for statement shall only declare identifiers for objects having storage class
auto or register.

Semantics

An iteration statement causes a statement called the loop body to be executed repeatedly until the
controlling expression compares equal to 0. The repetition occurs regardless of whether the loop
body is entered from the iteration statement or by a jump.!¢®)

An iteration statement is a block whose scope is a strict subset of the scope of its enclosing block.
The loop body is also a block whose scope is a strict subset of the scope of the iteration statement.

An iteration statement may be assumed by the implementation to terminate if its controlling
expression is not a constant expression,'®”) and none of the following operations are performed in its
body, controlling expression or (in the case of a for statement) its expression-3:169

— input/output operations
— accessing a volatile object

— synchronization or atomic operations.
6.8.5.1 The while statement
The evaluation of the controlling expression takes place before each execution of the loop body.

6.8.5.2 The do statement
The evaluation of the controlling expression takes place after each execution of the loop body.

166)Code jumped over is not executed. In particular, the controlling expression of a for or while statement is not evaluated
before entering the loop body, nor is clause-1 of a for statement.

167) An omitted controlling expression is replaced by a nonzero constant, which is a constant expression.

169)This is intended to allow compiler transformations such as removal of empty loops even when termination cannot be
proven.

126 Language §6.8.5.2

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

6.8.5.3 The for statement
The statement

\ for (clause-1; expression-2; expression-3) statement

behaves as follows: The expression expression-2 is the controlling expression that is evaluated before
each execution of the loop body. The expression expression-3 is evaluated as a void expression after
each execution of the loop body. If clause-1 is a declaration, the scope of any identifiers it declares
is the remainder of the declaration and the entire loop, including the other two expressions; it is
reached in the order of execution before the first evaluation of the controlling expression. If clause-1
is an expression, it is evaluated as a void expression before the first evaluation of the controlling
expression.!%?

Both clause-1 and expression-3 can be omitted. An omitted expression-2 is replaced by a nonzero
constant.

6.8.6 Jump statements

Syntax

jump-statement:
goto identifier ;
continue ;
break ;
return expressiongp: ;
Semantics

A jump statement causes an unconditional jump to another place.

6.8.6.1 The goto statement
Constraints

The identifier in a goto statement shall name a label located somewhere in the enclosing function. A
goto statement shall not jump from outside the scope of an identifier having a variably modified
type to inside the scope of that identifier.

Semantics

A goto statement causes an unconditional jump to the statement prefixed by the named label in the
enclosing function.

EXAMPLE1 It is sometimes convenient to jump into the middle of a complicated set of statements. The following outline
presents one possible approach to a problem based on these three assumptions:

1. The general initialization code accesses objects only visible to the current function.
2. The general initialization code is too large to warrant duplication.

3. The code to determine the next operation is at the head of the loop. (To allow it to be reached by continue statements,
for example.)

/x ... %/
goto first_time;
for (;;) {
// determine next operation

/x ... %/
if (need to reinitialize) {
// reinitialize-only code
/x ... %/
first_time:
// general initialization code

169Thus, clause-1 specifies initialization for the loop, possibly declaring one or more variables for use in the loop; the
controlling expression, expression-2, specifies an evaluation made before each iteration, such that execution of the loop
continues until the expression compares equal to 0; and expression-3 specifies an operation (such as incrementing) that is
performed after each iteration.

§6.8.6.1 Language 127

4

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

\ Ve

\ continue;

| } |

\ // handle other operations \

\ VY \

| } |

L |
EXAMPLE 2 A goto statement is not allowed to jump past any declarations of objects with variably modified types. A jump

within the scope, however, is permitted.

goto lab3;
{
double a[n];
aljl = 4.4;
lab3:
aljl = 3.3;
goto lab4;
aljl = 5.5;
lab4:
aljl = 6.6;
}
goto lab4;

// invalid:

// valid:

// invalid:

going INTO scope of VLA.

going WITHIN scope of VLA.

going INTO scope of VLA.

6.8.6.2 The continue statement

Constraints

A continue statement shall appear only in or as a loop body.

Semantics

A continue statement causes a jump to the loop-continuation portion of the smallest enclosing

iteration statement; that is, to the end of the loop body. More precisely, in each of the statements

while (/x* ..
/* .. X%/
continue;
/*x ... *x/

contin:;

}

*/) A

do { for (/* ...
/* .. %/ /% ... %/
continue; continue;
/*x ... x/ /*x ... */

contin:; contin:;

} while (/* ... x/); }

*/) A

unless the continue statement shown is in an enclosed iteration statement (in which case it is
interpreted within that statement), it is equivalent to goto contin;.!”0

6.8.6.3 The break statement

Constraints

A break statement shall appear only in or as a switch body or loop body.

Semantics

A break statement terminates execution of the smallest enclosing switch or iteration statement.

6.8.6.4 The return statement

Constraints

A return statement with an expression shall not appear in a function whose return type is void. A
return statement without an expression shall only appear in a function whose return type is void.

Semantics

A return statement terminates execution of the current function and returns control to its caller. A

function may have any number of return statements.

170 Following the contin: label is a null statement.

128

Language

§6.8.6.4

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

If a return statement with an expression is executed, the value of the expression is returned to the
caller as the value of the function call expression. If the expression has a type different from the
return type of the function in which it appears, the value is converted as if by assignment to an
object having the return type of the function.!”")

EXAMPLE In:

struct s { double i; } f(void);

union {
struct {
int f1;
struct s f2;
}oul;
struct {
struct s f3;
int f4;
}ouz;
} g
struct s f(void)
{
return g.ul.f2;
}
/* ... x/
g.u2.f3 = f();

there is no undefined behavior, although there would be if the assignment were done directly (without using a function call
to fetch the value).

7DThe return statement is not an assignment. The overlap restriction of 6.5.16.1 does not apply to the case of function
return. The representation of floating-point values can have wider range or precision than implied by the type; a cast can be
used to remove this extra range and precision.

§6.8.6.4 Language 129

1

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

6.9 External definitions

Syntax
translation-unit:
external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

Constraints

The storage-class specifiers auto and register shall not appear in the declaration specifiers in an
external declaration.

There shall be no more than one external definition for each identifier declared with internal linkage
in a translation unit. Moreover, if an identifier declared with internal linkage is used in an expression
(other than as a part of the operand of a sizeof or _Alignof operator whose result is an integer
constant), there shall be exactly one external definition for the identifier in the translation unit.

Semantics

As discussed in 5.1.1.1, the unit of program text after preprocessing is a translation unit, which
consists of a sequence of external declarations. These are described as “external” because they
appear outside any function (and hence have file scope). As discussed in 6.7, a declaration that also
causes storage to be reserved for an object or a function named by the identifier is a definition.

An external definition is an external declaration that is also a definition of a function (other than an
inline definition) or an object. If an identifier declared with external linkage is used in an expression
(other than as part of the operand of a sizeof or _Alignof operator whose result is an integer
constant), somewhere in the entire program there shall be exactly one external definition for the
identifier; otherwise, there shall be no more than one.}”?

6.9.1 Function definitions

Syntax
function-definition:

~deelaration-specifiers—deelarator— attribute-specifier-sequenceoy, declaration-specifiers

declaration-list,p, compound-statement

declarator

declaration-list:

-deelaration no-leading-attribute-declaration
declaration-list -declaration- no-leading-attribute-declaration

Constraints

The identifier declared in a function definition (which is the name of the function) shall have a
function type, as specified by the declarator portion of the function definition.!”)

The return type of a function shall be void or a complete object type other than array type.
The storage-class specifier, if any, in the declaration specifiers shall be either extern or static.

If the declarator includes a parameter type list, the declaration of each parameter shall include an
identifier, except for the special case of a parameter list consisting of a single parameter of type void,

172 Thus, if an identifier declared with external linkage is not used in an expression, there need be no external definition for
it.

130 Language §69.1

10

11

12

13

14

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

in which case there shall not be an identifier. No declaration list shall follow.

If the declarator includes an identifier list, each declaration in the declaration list shall have at least
one declarator, those declarators shall declare only identifiers from the identifier list, and every
identifier in the identifier list shall be declared. An identifier declared as a typedef name shall not
be redeclared as a parameter. The declarations in the declaration list shall contain no storage-class
specifier other than register and no initializations.

Semantics

The optional attribute specifier sequence in a function definition appertains to the function.

The declarator in a function definition specifies the name of the function being defined and the
identifiers of its parameters. If the declarator includes a parameter type list, the list also specifies the
types of all the parameters; such a declarator also serves as a function prototype for later calls to the
same function in the same translation unit. If the declarator includes an identifier list,'”* the types
of the parameters shall be declared in a following declaration list. In either case, the type of each
parameter is adjusted as described in 6.7.6.3 for a parameter type list; the resulting type shall be a
complete object type.

If a function that accepts a variable number of arguments is defined without a parameter type list
that ends with the ellipsis notation, the behavior is undefined.

Each parameter has automatic storage duration; its identifier is an lvalue.'’”” The layout of the
storage for parameters is unspecified.

On entry to the function, the size expressions of each variably modified parameter are evaluated
and the value of each argument expression is converted to the type of the corresponding parameter
as if by assignment. (Array expressions and function designators as arguments were converted to
pointers before the call.)

After all parameters have been assigned, the compound statement that constitutes the body of the
function definition is executed.

Unless otherwise specified, if the } that terminates a function is reached, and the value of the
function call is used by the caller, the behavior is undefined.

EXAMPLE 1 In the following:

extern int max(int a, int b)

{

return a > b ? a: b;

}

extern is the storage-class specifier and int is the type specifier; max(int a, int b) is the function declarator; and

{ returna > b ? a: b; }
L

173)The intent is that the type category in a function definition cannot be inherited from a typedef:

typedef int F(void); // type F is “function with no parameters
// returning int”

Ff, g; // f and g both have type compatible with F

Ff{/* x/ } // WRONG: syntax/constraint error

Fg() { /* o %/} // WRONG: declares that g returns a function

int f(v01d) { /x ... %/ } // RIGHT: f has type compatible with F

int g() { /*x ... %/} // RIGHT: g has type compatible with F

F xe(void) { /x ... *x/ } // e returns a pointer to a function
*((e))(void) { /x ... x/ } // same: parentheses irrelevant

1nt (xfp) (void) ; // fp points to a function that has type F

F *Fp; // Fp points to a function that has type F

179See “future language directions” (6.11.7).
175 A parameter identifier cannot be redeclared in the function body except in an enclosed block.

§69.1 Language 131

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

is the function body. The following similar definition uses the identifier-list form for the parameter declarations:

132 Language §69.1

15

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

extern int max(a, b)
int a, b;
{

return a > b ? a: b;

}

Here int a, b; is the declaration list for the parameters. The difference between these two definitions is that the first form acts
as a prototype declaration that forces conversion of the arguments of subsequent calls to the function, whereas the second
form does not.

EXAMPLE 2 To pass one function to another, one might say

int f(void);
/x ... %/
g(f);

Then the definition of g might read

void g(int (*funcp) (void))
{
/* .. %/
(xfuncp) (); /* or funcp(); ...x/

or, equivalently,

void g(int func(void))
{
/x ... %/
func(); /* or (xfunc)(); ...x/

6.9.2 External object definitions
Semantics

If the declaration of an identifier for an object has file scope and an initializer, the declaration is an
external definition for the identifier.

A declaration of an identifier for an object that has file scope without an initializer, and without a
storage-class specifier or with the storage-class specifier static, constitutes a fentative definition. If a
translation unit contains one or more tentative definitions for an identifier, and the translation unit
contains no external definition for that identifier, then the behavior is exactly as if the translation
unit contains a file scope declaration of that identifier, with the composite type as of the end of the
translation unit, with an initializer equal to6—{ 0 }.

If the declaration of an identifier for an object is a tentative definition and has internal linkage, the
declared type shall not be an incomplete type.

§69.2 Language 133

4

5

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434
EXAMPLE 1
int il = 1; // definition, external linkage
static int i2 = 2; // definition, internal linkage
extern int i3 = 3; // definition, external linkage
int i4; // tentative definition, external linkage
static int i5; // tentative definition, internal linkage
int il; // valid tentative definition, refers to previous
int i2; // 6.2.2 renders undefined, linkage disagreement
int i3; // valid tentative definition, refers to previous
int i4; // valid tentative definition, refers to previous
int i5; // 6.2.2 renders undefined, linkage disagreement
extern int il; // refers to previous, whose linkage is external
extern int i2; // refers to previous, whose linkage is internal
extern int i3; // refers to previous, whose linkage is external
extern int i4; // refers to previous, whose linkage is external
extern int i5; // refers to previous, whose linkage is internal

EXAMPLE 2 If at the end of the translation unit containing

int i[];

the array i still has incomplete type, the implicit initializer causes it to have one element, which is set to zero on program

startup.

134

Language

§69.2

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

6.10 Preprocessing directives

Syntax
preprocessing-file:
grouUpept
group:
group-part
group group-part
group-part:
if-section
control-line
text-line
#-# non-directive
if-section:
if-group elif-groupsap else-groupqp: endif-line
if-group:
#-if-# _if constant-expression new-line groupop:
+#ifdef # ifdef identifier new-line groupop:
#ifndef # ifndef identifier new-line groupop:
elif-groups:
elif-group
elif-groups elif-group
elif-group:
#etif # elif constant-expression new-line groupop:
else-group:
#else # else new-line groupgp
endif-line:

#-endif-# endif new-line
control-line:
#-inctude-# include pp-tokens new-line
#-define-# define identifier replacement-list new-line
+#define # define identifier Iparen identifier-listopi)-)
replacement-list new-line
#-define-# define identifier Iparen ...-)) replacement-list new-line
#-define-# define identifier Iparen identifier-list ———), ...)
replacement-list new-line
#undef-# undef identifier new-line
#-tine-# line pp-tokens new-line
#error- # error pp-tokensep: new-line
#pragma # pragma_pp-tokensop: new-line
new-line
text-line:
pp-tokensop: new-line
non-directive:
pp-tokens new-line
Iparen:
a - (character not immediately preceded by white space
replacement-list:
pp-tokenspt
pp-tokens:
preprocessing-token
pp-tokens preprocessing-token
new-line:
the new-line character

§6.10 Language 135

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

Description

A preprocessing directive consists of a sequence of preprocessing tokens that satisfies the following
constraints: The first token in the sequence is a # preprocessing token that (at the start of translation
phase 4) is either the first character in the source file (optionally after white space containing no
new-line characters) or that follows white space containing at least one new-line character. The last
token in the sequence is the first new-line character that follows the first token in the sequence.!”®)
A new-line character ends the preprocessing directive even if it occurs within what would otherwise
be an invocation of a function-like macro.

A text line shall not begin with a # preprocessing token. A non-directive shall not begin with any of
the directive names appearing in the syntax.

When in a group that is skipped (6.10.1), the directive syntax is relaxed to allow any sequence of
preprocessing tokens to occur between the directive name and the following new-line character.

Constraints

The only white-space characters that shall appear between preprocessing tokens within a prepro-
cessing directive (from just after the introducing # preprocessing token through just before the
terminating new-line character) are space and horizontal-tab (including spaces that have replaced
comments or possibly other white-space characters in translation phase 3).

Semantics

The implementation can process and skip sections of source files conditionally, include other source
files, and replace macros. These capabilities are called preprocessing, because conceptually they occur
before translation of the resulting translation unit.

The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless
otherwise stated.

EXAMPLE In:

#define EMPTY
EMPTY # include <file.h>

the sequence of preprocessing tokens on the second line is not a preprocessing directive, because it does not begin with a # at
the start of translation phase 4, even though it will do so after the macro EMPTY has been replaced.

The execution of a non-directive preprocessing directive results in undefined behavior.

6.10.1 Conditional inclusion

Constraints

The expression that controls conditional inclusion shall be an integer constant expression except that:
identifiers (including those lexically identical to keywords) are interpreted as described below;'””)

and it may contain unary operator expressions of the form
defined identifier

or

defined (—identifier—)- (_identifier)

which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is predefined
or if it has been the subject of a #define preprocessing directive without an intervening #undef
directive with the same subject identifier), 0 if it is not.

Each preprocessing token that remains (in the list of preprocessing tokens that will become the
controlling expression) after all macro replacements have occurred shall be in the lexical form of a
token (6.4).

176)Thus, preprocessing directives are commonly called “lines”. These “lines” have no other syntactic significance, as all
white space is equivalent except in certain situations during preprocessing (see the # character string literal creation operator
in 6.10.3.2, for example).

177)Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are or are not
macro names — there simply are no keywords, enumeration constants, etc.

136 Language §6.10.1

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Semantics
Preprocessing directives of the forms

if constant-expression new-line groupopt
elif constant-expression new-line groupop:

check whether the controlling constant expression evaluates to nonzero.

Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the control-
ling constant expression are replaced (except for those macro names modified by the defined unary
operator), just as in normal text. If the token defined is generated as a result of this replacement
process or use of the defined unary operator does not match one of the two specified forms prior to
macro replacement, the behavior is undefined. After all replacements due to macro expansion and
the defined unary operator have been performed, all remaining identifiers (including those lexically
identical to keywords) are replaced with the pp-number 0, and then each preprocessing token is
converted into a token. The resulting tokens compose the controlling constant expression which is
evaluated according to the rules of 6.6. For the purposes of this token conversion and evaluation,
all signed integer types and all unsigned integer types act as if they have the same representation
as, respectively, the types intmax_t and uintmax_t defined in the header <stdint.h>.""® This
includes interpreting character constants, which may involve converting escape sequences into
execution character set members. Whether the numeric value for these character constants matches
the value obtained when an identical character constant occurs in an expression (other than within a
#if or #elif directive) is implementation-defined.’”? Also, whether a single-character character
constant may have a negative value is implementation-defined.

Preprocessing directives of the forms

+# # ifdef identifier new-line groupgp
ifndef identifier new-line groupop:

check whether the identifier is or is not currently defined as a macro name. Their conditions are
equivalent to #if defined identifier and #1if !defined identifier respectively.

Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it
controls is skipped: directives are processed only through the name that determines the directive
in order to keep track of the level of nested conditionals; the rest of the directives’ preprocessing
tokens are ignored, as are the other preprocessing tokens in the group. Only the first group whose
control condition evaluates to true (nonzero) is processed; any following groups are skipped and
their controlling directives are processed as if they were in a group that is skipped. If none of the
conditions evaluates to true, and there is a #else directive, the group controlled by the #else is
processed; lacking a #else directive, all the groups until the #endif are skipped.!®”

Forward references: macro replacement (6.10.3), source file inclusion (6.10.2), largest integer types
(7.20.1.5).

6.10.2 Source file inclusion

Constraints

A #include directive shall identify a header or source file that can be processed by the implementa-
tion.

178)Thus, on an implementation where INT_MAX is 0x7FFF and UINT_MAX is OxFFFF, the constant 0x8000 is signed and
positive within a #if expression even though it would be unsigned in translation phase 7.

179 Thus, the constant expression in the following #if directive and if statement is not guaranteed to evaluate to the same
value in these two contexts.

#if 'z’ - 'a’ == 25
if ('z’ - 'a' == 25)

180) As indicated by the syntax, no preprocessing tokens are allowed to follow a #else or #endif directive before the
terminating new-line character. However, comments can appear anywhere in a source file, including within a preprocessing
directive.

§6.10.2 Language 137

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

Semantics
A preprocessing directive of the form

#-inctude<h-char-sequence> #_include < h-char-sequence > new-line

searches a sequence of implementation-defined places for a header identified uniquely by the
specified sequence between the < and > delimiters, and causes the replacement of that directive
by the entire contents of the header. How the places are specified or the header identified is
implementation-defined.

A preprocessing directive of the form

#—-inctude—"g-char-sequence— # _include " g-char-sequence " new-line

causes the replacement of that directive by the entire contents of the source file identified by the
specified sequence between the " delimiters. The named source file is searched for in an implementa-
tion-defined manner. If this search is not supported, or if the search fails, the directive is reprocessed
as if it read

#-inctude<f-char-sequence> #_include < h-char-sequence > new-line
with the identical contained sequence (including > characters, if any) from the original directive.

A preprocessing directive of the form
+# # include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after
include in the directive are processed just as in normal text. (Each identifier currently defined as a
macro name is replaced by its replacement list of preprocessing tokens.) The directive resulting after
all replacements shall match one of the two previous forms.!®" The method by which a sequence
of preprocessing tokens between a < and a > preprocessing token pair or a pair of " characters is
combined into a single header name preprocessing token is implementation-defined.

The implementation shall provide unique mappings for sequences consisting of one or more nondig-
its or digits (6.4.2.1) followed by a period (.) and a single nondigit. The first character shall not be a
digit. The implementation may ignore distinctions of alphabetical case and restrict the mapping to
eight significant characters before the period.

A #include preprocessing directive may appear in a source file that has been read because of a
#include directive in another file, up to an implementation-defined nesting limit (see 5.2.4.1).

EXAMPLE 1 The most common uses of #include preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

EXAMPLE 2 This illustrates macro-replaced #include directives:

#if VERSION ==
#define INCFILE “"versl.h"
#elif VERSION == 2
#define INCFILE "vers2.h" // and so on
#else
#define INCFILE "versN.h"
#endif
#include INCFILE

Forward references: macro replacement (6.10.3).

18D Note that adjacent string literals are not concatenated into a single string literal (see the translation phases in 5.1.1.2);
thus, an expansion that results in two string literals is an invalid directive.

138 Language §6.10.2

10

11

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

6.10.3 Macro replacement
Constraints

Two replacement lists are identical if and only if the preprocessing tokens in both have the same
number, ordering, spelling, and white-space separation, where all white-space separations are
considered identical.

An identifier currently defined as an object-like macro shall not be redefined by another #define
preprocessing directive unless the second definition is an object-like macro definition and the two
replacement lists are identical. Likewise, an identifier currently defined as a function-like macro
shall not be redefined by another #define preprocessing directive unless the second definition is a
function-like macro definition that has the same number and spelling of parameters, and the two
replacement lists are identical.

There shall be white space between the identifier and the replacement list in the definition of an
object-like macro.

If the identifier-list in the macro definition does not end with an ellipsis, the number of arguments
(including those arguments consisting of no preprocessing tokens) in an invocation of a function-like
macro shall equal the number of parameters in the macro definition. Otherwise, there shall be more
arguments in the invocation than there are parameters in the macro definition (excluding the . . .).
There shall exist a) preprocessing token that terminates the invocation.

The identifier __VA_ARGS__ shall occur only in the replacement-list of a function-like macro that
uses the ellipsis notation in the parameters.

A parameter identifier in a function-like macro shall be uniquely declared within its scope.

Semantics

The identifier immediately following the define is called the macro name. There is one name
space for macro names. Any white-space characters preceding or following the replacement list of
preprocessing tokens are not considered part of the replacement list for either form of macro.

If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a prepro-
cessing directive could begin, the identifier is not subject to macro replacement.

A preprocessing directive of the form
#-# define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name'®? to be replaced
by the replacement list of preprocessing tokens that constitute the remainder of the directive. The
replacement list is then rescanned for more macro names as specified below.

A preprocessing directive of the form

+# # define identifier Iparen identifier-listop:) replacement-list new-line
#-# define identifier lparen ...) replacement-list new-line
define identifier Iparen identifier-list , ...) replacement-list new-line

defines a function-like macro with parameters, whose use is similar syntactically to a function call. The
parameters are specified by the optional list of identifiers, whose scope extends from their declaration
in the identifier list until the new-line character that terminates the #define preprocessing directive.
Each subsequent instance of the function-like macro name followed by a (as the next preprocessing
token introduces the sequence of preprocessing tokens that is replaced by the replacement list
in the definition (an invocation of the macro). The replaced sequence of preprocessing tokens is
terminated by the matching) preprocessing token, skipping intervening matched pairs of left and
right parenthesis preprocessing tokens. Within the sequence of preprocessing tokens making up an
invocation of a function-like macro, new-line is considered a normal white-space character.

The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms

182)Since, by macro-replacement time, all character constants and string literals are preprocessing tokens, not sequences
possibly containing identifier-like subsequences (see 5.1.1.2, translation phases), they are never scanned for macro names or
parameters.

§6.10.3 Language 139

12

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

the list of arguments for the function-like macro. The individual arguments within the list are
separated by comma preprocessing tokens, but comma preprocessing tokens between matching
inner parentheses do not separate arguments. If there are sequences of preprocessing tokens within
the list of arguments that would otherwise act as preprocessing directives,'®® the behavior is
undefined.

If thereis a . .. in the identifier-list in the macro definition, then the trailing arguments, including
any separating comma preprocessing tokens, are merged to form a single item: the variable arguments.
The number of arguments so combined is such that, following merger, the number of arguments is
one more than the number of parameters in the macro definition (excluding the .. .).

6.10.3.1 Argument substitution

After the arguments for the invocation of a function-like macro have been identified, argument
substitution takes place. A parameter in the replacement list, unless preceded by a # or ## prepro-
cessing token or followed by a ## preprocessing token (see below), is replaced by the corresponding
argument after all macros contained therein have been expanded. Before being substituted, each
argument’s preprocessing tokens are completely macro replaced as if they formed the rest of the
preprocessing file; no other preprocessing tokens are available.

Anidentifier __VA_ARGS__ that occurs in the replacement list shall be treated as if it were a parameter,
and the variable arguments shall form the preprocessing tokens used to replace it.

6.10.3.2 The # operator
Constraints

Each # preprocessing token in the replacement list for a function-like macro shall be followed by a
parameter as the next preprocessing token in the replacement list.

Semantics

If, in the replacement list, a parameter is immediately preceded by a # preprocessing token, both
are replaced by a single character string literal preprocessing token that contains the spelling of
the preprocessing token sequence for the corresponding argument. Each occurrence of white space
between the argument’s preprocessing tokens becomes a single space character in the character
string literal. White space before the first preprocessing token and after the last preprocessing token
composing the argument is deleted. Otherwise, the original spelling of each preprocessing token in
the argument is retained in the character string literal, except for special handling for producing
the spelling of string literals and character constants: a \ character is inserted before each " and \
character of a character constant or string literal (including the delimiting " characters), except that
it is implementation-defined whether a \ character is inserted before the \ character beginning a
universal character name. If the replacement that results is not a valid character string literal, the
behavior is undefined. The character string literal corresponding to an empty argument is "". The
order of evaluation of # and ## operators is unspecified.

6.10.3.3 The ## operator
Constraints

A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for
either form of macro definition.

Semantics

If, in the replacement list of a function-like macro, a parameter is immediately preceded or followed
by a ## preprocessing token, the parameter is replaced by the corresponding argument’s preprocess-
ing token sequence; however, if an argument consists of no preprocessing tokens, the parameter is
replaced by a placemarker preprocessing token instead.!3%

For both object-like and function-like macro invocations, before the replacement list is reexamined
for more macro names to replace, each instance of a ## preprocessing token in the replacement list

183)Despite the name, a non-directive is a preprocessing directive.
188 Placemarker preprocessing tokens do not appear in the syntax because they are temporary entities that exist only within
translation phase 4.

140 Language §6.10.3.3

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

(not from an argument) is deleted and the preceding preprocessing token is concatenated with the
following preprocessing token. Placemarker preprocessing tokens are handled specially: concatena-
tion of two placemarkers results in a single placemarker preprocessing token, and concatenation
of a placemarker with a non-placemarker preprocessing token results in the non-placemarker pre-
processing token. If the result is not a valid preprocessing token, the behavior is undefined. The
resulting token is available for further macro replacement. The order of evaluation of ## operators is
unspecified.

EXAMPLE In the following fragment:

#define hash_hash # ## #

#define mkstr(a) # a

#define in_between(a) mkstr(a)

#define join(c, d) in_between(c hash_hash d)

char p[] = join(x, y); // equivalent to
// char pl[] = "x ## y";

The expansion produces, at various stages:

join(x, y)
in_between(x hash_hash vy)
in_between(x ## vy)

mkstr(x ## y)

"Xy

In other words, expanding hash_hash produces a new token, consisting of two adjacent sharp signs, but this new token is
not the ## operator.

6.10.3.4 Rescanning and further replacement

After all parameters in the replacement list have been substituted and # and ## processing has
taken place, all placemarker preprocessing tokens are removed. The resulting preprocessing token
sequence is then rescanned, along with all subsequent preprocessing tokens of the source file, for
more macro names to replace.

If the name of the macro being replaced is found during this scan of the replacement list (not
including the rest of the source file’s preprocessing tokens), it is not replaced. Furthermore, if any
nested replacements encounter the name of the macro being replaced, it is not replaced. These
nonreplaced macro name preprocessing tokens are no longer available for further replacement even
if they are later (re)examined in contexts in which that macro name preprocessing token would
otherwise have been replaced.

The resulting completely macro-replaced preprocessing token sequence is not processed as a prepro-
cessing directive even if it resembles one, but all pragma unary operator expressions within it are
then processed as specified in 6.10.9 below.

EXAMPLE There are cases where it is not clear whether a replacement is nested or not. For example, given the following
macro definitions:

#define f(a) axg
#define g(a) f(a)

the invocation

| £(2)(9)

could expand to either

\ 2% (9)

§6.10.34 Language 141

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

or

‘ 2x9%g

Strictly conforming programs are not permitted to depend on such unspecified behavior.

6.10.3.5 Scope of macro definitions

A macro definition lasts (independent of block structure) until a corresponding #undef directive is
encountered or (if none is encountered) until the end of the preprocessing translation unit. Macro
definitions have no significance after translation phase 4.

A preprocessing directive of the form
undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if the specified
identifier is not currently defined as a macro name.

EXAMPLE 1 The simplest use of this facility is to define a “manifest constant”, as in

#define TABSIZE 100

int table[TABSIZE];

EXAMPLE 2 The following defines a function-like macro whose value is the maximum of its arguments. It has the advantages
of working for any compatible types of the arguments and of generating in-line code without the overhead of function calling.
It has the disadvantages of evaluating one or the other of its arguments a second time (including side effects) and generating
more code than a function if invoked several times. It also cannot have its address taken, as it has none.

‘ #define max(a, b) ((a) > (b) ? (a): (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

EXAMPLE 3 To illustrate the rules for redefinition and reexamination, the sequence

#define x 3
#define f(a) f(x x (a))
#undef x

#define x 2
#define g f
#define z z[0]
#define h g(\~{ }
#define m(a) a(w)
#define w 0,1
#define t(a) a
#define p() int
#define q(x) x

#define r(x,y) x ## y
#define str(x) # x

f(y+l) + f(f(z)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h5) &m
(f)~m(m);
p() ila()]1 = { a(1), r(2,3), r(4,), r(,5), r(,) };
char c[2][6] = { str(hello), str() };

results in

f(2 x (y+1)) + f(2 = (f(2 x (z[0])))) % f(2
(2 = (2+(3,4)-0,1)) | f(2 x (\~{ } 5)) & f
int i[1 = { 1, 23, 4, 5, };

char c[2][6] = { "hello", "" };

(0)) + t(1);
*

*
(2 « (0,1))"m(0,1);

142 Language §6.10.3.5

6

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

EXAMPLE 4 To illustrate the rules for creating character string literals and concatenating tokens, the sequence

#define str(s) # s

#define xstr(s) str(s)

#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \
X ## s, x ## t)

#define INCFILE(n) vers ## n

#define glue(a, b) a ## b

#define xglue(a, b) glue(a, b)

#define HIGHLOW "hello"
#define LOW Low ", world"
debug(1, 2);

fputs(str(strncmp("abc\0d", "abc", ’'\4’) // this goes away
== 0) str(: @\n), s);

#include xstr(INCFILE(2).h)

glue(HIGH, LOW);

xglue(HIGH, LOW)

results in
printf(llxll Illll lI= O/Od, XII Il2l| II= Q/OSII' Xl, X2);
fputs(
Ilstrncmp(\llabc\\od\“, \Ilabc\II’ I\\4I) == OII II: @\nII’
s);
#include "vers2.h" (after macro replacement, before file access)
"hello";

"hello" ", world"

or, after concatenation of the character string literals,

printf("x1l= %d, x2= %s", x1, x2);

fputs(

"strncmp (\"abc\\0d\", \"abc\", '\\4’') == 0: @\n",

s);
#include "vers2.h" (after macro replacement, before file access)
"hello";

"hello, world"

Space around the # and ## tokens in the macro definition is optional.

EXAMPLE 5 To illustrate the rules for placemarker preprocessing tokens, the sequence

#define t(x,y,z) x ## y ## z
int j[] = { t(1,2,3), t(,4,5), t(6,,7), t(8,9,),
t(10,,), t(,11,), t(,,12), t(,,) };

results in

int j[]1 = { 123, 45, 67, 89,
10, 11, 12, };

EXAMPLE 6 To demonstrate the redefinition rules, the following sequence is valid.

#define OBJ_LIKE (1-1)
#define OBJ_LIKE /* white space */ (1-1) /*x other x/
#define FUNC_LIKE(a) (a)
#define FUNC_LIKE(a) (/* note the white space */ \
a /x other stuff on this line
*/)

But the following redefinitions are invalid:

§6.10.3.5 Language 143

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

#define OBJ_LIKE (0) // different token sequence
#define OBJ_LIKE (1 - 1) // different white space
#define FUNC_LIKE(b) (a) // different parameter usage
#define FUNC_LIKE(b) (b) // different parameter spelling

EXAMPLE 7 Finally, to show the variable argument list macro facilities:

#define debug(...) fprintf(stderr, _VA_ARGS__)
#define showlist(...) puts(#_VA_ARGS__)
#define report(test, ...) ((test)?puts(#test):\

printf(_VA_ARGS__))
debug("Flag");
debug ("X = %d\n", x);
showlist(The first, second, and third items.);
report(x>y, "x is %d but y is %d", x, y);

results in

fprintf(stderr, "Flag");
fprintf(stderr, "X = %d\n", x);
puts("The first, second, and third items.");
((x>y)?puts("x>y"):
printf("x is %d but y is %d", X, y));

6.10.4 Line control

Constraints
The string literal of a #line directive, if present, shall be a character string literal.

Semantics

The line number of the current source line is one greater than the number of new-line characters read
or introduced in translation phase 1 (5.1.1.2) while processing the source file to the current token.

If a preprocessing token (in particular __LINE__) spans two or more physical lines, it is unspecified
which of those line numbers is associated with that token. If a preprocessing directive spans
two_or more physical lines, it is unspecified which of those line numbers is associated with
the preprocessing directive. If a macro invocation spans multiple physical or logical lines, it is
unspecified which of those line numbers is associated with that invocation. The line number of
a preprocessing token is independent of the context (in particular, as a macro argument or in a
preprocessing directive). The line number of a__LINE__ in a macro body is the line number of the

A preprocessing directive of the form
#-# line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source
line that has a line number as specified by the digit sequence (interpreted as a decimal integer). The
digit sequence shall not specify zero, nor a number greater than 2147483647.

A preprocessing directive of the form

line digit-sequence " s-char-sequenceqp; "' new-line

sets the presumed line number similarly and changes the presumed name of the source file to be the
contents of the character string literal.

A preprocessing directive of the form
#-# line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after
line on the directive are processed just as in normal text (each identifier currently defined as a
macro name is replaced by its replacement list of preprocessing tokens). The directive resulting after

144 Language §6.10.4

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

all replacements shall match one of the two previous forms and is then processed as appropriate.'8)

Recommended practice
The line number associated with a pp-token should be the line number of the first character of the

-token. The line number associated with a preprocessing directive should be the line number of
the line with the first # token. The line number associated with a macro invocation should be the

line number of the first character of the macro name in the invocation.

6.10.5 Error directive

Semantics
A preprocessing directive of the form

error pp-tokens,p, new-line

causes the implementation to produce a diagnostic message that includes the specified sequence of
preprocessing tokens.

6.10.6 Pragma directive
Semantics
A preprocessing directive of the form

pragma pp-tokensops new-line

where the preprocessing token STBE-STDC does not immediately follow pragma in the directive
(prior to any macro replacement)'®) causes the implementation to behave in an implementation-
defined manner. The behavior might cause translation to fail or cause the translator or the resulting
program to behave in a non-conforming manner. Any such pragma that is not recognized by the
implementation is ignored.

If the preprocessing token STDC does immediately follow pragma in the directive (prior to any macro
replacement), then no macro replacement is performed on the directive, and the directive shall have
one of the following forms'®” whose meanings are described elsewhere:

#:standard-pragma:
pragma STDC FP_CONTRACT on-off-switch

#-# pragma STDC FENV_ACCESS on-off-switch

+#-# pragma STDC FENV_DEC_ROUND direction

pragma STDC FENV_ROUND dec-direction
pragma STDC CX_LIMITED_RANGE On—oﬁ—switch

on-off-switch: one of
ON—OFF— DEFAULTON ___ OFF___ DEFAULT

direction: one of
FE_DOWNWARD __ FE_TONEAREST __ FE_TONEARESTFROMZERO
FE_TOWARDZERO___ FE_UPWARD ___ FE_DYNAMIC

dec-direction: one of
FE_DEC_DOWNWARD __ FE_DEC_TONEAREST ___FE_DEC_TONEARESTFROMZERO
FE_DEC_TOWARDZERO __ FE_DEC_UPWARD ___FE_DEC_DYNAMIC

185)Because a new-line is explicitly included as part of the #line directive, the number of new-line characters read while
processing to the first pp-token can be different depending on whether or not the implementation uses a one-pass preprocessor.
Therefore, there are two possible values for the line number following a directive of the form #line __LINE__ new-line.

189) An implementation is not required to perform macro replacement in pragmas, but it is permitted except for in standard
pragmas (where STDC immediately follows pragma). If the result of macro replacement in a non-standard pragma has the
same form as a standard pragma, the behavior is still implementation-defined; an implementation is permitted to behave as
if it were the standard pragma, but is not required to.

187)See “future language directions” (6.11.8).

§6.10.6 Language 145

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

Forward references: the FP_CONTRACT pragma (7.12.2), the FENV_ACCESS pragma
(7.6.1), the FENV_DEC_ROUND pragma (7.6.3), the FENV_ROUND pragma (7.6.2), the
CX_LIMITED_RANGE pragma (7.3.4).

6.10.7 Null directive

Semantics
A preprocessing directive of the form

#-# new-line

has no effect.

6.10.8 Predefined macro names

The values of the predefined macros listed in the following subclauses!®® (except for —_FILE__ and
—LINE__) remain constant throughout the translation unit.

None of these macro names, nor the identifier defined, shall be the subject of a #define or a #undef
preprocessing directive. Any other predefined macro names shall begin with a leading underscore
followed by an uppercase letter or a second underscore.

The implementation shall not predefine the macro __cplusplus, nor shall it define it in any standard
header.

Forward references: standard headers (7.1.2).

6.10.8.1 Mandatory macros
The following macro names shall be defined by the implementation:

189)Gee “future language directions” (6.11.9).

146 Language §6.10.8.1

2434 C17..

—DATE__

—FILE—

—LINE__

—STDC__

C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

The date of translation of the preprocessing translation unit: a character string literal of
the form "Mmm dd yyyy", where the names of the months are the same as those generated
by the asctime function, and the first character of dd is a space character if the value is
less than 10. If the date of translation is not available, an implementation-defined valid
date shall be supplied.

The presumed name of the current source file (a character string literal).!8"

The presumed line number (within the current source file) of the current source line (an
integer constant).!%”

The integer constant 1, intended to indicate a conforming implementation.

—STDC_HOSTED__ The integer constant 1 if the implementation is a hosted implementation or the

integer constant 0 if it is not.

—STDE-VERSION— __STDC_VERSd@Meger constant yyyymmL.'%")

—TIME__

The time of translation of the preprocessing translation unit: a character string literal of
the form "hh:mm:ss" as in the time generated by the asctime function. If the time of
translation is not available, an implementation-defined valid time shall be supplied.

Forward references: the asctime function (7.27.3.1).

6.10.8.2 Environment macros

1 The following macro names are conditionally defined by the implementation:

—STDC_IS0_10646__ An integer constant of the form yyyymmL (for example, 199712L). If this

symbol is defined, then every character in the Unicode required set, when stored in an
object of type wchar_t, has the same value as the short identifier of that character. The
Unicode required set consists of all the characters that are defined by ISO/IEC 10646, along
with all amendments and technical corrigenda, as of the specified year and month. If
some other encoding is used, the macro shall not be defined and the actual encoding
used is implementation-defined.

—STDCMB_MIGHT_NEQ_WC_— __STDC_MBIMEGHTedE(Q-diGtant 1, intended to indicate that, in the encoding for

wchar_t, a member of the basic character set need not have a code value equal to its
value when used as the lone character in an integer character constant.

—STDC_UTF_16_ The integer constant 1, intended to indicate that values of type char16_t are

UTF-16 encoded. If some other encoding is used, the macro shall not be defined and the
actual encoding used is implementation-defined.

—STDC_UTF_32__ The integer constant 1, intended to indicate that values of type char32_t are

UTF-32 encoded. If some other encoding is used, the macro shall not be defined and the
actual encoding used is implementation-defined.

Forward references: common definitions (7.19), unicode utilities (7.28).

6.10.8.3 Conditional feature macros

1 The following macro names are conditionally defined by the implementation:

—STDC_ANALYZABLE__ The integer constant 1, intended to indicate conformance to the specifica-

tions in Annex L (Analyzability).

—STDC_IEC_60559_BFP__ The integer constant mmL, intended to indicate conformance to

Annex F (IEC 60559 binary floating-point arithmetic).

189)The presumed source file name and line number can be changed by the #line directive.

190,

)See Annex M for the values in previous revisions. The intention is that this will remain an integer constant of type

long int that is increased with each revision of this document.

§6.10.8.3

Language 147

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

—STDC_IEC_559__ The integer constant 1, intended to indicate conformance to the specifications
in Annex F (IEC 60559 floating-point arithmetic). Use of this macro is an obsolescent
feature.

—STDC_IEC_60559_DFP__ The integer constant yyyymnL, intended to indicate support of decimal

floating types and conformance to Annex F for IEC 60559 decimal floating-point

—STDC_IEC_60559_COMPLEX__ The integer constant mmL, intended to indicate conformance
to the specifications in Annex G (IEC 60559 compatible complex arithmetic).

—STDC_IEC_559_COMPLEX__ The integer constant 1, intended to indicate adherence to the specifi-
cations in Annex G (IEC 60559 compatible complex arithmetic). Use of this macro is an
obsolescent feature.

—STDC_LIB_EXT1__ The integer constant yyyymmL, intended to indicate support for the extensions
defined in Annex K (Bounds-checking interfaces).!*?

—STDC_NO_ATOMICS__ The integer constant 1, intended to indicate that the implementation does
not support atomic types (including the _Atomic type qualifier) and the <stdatomic.h>
header.

—STDC_NO_COMPLEX__ The integer constant 1, intended to indicate that the implementation does
not support complex types or the <complex.h> header.

—STDC_NO_THREADS__ The integer constant 1, intended to indicate that the implementation does
not support the <threads . h> header.

—STDC_NO_VLA__ The integer constant 1, intended to indicate that the implementation does not
support variable length arrays or variably modified types.

An implementation that defines__STDC_NO_COMPLEX__ shall not define__STDC_IEC_60559_COMPLEX__
or _STDC_IEC_559_COMPLEX _.

6.10.9 Pragma operator

Semantics
A unary operator expression of the form:

—Pragma (string-literal)

is processed as follows: The string literal is destringized by deleting any encoding prefix, deleting
the leading and trailing double-quotes, replacing each escape sequence \" by a double-quote, and
replacing each escape sequence \\ by a single backslash. The resulting sequence of characters
is processed through translation phase 3 to produce preprocessing tokens that are executed as if
they were the pp-tokens in a pragma directive. The original four preprocessing tokens in the unary
operator expression are removed.
EXAMPLE A directive of the form:

[]

\ #pragma listing on "..\listing.dir" \
L |

can also be expressed as:

i —Pragma ("listing on \"..\\listing.dir\"") ‘

The latter form is processed in the same way whether it appears literally as shown, or results from macro replacement, as in:

#define LISTING(x) PRAGMA(listing on #Xx)
#define PRAGMA(x) _Pragma (#x)

LISTING (..\listing.dir)

19DThe intention is that this will remain an integer constant of type long int that is increased with each revision of this
document.

148 Language §6.10.9

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

6.11 Future language directions
6.11.1 Floating types

Future standardization may include additional floating-point types, including those with greater
range, precision, or both than long double.

6.11.2 Linkages of identifiers

Declaring an identifier with internal linkage at file scope without the static storage-class specifier
is an obsolescent feature.

6.11.3 External names

Restriction of the significance of an external name to fewer than 255 characters (considering each
universal character name or extended source character as a single character) is an obsolescent feature
that is a concession to existing implementations.

6.11.4 Character escape sequences

Lowercase letters as escape sequences are reserved for future standardization. Other characters may
be used in extensions.

6.11.5 Storage-class specifiers

The placement of a storage-class specifier other than at the beginning of the declaration specifiers in
a declaration is an obsolescent feature.

6.11.6 Function declarators

The use of function declarators with empty parentheses (not prototype-format parameter type
declarators) is an obsolescent feature.

6.11.7 Function definitions

The use of function definitions with separate parameter identifier and declaration lists (not prototype-
format parameter type and identifier declarators) is an obsolescent feature.

6.11.8 Pragma directives
Pragmas whose first preprocessing token is STDC are reserved for future standardization.

6.11.9 Predefined macro names
Macro names beginning with __STDC_ are reserved for future standardization.

Uses of the __STDC_TEC_559__ and __STDC_IEC._559_COMPLEX__ macros are obsolescent features.

§6.11.9 Language 149

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

7. Library

7.1 Introduction

7.1.1 Definitions of terms

A string is a contiguous sequence of characters terminated by and including the first null character.
The term multibyte string is sometimes used instead to emphasize special processing given to
multibyte characters contained in the string or to avoid confusion with a wide string. A pointer to
a string is a pointer to its initial (lowest addressed) character. The length of a string is the number
of bytes preceding the null character and the value of a string is the sequence of the values of the
contained characters, in order.

The decimal-point character is the character used by functions that convert floating-point numbers
to or from character sequences to denote the beginning of the fractional part of such character
sequences.!?? It is represented in the text and examples by a period, but may be changed by the
setlocale function.

A null wide character is a wide character with code value zero.

A wide string is a contiguous sequence of wide characters terminated by and including the first null
wide character. A pointer to a wide string is a pointer to its initial (lowest addressed) wide character.
The length of a wide string is the number of wide characters preceding the null wide character and the
value of a wide string is the sequence of code values of the contained wide characters, in order.

A shift sequence is a contiguous sequence of bytes within a multibyte string that (potentially)
causes a change in shift state (see 5.2.1.2). A shift sequence shall not have a corresponding wide
character; it is instead taken to be an adjunct to an adjacent multibyte character.'®® In this

clause, references to “white-space character” refer to (execution) white-space character as defined b
isspace. References to “white-space wide character” refer to (execution) white-space wide character
as defined by iswspace.

Forward references: character handling (7.4), the setlocale function (7.11.1.1).

7.1.2 Standard headers

Each library function is declared, with a type that includes a prototype, in a header,'” whose contents
are made available by the #include preprocessing directive. The header declares a set of related
functions, plus any necessary types and additional macros needed to facilitate their use. In addition
to the provisions given in this clause, an implementation that defines __STDC_LIB_EXT1__ shall
conform to the specifications in Annex K and Subclause K.3 should be read as if it were merged into
the parallel structure of named subclauses of this clause. Declarations of types described here or in
Annex K shall not include type qualifiers, unless explicitly stated otherwise.

194

An implementation that does not support decimal floating types (6.10.8.3) need not support
interfaces or aspects of interfaces that are specific to these types.

The standard headers are!®”

<assert.h> <errno.h> <inttypes.h>
<complex.h> <fenv.h> <is0646.h>
<ctype.h> <float.h> <limits.h>

192)The functions that make use of the decimal-point character are the numeric conversion functions (7.22.1, 7.29.4.1) and the
formatted input/output functions (7.21.6, 7.29.2).

199)For state-dependent encodings, the values for MB_CUR_MAX and MB_LEN_MAX are thus required to be large enough to
count all the bytes in any complete multibyte character plus at least one adjacent shift sequence of maximum length. Whether
these counts provide for more than one shift sequence is the implementation’s choice.

199 A header is not necessarily a source file, nor are the< and > delimited sequences in header names necessarily valid source
file names.

195)The headers <complex.h>, <stdatomic.h>, and <threads.h> are conditional features that implementations need not
support; see 6.10.8.3.

150 Library §7.1.2

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)
<locale.h> <stdbool. h> <tgmath.h>

<math.h> <stddef.h> <threads.h>

<setjmp.h> <stdint.h> <time.h>

<signal.h> <stdio.h> <uchar.h>

<stdalign.h> <stdlib.h> <wchar.h>

<stdarg.h> <stdnoreturn.h> <wctype.h>

<stdatomic.h>

<string.h>

If a file with the same name as one of the above < and > delimited sequences, not provided as part of
the implementation, is placed in any of the standard places that are searched for included source
files, the behavior is undefined.

Standard headers may be included in any order; each may be included more than once in a given
scope, with no effect different from being included only once, except that the effect of including

<assert.h>depends on the definition of NDEBUG (see 7.2). If used, a header shall be included outside
of any external declaration or definition, and it shall first be included before the first reference to
any of the functions or objects it declares, or to any of the types or macros it defines. However, if
an identifier is declared or defined in more than one header, the second and subsequent associated
headers may be included after the initial reference to the identifier. The program shall not have any
macros with names lexically identical to keywords currently defined prior to the inclusion of the
header or when any macro defined in the header is expanded.

Some standard headers define or declare identifiers that had not been present in previous versions
of this document. To allow implementations and users to adapt to that situation, they also define a
version macro for feature test of the form __STDC_VERSION_XXXX_H__ which expands to yyyymmL,
where XXXX is the all-caps spelling of the corresponding header <xxxx.h>.

Any definition of an object-like macro described in this clause or Annex K shall expand to code that
is fully protected by parentheses where necessary, so that it groups in an arbitrary expression as if it
were a single identifier.

Any declaration of a library function shall have external linkage.
A summary of the contents of the standard headers is given in Annex B.

Forward references: diagnostics (7.2).

7.1.3 Reserved identifiers

Each header declares or defines all identifiers listed in its associated subclause, and optionally
declares or defines identifiers listed in its associated future library directions subclause and identifiers
which are always reserved either for any use or for use as file scope identifiers.

— All identifiers that begin with an underscore and either an uppercase letter or another under-
score are always reserved for any use, except those identifiers which are lexically identical to
keywords.!%)

— All identifiers that begin with an underscore are always reserved for use as identifiers with file
scope in both the ordinary and tag name spaces.

— Each macro name in any of the following subclauses (including the future library directions)
is reserved for use as specified if any of its associated headers is included; unless explicitly
stated otherwise (see 7.1.4).

— All identifiers with external linkage in any of the following subclauses (including the future
library directions) and errno are always reserved for use as identifiers with external linkage.!*”

— Each identifier with file scope listed in any of the following subclauses (including the future
library directions) is reserved for use as a macro name and as an identifier with file scope in
the same name space if any of its associated headers is included.

196) Allowss identifiers spelled with a leading underscore followed by an uppercase letter that match the spelling of a keyword
to be used as macro names by the program.
197)The list of reserved identifiers with external linkage includes math_errhandling, setjmp, va_copy, and va_end.

§7.13 Library 151

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

No other identifiers are reserved. If the program declares or defines an identifier in a context in
which it is reserved (other than as allowed by7Z+4 7.1.4), or defines a reserved identifier or attribute
token described in 6.7.11.1 as a macro name, the behavior is undefined.

If the program removes (with #undef) any macro definition of an identifier in the first group listed
above or attribute token described in 6.7.11.1, the behavior is undefined.

7.1.4 Use of library functions

Each of the following statements applies unless explicitly stated otherwise in the detailed descrip-
tions that follow:

— If an argument to a function has an invalid value (such as a value outside the domain of the
function, or a pointer outside the address space of the program, or a null pointer, or a pointer
to non-modifiable storage when the corresponding parameter is not const-qualified) or a type
(after default argument promotion) not expected by a function with a variable number of
arguments, the behavior is undefined.

— If a function argument is described as being an array, the pointer actually passed to the function
shall have a value such that all address computations and accesses to objects (that would be
valid if the pointer did point to the first element of such an array) are in fact valid.

— Any function declared in a header may be additionally implemented as a function-like macro
defined in the header, so if a library function is declared explicitly when its header is included,
one of the techniques shown below can be used to ensure the declaration is not affected by
such a macro. Any macro definition of a function can be suppressed locally by enclosing
the name of the function in parentheses, because the name is then not followed by the left
parenthesis that indicates expansion of a macro function name. For the same syntactic reason,
it is permitted to take the address of a library function even if it is also defined as a macro.!®
The use of #undef to remove any macro definition will also ensure that an actual function is
referred to.

— Any invocation of a library function that is implemented as a macro shall expand to code that
evaluates each of its arguments exactly once, fully protected by parentheses where necessary,
so it is generally safe to use arbitrary expressions as arguments.'*”

— Likewise, those function-like macros described in the following subclauses may be invoked in
an expression anywhere a function with a compatible return type could be called.???

— All object-like macros listed as expanding to integer constant expressions shall additionally be
suitable for use in #if preprocessing directives.

Provided that a library function can be declared without reference to any type defined in a header, it
is also permissible to declare the function and use it without including its associated header.

There is a sequence point immediately before a library function returns.

198)This means that an implementation is required to provide an actual function for each library function, even if it also
provides a macro for that function.

199)Such macros might not contain the sequence points that the corresponding function calls do.

200)Because external identifiers and some macro names beginning with an underscore are reserved, implementations can
provide special semantics for such names. For example, the identifier _BUILTIN_abs could be used to indicate generation of
in-line code for the abs function. Thus, the appropriate header could specify

#define abs(x) _BUILTIN_abs(x)

for a compiler whose code generator will accept it.
In this manner, a user desiring to guarantee that a given library function such as abs will be a genuine function can write

#undef abs

whether the implementation’s header provides a macro implementation of abs or a built-in implementation. The prototype
for the function, which precedes and is hidden by any macro definition, is thereby revealed also.

152 Library §7.14

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

The functions in the standard library are not guaranteed to be reentrant and may modify objects
with static or thread storage duration.?V

Unless explicitly stated otherwise in the detailed descriptions that follow, library functions shall
prevent data races as follows: A library function shall not directly or indirectly access objects
accessible by threads other than the current thread unless the objects are accessed directly or
indirectly via the function’s arguments. A library function shall not directly or indirectly modify
objects accessible by threads other than the current thread unless the objects are accessed directly
or indirectly via the function’s non-const arguments.?’” Implementations may share their own
internal objects between threads if the objects are not visible to users and are protected against data
races.

Unless otherwise specified, library functions shall perform all operations solely within the current
thread if those operations have effects that are visible to users.?’®

EXAMPLE The function atoi can be used in any of several ways:

— Dby use of its associated header (possibly generating a macro expansion)

#include <stdlib.h>
const char xstr;

/*x ... %/

i = atoi(str);

— by use of its associated header (assuredly generating a true function reference)

#include <stdlib.h>
#undef atoi

const char xstr;

/*x ... %/

i = atoi(str);

#include <stdlib.h>
const char xstr;

/* ... %/

i = (atoi)(str);

— by explicit declaration

extern int atoi(const char x);
const char xstr;

/* ... x/

i = atoi(str);

20D Thus, a signal handler cannot, in general, call standard library functions.

202)This means, for example, that an implementation is not permitted to use a static object for internal purposes without
synchronization because it could cause a data race even in programs that do not explicitly share objects between threads.
Similarly, an implementation of memcpy is not permitted to copy bytes beyond the specified length of the destination object
and then restore the original values because it could cause a data race if the program shared those bytes between threads.
203)This allows implementations to parallelize operations if there are no visible side effects.

§7.14 Library 153

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

7.2 Diagnostics <assert.h>

The header <assert.h> defines the assert-assert and static_assert macros and refers to an-
other macro,

\ NDEBUG

which is not defined by <assert.h>. If NDEBUG is defined as a macro name at the point in the source
file where <assert.h>is included, the assert macro is defined simply as

\ #define assert(ignore) ((void)0)

The assert macro is redefined according to the current state of NDEBUG each time that <assert.h>
is included.

The assert macro shall be implemented as a macro, not as an actual function. If the macro definition
is suppressed in order to access an actual function, the behavior is undefined.

The macro

\ static_assert

expands to _Static_assert.

7.2.1 Program diagnostics
7.2.1.1 The assert macro
Synopsis

#include <assert.h>
void assert(scalar expression);

Description

The assert macro puts diagnostic tests into programs; it expands to a void expression. When it
is executed, if expression (which shall have a scalar type) is false (that is, compares equal to 0),
the assert macro writes information about the particular call that failed (including the text of the
argument, the name of the source file, the source line number, and the name of the enclosing function
— the latter are respectively the values of the preprocessing macros —FILE__ and __LINE__ and of
the identifier __func__) on the standard error stream in an implementation-defined format.?® Tt
then calls the abort function.

Returns

The assert macro returns no value.

Forward references: the abort function (7.22.4.1).

209)The message written might be of the form:

[
Assertion failed: expression, function abc, file xyz, line nnn.
L

154 Library §7.21.1

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

7.3 Complex arithmetic <complex.h>

7.3.1 Introduction

The header <complex . h> defines macros and declares functions that support complex arithmetic.?%
Implementations that define the macro __STDC_NO_COMPLEX__ need not provide this header nor
support any of its facilities.

Each synopsis, other than for the CMPLX macros, specifies a family of functions consisting of a princi-
pal function with one or more double complex parameters and a double complex or double return
value; and other functions with the same name but with f and 1 suffixes which are corresponding
functions with float and long double parameters and return values.

The macro

\ complex

expands to _Complex; the macro

i —Complex_I i

expands to a constant expression of type const float _Complex, with the value of the imaginary
unit.2%)

The macros

\ imaginary

\ _Imaginary_I \

are defined if and only if the implementation supports imaginary types;?™” if defined, they expand
to_Imaginary and a constant expression of type const float _Imaginary with the value of the
imaginary unit.

The macro

| I |

expands to either _Imaginary_I or _Complex_I. If _Imaginary_I is not defined, I shall expand to
—Complex_I.

Notwithstanding the provisions of 7.1.3, a program may undefine and perhaps then redefine the
macros complex, imaginary, and I.

Forward references: the CMPLX macros (7.3.9.3), IEC 60559-compatible complex arithmetic (An-
nex G).

7.3.2 Conventions

Values are interpreted as radians, not degrees. An implementation may set errno but is not required
to.

7.3.3 Branch cuts

Some of the functions below have branch cuts, across which the function is discontinuous. For
implementations with a signed zero (including all IEC 60559 implementations) that follow the
specifications of Annex G, the sign of zero distinguishes one side of a cut from another so the
function is continuous (except for format limitations) as the cut is approached from either side. For

205)GSee “future library directions” (7.31.1).
200)The imaginary unit is a number i such that i = —1.
207) A specification for imaginary types is in Annex G.

§7.33 Library 155

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

example, for the square root function, which has a branch cut along the negative real axis, the top of
the cut, with imaginary part+0, maps to the positive imaginary axis, and the bottom of the cut, with
imaginary part-0 , maps to the negative imaginary axis.

Implementations that do not support a signed zero (see Annex F) cannot distinguish the sides of
branch cuts. These implementations shall map a cut so the function is continuous as the cut is
approached coming around the finite endpoint of the cut in a counter clockwise direction. (Branch
cuts for the functions specified here have just one finite endpoint.) For example, for the square root
function, coming counter clockwise around the finite endpoint of the cut along the negative real axis
approaches the cut from above, so the cut maps to the positive imaginary axis.

7.34 The CX_LIMITED_RANGE pragma
Synepsisreplace Synopsis

#include <complex.h>
#pragma STDC CX_LIMITED_RANGE on-off-switch

Description

The usual mathematical formulas for complex multiply, divide, and absolute value are problem-
atic because of their treatment of infinities and because of undue overflow and underflow. The
CX_LIMITED_RANGE pragma can be used to inform the implementation that (where the state is “on”)
the usual mathematical formulas are acceptable.?’® The pragma can occur either outside external
declarations or preceding all explicit declarations and statements inside a compound statement.
When outside external declarations, the pragma takes effect from its occurrence until another
CX_LIMITED_RANGE pragma is encountered, or until the end of the translation unit. When inside a
compound statement, the pragma takes effect from its occurrence until another CX_LIMITED_RANGE
pragma is encountered (including within a nested compound statement), or until the end of the
compound statement; at the end of a compound statement the state for the pragma is restored to
its condition just before the compound statement. If this pragma is used in any other context, the
behavior is undefined. The default state for the pragma is “off”.

7.3.5 Trigonometric functions

7.3.5.1 The cacos functions

Syneopsisreplace Synopsis

#include <complex.h>

double complex cacos(double complex z);

float complex cacosf(float complex z);

long double complex cacosl(long double complex z);

Description

The cacos functions compute the complex arc cosine of z, with branch cuts outside the interval
[—1, +1] along the real axis.

Returns

The cacos functions return the complex arc cosine value, in the range of a strip mathematically
unbounded along the imaginary axis and in the interval [0, 7] along the real axis.

208)The purpose of the pragma is to allow the implementation to use the formulas:

(z + iy) X (u+ iv) (zu — yv) + i(yu + zv)
(+iy) /(utiv) = [(@utyo)+iyu—w0)]/(@® + %)

oty = Va®iy?

where the programmer can determine they are safe.

156 Library §73.5.1

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

7.3.5.2 The casin functions

Synopsisreplace Synopsis

#include <complex.h>

double complex casin(double complex z);

float complex casinf(float complex z);

long double complex casinl(long double complex z);

Description

The casin functions compute the complex arc sine of z, with branch cuts outside the interval
[—1,+1] along the real axis.

Returns

The casin functions return the complex arc sine value, in the range of a strip mathematically
unbounded along the imaginary axis and in the interval {—#/2;—+#/2}-[— 7, - 7] along the real axis.

7.3.5.3 The catan functions

Synopsisreplace Synopsis

#include <complex.h>

double complex catan(double complex z);

float complex catanf(float complex z);

long double complex catanl(long double complex z);

Description

The catan functions compute the complex arc tangent of z, with branch cuts outside the interval
[—1, +1] along the imaginary axis.

Returns

The catan functions return the complex arc tangent value, in the range of a strip mathematically
unbounded along the imaginary axis and in the interval {—/2;—+#/2}-[— 7, - 7] along the real axis.

7.3.5.4 The ccos functions

Synoepsisreplace Synopsis

#include <complex.h>

double complex ccos(double complex z);

float complex ccosf(float complex z);

long double complex ccosl(long double complex z);

Description
The ccos functions compute the complex cosine of z.

Returns
The ccos functions return the complex cosine value.

7.3.5.5 The csin functions

Synepsistreplace Synopsis

#include <complex.h>

double complex csin(double complex z);

float complex csinf(float complex z);

long double complex csinl(long double complex z);

Description
The csin functions compute the complex sine of z.

Returns
The csin functions return the complex sine value.

§7.3.55 Library 157

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

7.3.5.6 The ctan functions
Synopsisreplace Synopsis

#include <complex.h>

double complex ctan(double complex z);

float complex ctanf(float complex z);

long double complex ctanl(long double complex z);

Description
The ctan functions compute the complex tangent of z.

Returns
The ctan functions return the complex tangent value.

7.3.6 Hyperbolic functions

7.3.6.1 The cacosh functions

Synopsisreplace Synopsis

#include <complex.h>

double complex cacosh(double complex z);

float complex cacoshf(float complex z);

long double complex cacoshl(long double complex z);

Description

The cacosh functions compute the complex arc hyperbolic cosine of z, with a branch cut at values
less than 1 along the real axis.

Returns

The cacosh functions return the complex arc hyperbolic cosine value, in the range of a half-strip of
nonnegative values along the real axis and in the interval [—im, +in] along the imaginary axis.
7.3.6.2 The casinh functions

Synopsisreplace Synopsis

#include <complex.h>

double complex casinh(double complex z);

float complex casinhf(float complex z);

long double complex casinhl(long double complex z);

Description

The casinh functions compute the complex arc hyperbolic sine of z, with branch cuts outside the
interval [—i, +i] along the imaginary axis.

Returns

The casinh functions return the complex arc hyperbolic sine value, in the range of a strip math-
ematically unbounded along the real axis and in the interval {—iw/2;—+iw/2}-[— T, +- 7] along the
imaginary axis.

7.3.6.3 The catanh functions

Synopsisreplace Synopsis

#include <complex.h>

double complex catanh(double complex z);

float complex catanhf(float complex z);

long double complex catanhl(long double complex z);

Description

The catanh functions compute the complex arc hyperbolic tangent of z, with branch cuts outside
the interval [—1, +1] along the real axis.

158 Library §7.3.6.3

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Returns

The catanh functions return the complex arc hyperbolic tangent value, in the range of a strip
mathematically unbounded along the real axis and in the interval {—iw/2;+iw/2}-[- T, 7] along
the imaginary axis.

7.3.6.4 The ccosh functions

Synepsisreptace Synopsis

#include <complex.h>

double complex ccosh(double complex z);

float complex ccoshf(float complex z);

long double complex ccoshl(long double complex z);

Description
The ccosh functions compute the complex hyperbolic cosine of z.

Returns
The ccosh functions return the complex hyperbolic cosine value.

7.3.6.5 The csinh functions
Synepsisreplace Synopsis

#include <complex.h>

double complex csinh(double complex z);

float complex csinhf(float complex z);

long double complex csinhl(long double complex z);

Description
The c¢sinh functions compute the complex hyperbolic sine of z.

Returns
The csinh functions return the complex hyperbolic sine value.

7.3.6.6 The ctanh functions
Synoepsisreplace Synopsis

#include <complex.h>

double complex ctanh(double complex z);

float complex ctanhf(float complex z);

long double complex ctanhl(long double complex z);

Description
The ctanh functions compute the complex hyperbolic tangent of z.

Returns
The ctanh functions return the complex hyperbolic tangent value.

7.3.7 Exponential and logarithmic functions

7.3.7.1 The cexp functions
Synepsistreplace Synopsis

#include <complex.h>

double complex cexp(double complex z);

float complex cexpf(float complex z);

long double complex cexpl(long double complex z);

Description
The cexp functions compute the complex base-e exponential of z.

§73.71 Library 159

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

Returns
The cexp functions return the complex base-e exponential value.

7.3.7.2 The clog functions
Synepsisreplace Synopsis

#include <complex.h>

double complex clog(double complex z);

float complex clogf(float complex z);

long double complex clogl(long double complex z);

Description

The clog functions compute the complex natural (base-e) logarithm of z, with a branch cut along
the negative real axis.

Returns

The clog functions return the complex natural logarithm value, in the range of a strip mathematically
unbounded along the real axis and in the interval [—im, +-in] along the imaginary axis.

7.3.8 Power and absolute-value functions
7.3.8.1 The cabs functions
Synopsisreplace Synopsis

#include <complex.h>

double cabs(double complex z);

float cabsf(float complex z);

long double cabsl(long double complex z);

Description

The cabs functions compute the complex absolute value (also called norm, modulus, or magnitude)
of z.

Returns

The cabs functions return the complex absolute value.

7.3.8.2 The cpow functions
Synopsisreplace Synopsis

#include <complex.h>

double complex cpow(double complex x, double complex y);

float complex cpowf(float complex x, float complex y);

long double complex cpowl(long double complex x, long double complex y);

Description

The cpow functions compute the complex power function x¥, with a branch cut for the first parameter
along the negative real axis.

Returns
The cpow functions return the complex power function value.

160 Library §7.3.8.2

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

7.3.8.3 The csqrt functions
Synoepsisreplace Synopsis

#include <complex.h>

double complex csqrt(double complex z);

float complex csqrtf(float complex z);

long double complex csqrtl(long double complex z);

Description

The csqrt functions compute the complex square root of z, with a branch cut along the negative
real axis.

Returns

The csqrt functions return the complex square root value, in the range of the right half-plane
(including the imaginary axis).

7.3.9 Manipulation functions

7.3.9.1 The carg functions
Synopsisreplace Synopsis

#include <complex.h>

double carg(double complex z);

float cargf(float complex z);

long double cargl(long double complex z);

Description

The carg functions compute the argument (also called phase angle) of z, with a branch cut along
the negative real axis.

Returns
The carg functions return the value of the argument in the interval [—7, +7].

7.3.9.2 The cimag functions
Synepsistreplace Synopsis

#include <complex.h>

double cimag(double complex z);

float cimagf(float complex z);

long double cimagl(long double complex z);

Description

The cimag functions compute the imaginary part of z.2%%)

Returns
The cimag functions return the imaginary part value (as a real).

7.3.9.3 The CMPLX macros
Synepsistreplace Synopsis

#include <complex.h>

double complex CMPLX(double x, double y);

float complex CMPLXF(float x, float y);

long double complex CMPLXL(long double x, long double y);

Description

The CMPLX macros expand to an expression of the specified complex type, with the real part having
the (converted) value of x and the imaginary part having the (converted) value of y. The resulting

209For a variable z of complex type, z == creal(z)+cimag(z)*I.

§7.3.9.3 Library 161

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

expression shall be suitable for use as an initializer for an object with static or thread storage duration,
provided both arguments are likewise suitable.

Returns
The CMPLX macros return the complex value x + 7y.

NOTE These macros act as if the implementation supported imaginary types and the definitions were:

#define CMPLX(x, y) ((double complex) ((double)(x) + \
—Imaginary_I * (double)(y)))

#define CMPLXF(x, y) ((float complex) ((float) (x) + \
—Imaginary_I * (float)(y)))

#define CMPLXL(x, y) ((long double complex) ((long double)(x) + \
_Imaginary_I * (long double)(y)))

7.3.9.4 The conj functions
Synopsisreplace Synopsis

#include <complex.h>

double complex conj(double complex z);

float complex conjf(float complex z);

long double complex conjl(long double complex z);

Description
The conj functions compute the complex conjugate of z, by reversing the sign of its imaginary part.

Returns

The conj functions return the complex conjugate value.

7.3.9.5 The cproj functions
Synopsisreplace Synopsis

#include <complex.h>

double complex cproj(double complex z);

float complex cprojf(float complex z);

long double complex cprojl(long double complex z);

Description

The cproj functions compute a projection of z onto the Riemann sphere: z projects to z except that
all complex infinities (even those with one infinite part and one NaN part) project to positive infinity
on the real axis. If z has an infinite part, then cproj (z) is equivalent to

\ INFINITY + I * copysign(0.0, cimag(z))

Returns

The cproj functions return the value of the projection onto the Riemann sphere.

7.3.9.6 The creal functions
Synopsisreplace Synopsis

#include <complex.h>

double creal(double complex z);

float crealf(float complex z);

long double creall(long double complex z);

Description
The creal functions compute the real part of z.21%
210)For a variable z of complex type, z == creal(z)+cimag(z)=I.

162 Library §7.3.9.6

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Returns
3 The creal functions return the real part value.

§7.3.9.6 Library 163

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

7.4 Character handling <ctype.h>

The header <ctype. h> declares several functions useful for classifying and mapping characters.?!!)

In all cases the argument is an int, the value of which shall be representable as an unsigned char
or shall equal the value of the macro EOF. If the argument has any other value, the behavior is
undefined.

The behavior of these functions is affected by the current locale. Those functions that have locale-
specific aspects only when not in the "C" locale are noted below.

The term printing character refers to a member of a locale-specific set of characters, each of which
occupies one printing position on a display device; the term control character refers to a member of a
locale-specific set of characters that are not printing characters.!? All letters and digits are printing
characters.

Forward references: EOF (7.21.1), localization (7.11).

7.4.1 Character classification functions

The functions in this subclause return nonzero (true) if and only if the value of the argument c
conforms to that in the description of the function.

7.4.1.1 The isalnum function
Synopsis

#include <ctype.h>
int isalnum(int c);

Description
The isalnum function tests for any character for which isalpha or isdigit is true.

7.4.1.2 The isalpha function
Synopsis

#include <ctype.h>
int isalpha(int c);

Description

The isalpha function tests for any character for which isupper or islower is true, or any character
that is one of a locale-specific set of alphabetic characters for which none of iscntrl, isdigit,
ispunct, or isspace is true.”!® In the "C" locale, isalpha returns true only for the characters for
which isupper or islower is true.

7.4.1.3 The isblank function
Synopsis

#include <ctype.h>
int isblank(int c);

Description

The isblank function tests for any character that is a standard blank character or is one of a locale-
specific set of characters for which isspace is true and that is used to separate words within a line
of text. The standard blank characters are the following: space (' '), and horizontal tab ('\t"). In
the "C" locale, ishlank returns true only for the standard blank characters.

21 See “future library directions” (7.31.2).

212)In an implementation that uses the seven-bit US ASCII character set, the printing characters are those whose values lie
from 0x20 (space) through 0x7E (tilde); the control characters are those whose values lie from 0 (NUL) through 0x1F (US),
and the character 0x7F (DEL).

213 The functions islower and isupper test true or false separately for each of these additional characters; all four combina-
tions are possible.

164 Library §74.13

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

7.4.1.4 The iscntrl function
Synopsis

\ #include <ctype.h>
\ int iscntrl(int c);
L

Description
The iscntrl function tests for any control character.

7.4.1.5 The isdigit function
Synopsis

#include <ctype.h>
int isdigit(int c);

Description
The isdigit function tests for any decimal-digit character (as defined in 5.2.1).

7.4.1.6 The isgraph function
Synopsis

#include <ctype.h>
int isgraph(int c);

Description
The isgraph function tests for any printing character except space (" ").

7.4.1.7 The islower function
Synopsis

#include <ctype.h>
int islower(int c);

Description

The islower function tests for any character that is a lowercase letter or is one of a locale-specific set
of characters for which none of iscntrl, isdigit, ispunct, or isspace is true. In the "C" locale,
islower returns true only for the lowercase letters (as defined in 5.2.1).

7.4.1.8 The isprint function

Synopsis

#include <ctype.h>
int isprint(int c);

Description
The isprint function tests for any printing character including space (" ').

7.4.1.9 The ispunct function
Synopsis

#include <ctype.h>
int ispunct(int c);

Description

The ispunct function tests for any printing character that is one of a locale-specific set of punctuation
characters for which neither isspace nor isalnum is true. In the "C" locale, ispunct returns true
for every printing character for which neither isspace nor isalnum is true.

§7.4.19 Library 165

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

7.4.1.10 The isspace function
Synopsis

\ #include <ctype.h> i
\ int isspace(int c); |
| |

Description

The isspace function tests for any character that is a standard white-space character or is one of
a locale-specific set of characters for which isalnum is false. The standard white-space characters
are the following: space (" ’), form feed ("\f’), new-line ("\n"), carriage return ("\r"), horizontal
tab ("\t’), and vertical tab ("\v'). In the "C" locale, isspace returns true only for the standard
white-space characters.

7.4.1.11 The isupper function
Synopsis

#include <ctype.h>
int isupper(int c);

Description

The isupper function tests for any character that is an uppercase letter or is one of a locale-specific
set of characters for which none of iscntrl, isdigit, ispunct, or isspace is true. In the "C" locale,
isupper returns true only for the uppercase letters (as defined in 5.2.1).

7.4.1.12 The isxdigit function

Synopsis

#include <ctype.h>
int isxdigit(int c);

Description
The isxdigit function tests for any hexadecimal-digit character (as defined in 6.4.4.1).

7.4.2 Character case mapping functions

7.4.2.1 The tolower function
Synopsis

#include <ctype.h>
int tolower(int c);

Description
The tolower function converts an uppercase letter to a corresponding lowercase letter.

Returns

If the argument is a character for which isupper is true and there are one or more corresponding
characters, as specified by the current locale, for which islower is true, the tolower function returns
one of the corresponding characters (always the same one for any given locale); otherwise, the
argument is returned unchanged.

7.4.2.2 The toupper function
Synopsis

#include <ctype.h>
int toupper(int c);

Description
The toupper function converts a lowercase letter to a corresponding uppercase letter.

166 Library §7.4.22

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Returns

If the argument is a character for which islower is true and there are one or more corresponding
characters, as specified by the current locale, for which isupper is true, the toupper function returns
one of the corresponding characters (always the same one for any given locale); otherwise, the
argument is returned unchanged.

§7.4.22 Library 167

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

7.5 Errors <errno.h>
The header <errno. h> defines several macros, all relating to the reporting of error conditions.

The macros are

EDOM
EILSEQ
ERANGE

which expand to integer constant expressions with type int, distinct positive values, and which are
suitable for use in #if preprocessing directives; and

\ errno

which expands to a modifiable lvalue*'¥) that has type int and thread local storage duration, the
value of which is set to a positive error number by several library functions. If a macro definition is
suppressed in order to access an actual object, or a program defines an identifier with the name
errno, the behavior is undefined.

The value of errno in the initial thread is zero at program startup (the initial value of errno in other
threads is an indeterminate value), but is never set to zero by any library function.!> The value of
errno may be set to nonzero by a library function call whether or not there is an error, provided the
use of errno is not documented in the description of the function in this document.

216

Additional macro definitions, beginning with E and a digit or E and an uppercase letter,”!®) may also

be specified by the implementation.

249 The macro errno need not be the identifier of an object. It might expand to a modifiable Ivalue resulting from a function
call (for example, xerrno()).

215Thus, a program that uses errno for error checking would set it to zero before a library function call, then inspect it
before a subsequent library function call. Of course, a library function can save the value of errno on entry and then set it to
zero, as long as the original value is restored if errno’s value is still zero just before the return.

216)Gee “future library directions” (7.31.3).

168 Library §7.5

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

7.6 Floating-point environment <fenv.h>

The header <fenv . h> defines several macros, and declares types and functions that provide access to
the floating-point environment. The floating-point environment refers collectively to any floating-point
status flags and control modes supported by the implementation.?'”) A floating-point status flag is a
system variable whose value is set (but never cleared) when a floating-point exception is raised, which
occurs as a side effect of exceptional floating-point arithmetic to provide auxiliary information.?'®
A floating-point control mode is a system variable whose value may be set by the user to affect the
subsequent behavior of floating-point arithmetic.

The-A floating-point control mode may be constant (7.6.2) or dynamic. The dynamic floating-point
environment includes the dynamic floating-point control modes and the floating-point status flags.

The dynamic floating-point environment has thread storage duration. The initial state for a thread’s
dynamic floating-point environment is the current state of the dynamic floating-point environment
of the thread that creates it at the time of creation.

Certain programming conventions support the intended model of use for the dynamic floating-point
environment:?'%)

— a function call does not alter its caller’s floating-point control modes, clear its caller’s floating-
point status flags, nor depend on the state of its caller’s floating-point status flags unless the
function is so documented;

— a function call is assumed to require default floating-point control modes, unless its documen-
tation promises otherwise;

— a function call is assumed to have the potential for raising floating-point exceptions, unless its
documentation promises otherwise.

The feature test macro __STDC_VERSION_FENV_H__ expands to the token yyyymmL.
The type

\ fenv_t
L

represents the entire dynamic floating-point environment.

The type

.. femode t

represents the collection of dynamic floating-point control modes supported by the
implementation, including the dynamic rounding direction mode.

The type

\ fexcept_t

represents the floating-point status flags collectively, including any status the implementation
associates with the flags.

Each of the macros

\ FE_DIVBYZERO
\ FE_INEXACT

217)This header is designed to support the floating-point exception status flags and directed-rounding control modes required
by IEC 60559, and other similar floating-point state information. It is also designed to facilitate code portability among all
systems.

218) A floating-point status flag is not an object and can be set more than once within an expression.

219 With these conventions, a programmer can safely assume default floating-point control modes (or be unaware of them).
The responsibilities associated with accessing the floating-point environment fall on the programmer or program that does so
explicitly.

§7.6 Library 169

10

11

12

13

14

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

\ FE_INVALID
\ FE_OVERFLOW

\ FE_UNDERFLOW

L |

is defined if and only if the implementation supports the floating-point exception by means of
the functions in 7.6.429 Additional implementation-defined floating-point exceptions, with
macro definitions beginning with FE_ and an uppercase letter,”2)) may also be specified by the
implementation. The defined macros expand to integer constant expressions with values such that
bitwise ORs of all combinations of the macros result in distinct values, and furthermore, bitwise
AND:s of all combinations of the macros result in zero.???)

Decimal floating-point operations and IEC 60559 binary floating-point operations (Annex F) access
the same floating-point exception status flags.

The macro_

. FE_DFL _MODE. |

represents the default state for the collection of dynamic floating-point control modes supported
by the implementation — and has type “pointer to const-qualified femode_t”. Additional
implementation-defined states for the dynamic mode collection, with macro definitions beginning
with FE_ and an uppercase letter, and having type “pointer to const-qualified femode_t”, may also
be specified by the implementation.

The macro

| FE_ALL_EXCEPT

is simply the bitwise OR of all floating-point exception macros defined by the implementation. If no
such macros are defined, FE_ALL_EXCEPT shall be defined as 0.

Each of the macros

FE_DOWNWARD
FE_TONEAREST
FE_TONEARESTFROMZERO
FE_TOWARDZERO
FE_UPWARD

is defined if and only if the implementation supports getting and setting the represented rounding
direction by means of the fegetround and fesetround functions. Additional implementation-
defined rounding directions, with macro definitions beginning with FE_ and an uppercase letter,?*>
may also be specified by the implementation. Fhe defined-?>

If the implementation supports decimal floatin es, each of the macros

. FE_DEC_DOWNWARD

____FE DEC_TONEAREST
____FE DEC_TONEARESTFROMZERO
_____FE DEC_TOWARDZERO
____FE DEC_UPWARD

is defined for use with the fe_dec_getround and fe_dec_setround functions for getting and
setting the dynamic rounding direction mode, and with the FENV_DEC_ROUND rounding control

220)The implementation supports a floating-point exception if there are circumstances where a call to at least one of the
functions in 7.6.4, using the macro as the appropriate argument, will succeed. It is not necessary for all the functions to
succeed all the time.

21)See “future library directions” (7.31.4).

222)The macros are typically distinct powers of two.

223)Gee “future library directions” (7.31.4).

229Even though the rounding direction macros might expand to constants corresponding to the values of FLT_ROUNDS, they
are not required to do so.

170 Library §7.6

15

16

17

18

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

ragma (7.6.3) for specifying a constant rounding direction, for decimal floating-point operations.

The decimal rounding direction affects all (inexact) operations that produce a result of decimal
floating type and all operations that produce an integer or character sequence result and have an

operand of decimal floating type, unless stated otherwise. The macros expand to integer constant
expressions whose values are distinct nonnegative values.

During translation, constant rounding direction modes for decimal floating-point arithmetic are

in effect where specified. Elsewhere, during translation the decimal rounding direction mode is
FE_DEC_TONEAREST.

At program startup the dynamic rounding direction mode for decimal floating-point arithmetic is

The macro

\ FE_DFL_ENV \

represents the default dynamic floating-point environment — the one installed at program startup
— and has type “pointer to const-qualified fenv_t”. It can be used as an argument to <fenv.h>
functions that manage the dynamic floating-point environment.

Additional implementation-defined environments, with macro definitions beginning with FE_ and
an uppercase letter,”? and having type “pointer to const-qualified fenv_t”, may also be specified
by the implementation.

7.6.1 The FENV_ACCESS pragma
Synopsis

#include <fenv.h>
#pragma STDC FENV_ACCESS on-off-switch

Description

The FENV_ACCESS pragma provides a means to inform the implementation when a program might
access the floating-point environment to test floating-point status flags or run under non-default
floating-point control modes.??® The pragma shall occur either outside external declarations or
preceding all explicit declarations and statements inside a compound statement. When outside
external declarations, the pragma takes effect from its occurrence until another FENV_ACCESS pragma
is encountered, or until the end of the translation unit. When inside a compound statement, the
pragma takes effect from its occurrence until another FENV_ACCESS pragma is encountered (including
within a nested compound statement), or until the end of the compound statement; at the end of a
compound statement the state for the pragma is restored to its condition just before the compound
statement. If this pragma is used in any other context, the behavior is undefined. If part of

a program tests floating-point status flags ;setsfloating-point-control-modes;,—or-runs-under-or

establishes non-default modesettingsfloating-point mode settings using any means other than the
FENV_ROUND pragmas, but was translated w1th the state for the FENV_ACCESS pragma “off”, the

behavior is undefined. The default state (“on” or “off”) for the pragma is implementation- defmed.
(When execution passes from a part of the program translated with FENV_ACCESS “off” to a part
translated with FENV_ACCESS “on”, the state of the floating-point status flags is unspecified and the
floating-point control modes have their default settings.)

EXAMPLE

i #include <fenv.h> i
| void f(double x) \
| { |

225)See “future library directions” (7.31.4).

29The purpose of the FENV_ACCESS pragma is to allow certain optimizations that could subvert flag tests and mode
changes (e.g. global common subexpression elimination, code motion, and constant folding). In general, if the state of
FENV_ACCESS is "off 7, the translator can assume that the flags are not tested, and that default modes are in effect, except
where specified otherwise by an FENV_ROUND pragma.

§7.6.1 Library 171

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

#pragma STDC FENV_ACCESS ON
void g(double);

void h(double);

/* ... %/

g(x + 1);

hix + 1);

/* ... %/

If the function g might depend on status flags set as a side effect of the first x + 1, or if the second x + 1 might depend on
control modes set as a side effect of the call to function g, then the program has to contain an appropriately placed invocation
of #pragma STDC FENV_ACCESS ON as shown.??)

7.6.2 The FENV_ROUND pragma
Synopsis

—_.___#include <fenv.h>

" #pragma STDC_FENV_ROUND direction
" #pragma STDC_FENV_ROUND FE_DYNAMIC

Description

The FENV_ROUND pragma provides a_means_to_specify a_constant rounding direction for
floating-point_operations for standard floating types within a translation unit or compound
statement, The pragma shall occur either outside external declarations or preceding all explicit
declarations and statements inside a compound statement. When outside external declarations,
the pragma takes effect from its occurrence until another FENV_ROUND pragma is encountered, or
until the end of the translation unit. When inside a compound statement, the pragma takes effect
from its occurrence until another FENV_ROUND pragma is encountered (including within a nested
compound statement), or until the end of the compound statement; at the end of a compound
statement the static rounding mode is restored to its condition just before the compound statement.
If this pragma is used in any other context, its behavior is undefined.

direction shall be one of the names of the supported rounding direction macros for operations
for standard floating types (7.6), or FE_DYNAMIC. If any other value is specified, the behavior
is_undefined. If no FENV_ROUND pragma is in effect, or the specified constant rounding mode
is FE_DYNAMIC, rounding is according to the mode specified by the dynamic floating-point
environment, which is the dynamic rounding mode that was established either at thread creation
or by a call to fesetround, fesetmode fesetenv, or feupdateenv. If the FE_DYNAMIC mode is
specified and FENV_ACCESS is “off”, the translator may assume that the default rounding mode is

in effect.

The FENV_ROUND pragma affects operations for standard floating types. Within the scope of an
FENV_ROUND pragma establishing a mode other than FE_DYNAMIC, floating-point operators, implicit
conversions (including the conversion of a value represented in a format wider than its semantic

es to its semantic type, as done by classification macros), and invocations of functions indicated
in the table below, for which macro replacement has not been suppressed (7.1.4), shall be evaluated
according to the specified constant rounding mode (as though no constant mode was specified
and the corresponding dynamic rounding mode had been established by a call to fesetround).
Invocations of functions for which macro replacement has been suppressed and invocations of
functions other than those indicated in the table below shall not be affected by constant rounding.
modes — they are affected by (and affect) only the dynamic mode. Floating constants (6.4.4.2) of
a standard floating type that occur in the scope of a constant rounding mode shall be interpreted
according to that mode.

Functions affected by constant rounding modes — for standard
floating types

227)The side effects impose a temporal ordering that requires two evaluations of x + 1. On the other hand, without the
#pragma STDC FENV_ACCESS ON pragma, and assuming the default state is “off”, just one evaluation of x + 1 would suffice.

172 Library §7.6.2

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Header | Function families

<math.h> acos, acospi, asin, asinpi, atan, atan2, atan2pi, atanpi
<math.h> | cos cospi,sin, sinpi tan, tanpi

<math.h> | acosh asinh, atanh
<math.h> | cosh, sinh, tanh

<math.h> | exp expl0, expl0ml, exp2, exp2ml expml

<math.h> | log, l0g10, Logl0pl, loglp, Log2, Log2p1, logpl

<math.h> | scalbn, scalbln, ldexp.

<math.h> cbrt, compoundn, hypot, pow, pown, powr, rootn, rsqrt, sqrt
<math.h> erf erfc

<math.h> lgamma, tgamma

<math.h> rint, nearbyint, lrint, 1lrint
<math.h> fdim

<math.h> fma

A~

<math.h> fadd, dadd, fsub, dsub, fmul, dmul, fdiv, ddiv, ffma, dfma, fsqrt, dsqrt
<stdlib.h> | atof, strfrom, strto

o LA AANAAAANAN O
<wchar.h> | wcsto

<stdio.h> rintf and scanf families
<wchar.h> wprintf and wscanf families

A function family listed in the table above indicates the functions for all standard floating types,
where the function family is represented by the name of the functions without a suffix. For example,

acos indicates the functions acos, acosf, and acosl.

NOTE Constant rounding modes (other than FE_DYNAMIC) could be implemented using dynamic rounding modes as
illustrated in the following example:

e L
e _.___#pragma STDC FENV_ROUND direction

o I/ _cOmpiler inserts:

_________// #pragma STDC FENV_ACCESS ON
e 14 Ant___savedrnd;

o 14 _osBVEdrnd = __swapround(direction);

e e e e, operations affected by constant rounding mode ...
oo L/ _compiler inserts:

o AL osavedrnd = __swapround(_savedrnd);

operations not affected by constant rounding mode ...
oo 1/ _compiler inserts:

e M _oosBVEAEN = _swapround (. savedrnd);_

operations affected by constant rounding mode ...
e 4 _cOMpiler inserts:

M/ __swapround(__savedrnd) ;
U §

A A A A

A A A A

where __swapround is defined by:

_.___Static inline int __swapround(const int new)
o_.___const int old = fegetround();

fesetround(new) ;
return_old;

A A A A

A A A A

7.6.3 The FENV_DEC_ROUND pragma

Synopsis

_____#include <fenv.h>
_____#ifdef __STDC_IEC 60559 DFP__

| __.___#pragma STDC FENV_DEC_ROUND dec-direction

§7.6.3 Library 173

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

o H#endif

Description

The FENV_DEC_ROUND pragma is a decimal floating-point analog of the FENV_ROUND pragma.
If FLT_RADIX is not 10, the FENV_DEC_ROUND pragma affects operators, functions, and floating
constants only for decimal floating types. The affected functions are listed in the table below.
If FLT_RADIX is 10, whether the FENV_ROUND and FENV_DEC_ROUND pragmas alter the rounding
direction of both standard and decimal floating-point operations is implementation-defined.
dec-direction shall be one of the decimal rounding direction macro names (FE_DEC_DOWNWARD,
FE_DEC_TONEAREST, FE_DEC_TONEARESTFROMZERO, FE_DEC_TOWARDZERO, and FE_DEC_UPWARD)
defined in 7.6, to specify a constant rounding mode, or FE_DEC_DYNAMIC, to specify dynamic

rounding. The corresponding dynamic rounding mode can be established by a call to
fe_dec_setround.

Functions affected by constant rounding modes — for decimal float-

ing types
Header Function families

<math.h> acos, acospi, asin, asinpi, atan, atan2, atan2pi, atanpi
<math.h> | cos cospi, sin, sinpi tan, tanpi

<math.h> | acosh asinh, atanh
<math.h> | cosh, sinh, tanh

<math.h> | exp, expl0, explOml, exp2, exp2ml, expml
<math.h> | log 10910, Llog10pL, loglp, L0g2, Log2p1, Togpl

<math.h> | scalbn, scalbln, ldexp.

<math.h> cbrt, compoundn, hypot, pow, pown, powr, rootn, rsqrt, sqrt
<math.h> erf erfc

<math.h> lgamma, tgamma

<math.h> | rint, nearbyint Urint, {lrint

<math.h> quantize

<math.h> fdim
<math.h> fma
<math.h> | d32add, d64add, d32sub, d64sub, d32mul, d64mul, d32div, d64div,

d32fma, d64fma, d32sqrt, d64sqrt
<stdlib.h> | strfrom, strto

<wchar.h> | wcsto
<stdio.h> | printf and scanf families
<wchar.h> | wprintf and wscanf families

A function family listed in the table above indicates the functions for all decimal floating types,
where the function family is represented by the name of the functions without a suffix. For example,

acos indicates the functions acosd32, acosd64, and acosd128.

7.6.4 Floating-point exceptions

The following functions provide access to the floating-point status flags.?® The int input argument
for the functions represents a subset of floating-point exceptions, and can be zero or the bitwise
OR of one or more floating-point exception macros, for example FE_OVERFLOW | FE_INEXACT. For
other argument values, the behavior of these functions is undefined.

7.6.4.1 The feclearexcept function
Synopsis

228)The functions fetestexcept, feraiseexcept, and feclearexcept support the basic abstraction of flags that are either
set or clear. An implementation can endow floating-point status flags with more information — for example, the address of
the code which first raised the floating-point exception; the functions fegetexceptflag and fesetexceptflag deal with
the full content of flags.

174 Library §7.64.1

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

#include <fenv.h>
int feclearexcept(int excepts);

Description

The feclearexcept function attempts to clear the supported floating-point exceptions represented
by its argument.

Returns

The feclearexcept function returns zero if the excepts argument is zero or if all the specified
exceptions were successfully cleared. Otherwise, it returns a nonzero value.

7.6.42 The fegetexceptflag function
Synopsis

#include <fenv.h>
—int—fegetexceptflag{fexcept—t—flagps
__.___lint fegetexceptflag(fexcept t xfla int excepts);

Description

The fegetexceptflag function attempts to store an implementation-defined representation of the
states of the floating-point status flags indicated by the argument excepts in the object pointed to
by the argument flagp.

Returns

The fegetexceptflag function returns zero if the representation was successfully stored. Otherwise,
it returns a nonzero value.

7.6.4.3 The feraiseexcept function

Synopsis

\ #include <fenv.h>
\ int feraiseexcept(int excepts);
L

Description

The feraiseexcept function attempts to raise the supported floating-point exceptions represented
by its argument.??” The order in which these floating-point exceptions are raised is unspecified,
except as stated in F.8.6. Whether the feraiseexcept function additionally raises the “inexact”
floating-point exception whenever it raises the “overflow” or “underflow” floating-point exception
is implementation-defined.

Returns

The feraiseexcept function returns zero if the excepts argument is zero or if all the specified
exceptions were successfully raised. Otherwise, it returns a nonzero value.

7.6.4.4 The fesetexcept function
Synopsis

_____#include <fenv.h>

___int fesetexcept(int excepts);

Description

The fesetexcept function attempts to set the supported floating-point exception flags represented
by its argument. This function does not clear any floating-point exception flags. This function

229

)The effect is intended to be similar to that of floating-point exceptions raised by arithmetic operations. Hence, enabled
traps for floating-point exceptions raised by this function are taken. The specification in E.8.6 is in the same spirit.

§7.644 Library 175

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

changes the state of the floating-point exception flags, but does not cause any other side effects that
230)

might be associated with raising floating-point exceptions.

Returns

The fesetexcept function returns zero if all the specified exceptions were successfully set or if the
excepts argument is zero. Otherwise, it returns a nonzero value,

7.6.4.5 The fesetexceptflag function
Synopsis

#include <fenv.h>
—int—Ffesetexceptflagleconst—Fexcept=—t—Ftagps
—int-execepts)

___int fesetexceptflag(const fexcept t xflagp, int excepts);

Description

The fesetexceptflag function attempts to set the floating-point status flags indicated by the
argument excepts to the states stored in the object pointed to by flagp. The value of xflagp shall
have been set by a previous call to fegetexceptflag whose second argument represented at least
those floating-point exceptions represented by the argument excepts. This function does not raise
floating-point exceptions, but only sets the state of the flags.

Returns

The fesetexceptflag function returns zero if the excepts argument is zero or if all the specified
flags were successfully set to the appropriate state. Otherwise, it returns a nonzero value.

7.6.4.6 The fetestexceptflag function
Synopsis

_____#include <fenv.h>

___int fetestexceptflag(const fexcept t x flagp, int excepts);

Description

The fetestexceptflag function determines which of a specified subset of the floating-point
exception flags are set in the object pointed to by flagp. The value of *flagp shall have been
set by a previous call to fegetexceptflag whose second argument represented at least those
floating-point exceptions represented by the argument excepts. The excepts argument specifies
the floating-point status flags to be queried.

Returns

The fetestexceptflag function returns the value of the bitwise OR of the floating-point exception
macros included in excepts corresponding to the floating-point exceptions set in *flagp.

7.6.4.7 The fetestexcept function

Synopsis

#include <fenv.h>
int fetestexcept(int excepts);

Description

The fetestexcept function determines which of a specified subset of the floating-point excep-
tion flags are currently set. The excepts argument specifies the floating-point status flags to be
queried.?V)

20)Enabled traps for floating-point exceptions are not taken.

23)This mechanism allows testing several floating-point exceptions with just one function call.

176 Library §7.64.7

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Returns

The fetestexcept function returns the value of the bitwise OR of the floating-point exception
macros corresponding to the currently set floating-point exceptions included in excepts.

EXAMPLE Call f if “invalid” is set, then g if “overflow” is set:

#include <fenv.h>
/* ... *x/
{
#pragma STDC FENV_ACCESS ON
int set_excepts;
feclearexcept (FE_INVALID | FE_OVERFLOW);
// maybe raise exceptions
set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);
if (set_excepts & FE_INVALID) f();
if (set_excepts & FE_OVERFLOW) g();
/* ... x/

7.6.5 Rounding and other control modes

The fegetround and fesetround functions provide control of rounding direction modes. The

fegetmode and fesetmode functions manage all the implementation’s dynamic floating-point
control modes collectively.

7.6.5.1 The fegetmode function
Synopsis

_____#include <fenv.h>

__.___lint fegetmode(femode_t *modep) ;

Description

The fegetmode function attempts to store all the dynamic floating-point control modes in the object
ointed to by modep.

Returns

The fegetmode function returns zero if the modes were successfully stored. Otherwise, it returns a

nonzero value.

7.6.5.2 The fegetround function
Synopsis

#include <fenv.h>
int fegetround(void);

Description

The fegetround function gets the current rounding-directionvalue of the dynamic roundin
direction mode.
Returns

The fegetround function returns the value of the rounding direction macro representing the current
dynamic rounding direction or a negative value if there is no such rounding direction macro or the

current dynamic rounding direction is not determinable.
7.6.5.3 The fe_dec_getround function

Synopsis

___#include <fenv.h>
___int fe_dec_getround(void);

‘»\/\,
‘rv\,
‘»\/\,

§7.6.5.3 Library 177

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

o H#endif

Description

The fe_dec_getround function gets the current value of the dynamic rounding direction mode for
decimal floating-point operations.

Returns

The fe_dec_getround function returns the value of the rounding direction macro representing the

current dynamic rounding direction for decimal floating-point operations, or a negative value if
there is no such rounding macro or the current rounding direction is not determinable.

7.6.5.4 The fesetmode function
Synopsis

_____#include <fenv.h>

—_.___int fesetmode(const femode t +xmodep);

Description

The fesetmode function attempts to establish the dynamic floating-point modes represented by
the object pointed to by modep. The argument modep shall point to an object set by a call to
fegetmode, or equal FE_DFL_MODE or a dynamic floating-point mode state macro defined by the

Returns

The fesetmode fesetmode function returns zero if the modes were successfully established.

Otherwise, it returns a nonzero value.

7.6.5.5 The fesetround function
Synopsis

#include <fenv.h>
int fesetround(int round);

Description

The fesetround function establishes the rounding direction represented by its argument round. If
the argument is not equal to the value of a rounding direction macro, the rounding direction is not
changed.

Returns

The fesetround function returns zero if and only if the requested—roundingdirection—was
establisheddynamic rounding direction mode was set to the requested rounding direction.

EXAMPLE Save, set, and restore the rounding direction. Report an error and abort if setting the rounding direction fails.

#include <fenv.h>
#include <assert.h>

void f(int round_dir)

{
#pragma STDC FENV_ACCESS ON
int save_round;
int setround_ok;
save_round = fegetround();
setround_ok = fesetround(round_dir);
assert(setround_ok == 0);
/* ... %/
fesetround(save_round);
/* ... %/

178 Library §7.6.5.5

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

7.6.5.6 The fe_dec_setround function
Synopsis

#include <fenv.h>

#ifdef __STDC_IEC_60559_DFP__
int fe_dec_setround(int round);
#endif

Description

The fe_dec_setround function sets the dynamic rounding direction mode for decimal floating-
point operations to be the rounding direction represented by its argument round. If the argument is
not equal to the value of a decimal rounding direction macro, the rounding direction is not changed.

If FLT_RADIX is not 10, the rounding direction altered by the fesetround function is independent
of the rounding direction altered by the fe_dec_setround function; otherwise if FLT_RADIX is
10, whether the fesetround and fe_dec_setround functions alter the rounding direction of both
standard and decimal floating-point operations is implementation- defined.

Returns

The fe_dec_setround function returns a zero value if and only if the argument is equal to a decimal
rounding direction macro (that is, if and only if the dynamic rounding direction mode for decimal
floating-point operations was set to the requested rounding direction).

7.6.6 Environment

The functions in this section manage the floating-point environment — status flags and control
modes — as one entity.

7.6.6.1 The fegetenv function
Synopsis

#include <fenv.h>
int fegetenv(fenv_t xenvp);

Description

The fegetenv function attempts to store the current dynamic floating-point environment in the
object pointed to by envp.

Returns

The fegetenv function returns zero if the environment was successfully stored. Otherwise, it returns
a nonzero value.

7.6.6.2 The feholdexcept function
Synopsis

#include <fenv.h>
int feholdexcept(fenv_t xenvp);

Description

The feholdexcept function saves the current dynamic floating-point environment in the object
pointed to by envp, clears the floating-point status flags, and then installs a non-stop (continue on
floating-point exceptions) mode, if available, for all floating-point exceptions.??)

22)TEC 60559 systems have a default non-stop mode, and typically at least one other mode for trap handling or aborting; if
the system provides only the non-stop mode then installing it is trivial. For such systems, the feholdexcept function can be
used in conjunction with the feupdateenv function to write routines that hide spurious floating-point exceptions from their
callers.

§7.6.6.2 Library 179

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

Returns

The feholdexcept function returns zero if and only if non-stop floating-point exception handling
was successfully installed.

7.6.6.3 The fesetenv function

Synopsis

#include <fenv.h>
int fesetenv(const fenv_t *envp);

Description

The fesetenv function attempts to establish the dynamic floating-point environment represented by
the object pointed to by envp. The argument envp shall point to an object set by a call to fegetenv or
feholdexcept, or equal a dynamic floating-point environment macro. Note that fesetenv merely
installs the state of the floating-point status flags represented through its argument, and does not
raise these floating-point exceptions.

Returns

The fesetenv function returns zero if the environment was successfully established. Otherwise, it
returns a nonzero value.

7.6.6.4 The feupdateenv function
Synopsis

#include <fenv.h>
int feupdateenv(const fenv_t xenvp);

Description

The feupdateenv function attempts to save the currently raised floating-point exceptions in its
automatic storage, install the dynamic floating-point environment represented by the object pointed
to by envp, and then raise the saved floating-point exceptions. The argument envp shall point to an
object set by a call to feholdexcept or fegetenv, or equal a dynamic floating-point environment
macro.

Returns

The feupdateenv function returns zero if all the actions were successfully carried out. Otherwise, it
returns a nonzero value.

EXAMPLE Hide spurious underflow floating-point exceptions:

#include <fenv.h>
double f(double x)
{
#pragma STDC FENV_ACCESS ON
double result;
fenv_t save_env;
if (feholdexcept(&save_env))
return /x indication of an environmental problem */;
// compute result
if (/* test spurious underflow x/)
if (feclearexcept(FE_UNDERFLOW))
return /x indication of an environmental problem x/;
if (feupdateenv(&save_env))
return /x indication of an environmental problem x*/;
return result;

180 Library §7.6.6.4

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

7.7 Characteristics of floating types <float.h>

The header <float. h> defines several macros that expand to various limits and parameters of the
standard-floating-pointreal floating types.

The macros, their meanings, and the constraints (or restrictions) on their values are listed
in5242252.4.2.2 and 5.2.4.2 3. A summary is given in Annex E.

§7.7 Library 181

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

7.8 Format conversion of integer types <inttypes.h>
The header <inttypes.h> includes the header <stdint.h> and extends it with additional facilities
provided by hosted implementations.

It declares functions for manipulating greatest-width integers and converting numeric character
strings to greatest-width integers, and it declares the type

i imaxdiv_t i

which is a structure type that is the type of the value returned by the imaxdiv function. For each
type declared in <stdint.h>, it defines corresponding macros for conversion specifiers for use with
the formatted input/output functions.”®

Forward references: integer types <stdint.h> (7.20), formatted input/output functions (7.21.6),
formatted wide character input/output functions (7.29.2).

7.8.1 Macros for format specifiers

Each of the following object-like macros expands to a character string literal containing a conversion
specifier, possibly modified by a length modifier, suitable for use within the format argument of a
formatted input/output function when converting the corresponding integer type. These macro
names have the general form of PRI (character string literals for the fprintf and fwprintf family)
or SCN (character string literals for the fscanf and fwscanf family),”*¥ followed by the conversion
specifier, followed by a name corresponding to a similar type name in 7.20.1. In these names, N
represents the width of the type as described in 7.20.1. For example, PRIAFAST32 can be used in a
format string to print the value of an integer of type int_fast32_t.

The fprintf macros for signed integers are:

PRIAN PRIALEASTN PRIQFASTN PRIAMAX PRIAPTR
PRIIN PRIILEASTN PRIiFASTN PRIIiMAX PRIiPTR

The fprintf macros for unsigned integers are:

PRION PRIOLEASTN PRIOFASTN PRIOMAX PRIOPTR
PRIUN PRIULEASTN PRIUFASTN PRIUMAX PRIUPTR
PRIXN PRIXLEASTN PRIXFASTN PRIXMAX PRIXPTR
PRIXN PRIXLEASTN PRIXFASTN PRIXMAX PRIXPTR

The fscanf macros for signed integers are:

SCNAN SCNALEASTN SCNAFASTN SCNAMAX SCNAPTR
SCNiN SCNiLEASTN SCNiFASTN SCNiMAX SCNiPTR

The fscanf macros for unsigned integers are:

SCNoN SCNoLEASTN SCNoFASTN SCNoMAX SCNoPTR
SCNuN SCNuLEASTN SCNuFASTN SCNuMAX SCNuPTR
SCNXN SCNXLEASTN SCNXFASTN SCNxMAX SCNxPTR

For each type that the implementation provides in <stdint.h>, the corresponding fprintf macros
shall be defined and the corresponding fscanf macros shall be defined unless the implementation
does not have a suitable fscanf length modifier for the type.

EXAMPLE

[|
\ #include <inttypes.h> \
\ #include <wchar.h> \
\ int main(void) \
| { |
\ uintmax_t i = UINTMAX_MAX; // this type always exists \
\ wprintf(L"The largest integer value is %020" \

233)Gee “future library directions” (7.31.6).
234)Separate macros are given for use with fprintf and fscanf functions because, in the general case, different format
specifiers might be required for fprintf and fscanf, even when the type is the same.

182 Library §7.8.1

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

\ PRIXMAX "\n", i);
\ return 0;
|
L

7.8.2 Functions for greatest-width integer types
7.8.2.1 The imaxabs function
Synopsis

#include <inttypes.h>
intmax_t imaxabs (intmax_t j);

Description

The imaxabs function computes the absolute value of an integer j. If the result cannot be represented,
the behavior is undefined.”*”

Returns

The imaxabs function returns the absolute value.

7.8.2.2 The imaxdiv function
Synopsis

#include <inttypes.h>
imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom);

Description
The imaxdiv function computes numer / denomand numer % denom in a single operation.

Returns

The imaxdiv function returns a structure of type imaxdiv_t comprising both the quotient and the
remainder. The structure shall contain (in either order) the members quot (the quotient) and rem
(the remainder), each of which has type intmax_t. If either part of the result cannot be represented,
the behavior is undefined.

7.8.2.3 The strtoimax and strtoumax functions
Synopsis

#include <inttypes.h>

intmax_t strtoimax(const char * restrict nptr, char xx restrict endptr, int base);
uintmax_t strtoumax(const char *x restrict nptr, char *x restrict endptr, int base);

Description

The strtoimax and strtoumax functions are equivalent to the strtol, strtoll, strtoul, and
strtoull functions, except that the initial portion of the string is converted to intmax_t and
uintmax_t representation, respectively.

Returns

The strtoimax and strtoumax functions return the converted value, if any. If no conversion could
be performed, zero is returned. If the correct value is outside the range of representable values,
INTMAX_MAX, INTMAX_MIN, or UINTMAX_MAX is returned (according to the return type and sign of the
value, if any), and the value of the macro ERANGE is stored in errno.

Forward references: the strtol, strtoll, strtoul, and strtoull functions (7.22.1.7).

235)The absolute value of the most negative number cannot be represented in two’s complement.

§7.823 Library 183

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

7.8.2.4 The wcstoimax and wcstoumax functions
Synopsis

#include <stddef.h> // for wchar_t
#include <inttypes.h>

intmax_t wcstoimax(const wchar_t xrestrict nptr, wchar_t *xrestrict endptr, int base);

uintmax_t wcstoumax(const wchar_t *restrict nptr, wchar_t *xrestrict endptr, int base);

Description

The westoimax and westoumax functions are equivalent to the westol, westoll, westoul, and
westoull functions except that the initial portion of the wide string is converted to intmax_t and
uintmax_t representation, respectively.

Returns

The westoimax function returns the converted value, if any. If no conversion could be performed,
zero is returned. If the correct value is outside the range of representable values, INTMAX_MAX,
INTMAX_MIN, or UINTMAX_MAX is returned (according to the return type and sign of the value, if any),
and the value of the macro ERANGE is stored in errno.

Forward references: thewcstol,wcstoll, wcstoul, and westoull functions (7.29.4.1.3).

184 Library §7.8.24

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

(no diff marks, here)

7.9 Alternative spellings <is0646.h>

The header <i50646. h> defines the following eleven macros (on the left) that expand to the corre-
sponding tokens (on the right):

and &&
and_eq =
bitand &
bitor |
compl ~
not !
not_eq !
or |
or_eq |
xor ~
xor_eq ~=

§7.9 Library 185

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

7.10 Sizes of integer types <limits.h>
The header <limits.h> defines several macros that expand to various limits and parameters of the

standard integer types.
The macros, their meanings, and the constraints (or restrictions) on their values are listed in 5.2.4.2.1.
A summary is given in Annex E.

186 Library §7.10

2434 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

7.11 Localization <locale.h>
The header <locale. h> declares two functions, one type, and defines several macros.

The type is

\ struct lconv

which contains members related to the formatting of numeric values. The structure shall contain
at least the following members, in any order. The semantics of the members and their normal
ranges are explained in 7.11.2.1. In the "C" locale, the members shall have the values specified in the
comments.

char xdecimal_point; // "t
char xthousands_sep; // """
char xgrouping; /7"
char xmon_decimal_point; // "
char xmon_thousands_sep; // """
char xmon_grouping; /7"
char *positive_sign; // "
char xnegative_sign; // "
char *xcurrency_symbol; // "
char frac_digits; // CHAR_MAX
char p_cs_precedes; // CHAR_MAX
char n_cs_precedes; // CHAR_MAX
char p_sep_by_space; // CHAR_MAX
char n_sep_by_space; // CHAR_MAX
char p_sign_posn; // CHAR_MAX
char n_sign_posn; // CHAR_MAX
char xint_curr_symbol; // "
char int_frac_digits; // CHAR_MAX
char int_p_cs_precedes; // CHAR_MAX
char int_n_cs_precedes; // CHAR_MAX
char int_p_sep_by_space; // CHAR_MAX
char int_n_sep_by_space; // CHAR_MAX
char int_p_sign_posn; // CHAR_MAX
char int_n_sign_posn; // CHAR_MAX

The macros defined are NULL (described in 7.19); and

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

which expand to integer constant expressions with distinct values, suitable for use as the first argu-
ment to the setlocale function.?® Additional macro definitions, beginning with the characters
LC_ and an uppercase letter,”>”) may also be specified by the implementation.

7.11.1 Locale control

7.11.1.1 The setlocale function
Synopsis

#include <locale.h>
char xsetlocale(int category, const char xlocale);

230)]SO /TEC 9945-2 specifies locale and charmap formats that can be used to specify locales for C.
237)See “future library directions” (7.31.7).

§7.11.1.1 Library 187

ISO/IEC 9899:202x (E) working draft — September 25, 2019 2434

Description

The setlocale function selects the appropriate portion of the program’s locale as specified by
the category and locale arguments. The setlocale function may be used to change or query
the program’s entire current locale or portions thereof. The value LC_ALL for category names
the program’s entire locale; the other values for category name only a portion of the program’s
locale. LC_COLLATE affects the behavior of the strcoll and strxfrm functions. LC_CTYPE affects
the behavior of the character handling functions*®® and the multibyte and wide character functions.
LC_MONETARY affects the monetary formatting information returned by the localeconv function.
LC_NUMERIC affects the decimal-point character for the formatted input/output functions and the
string conversion functions, as well as the nonmonetary formatting information returned by the
localeconv function. LC_TIME affects the behavior of the strftime and wesftime functions.

A value of "C" for locale specifies the minimal environment for C translation; a value of "" for
locale specifies the locale-specific native environment. Other implementation-defined strings may
be passed as the second argument to setlocale.

At program startup, the equivalent of

[
\ setlocale(LC_ALL, "C"):
L

is executed.

A call to the setlocale function may introduce a data race with other calls to the setlocale
function or with calls to functions that are affected by the current locale. The implementation shall
behave as if no library function calls the setlocale function.

Returns

If a pointer to a string is given for locale and the selection can be honored, the setlocale function
returns a pointer to the string associated with the specified category for the new locale. If the
selection cannot be honored, the setlocale function returns a null pointer and the program’s locale
is not changed.

A null pointer for locale causes the setlocale function to return a pointer to the string associated
with the category for the program’s current locale; the program’s locale is not changed.?”)

The pointer to string returned by the setlocale function is such that a subsequent call with that
string value and its associated category will restore that part of the program’s locale. The string
pointed to shall not be modified by the program, but may be overwritten by a subsequent call to the
setlocale function.

Forward references: formatted input/output functions (7.21.6), multibyte/wide character conver-
sion functions (7.22.7), multibyte/wide string conversion functions (7.22.8), numeric conversion
functions (7.22.1), the strcoll function (7.24.4.3), the strftime function (7.27.3.5), the strxfrm
function (7.24.4.5).

7.11.2 Numeric formatting convention inquiry
7.11.2.1 The localeconv function
Synopsis

#include <locale.h>
struct lconv xlocaleconv(void);

Description

The localeconv function sets the components of an object with type struct lconv with values
appropriate for the formatting of numeric quantities (monetary and otherwise) according to the
rules of the current locale.

238)The only functions in 7.4 whose behavior is not affected by the current locale are isdigit and isxdigit.
239 The implementation is thus required to arrange to encode in a string the various categories due to a heterogeneous locale
when category has the value LC_ALL.

188 Library §7.11.2.1

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

The members of the structure with type char * are pointers to strings, any of which (except

decimal_point) can point to "", to indicate that the value is not available in the current locale or is
of zero length. Apart from grouping and mon_grouping, the strings shall start and end in the initial
shift state. The members with type char are nonnegative numbers, any of which can be CHAR_MAX
to indicate that the value is not available in the current locale. The members include the following:

char *xdecimal_point
The decimal-point character used to format nonmonetary quantities.

char_xthousands_sep.

The character used to separate groups of digits before the decimal-point character in
formatted nonmonetary quantities.

char_xgrouping
A string whose elements indicate the size of each group of digits in formatted nonmon-
etary quantities.

char_xmon_decimal_point
The decimal-point used to format monetary quantities.

char xmon_thousands_se
The separator for groups of digits before the decimal-point in formatted monetary
quantities.

char_xmon_grouping
A string whose elements indicate the size of each group of digits in formatted monetary
quantities.

char *positive_sign

The string used to indicate a nonnegative-valued formatted monetary quantity.

char *negative_sign

The string used to indicate a negative-valued formatted monetary quantity.

char_xcurrency_symbol
The local currency symbol applicable to the current locale.

char_frac.digits
The number of fractional digits (those after the decimal-point) to be displayed in a
locally formatted monetary quantity.

char p_cs_precedes
Set to 1 or 0 if the currency_symbol respectively precedes or succeeds the value for a
nonnegative locally formatted monetary quantity.

char n_cs_precedes
Set to 1 or 0 if the currency_symbol respectively precedes or succeeds the value for a
negative locally formatted monetary quantity.

char p_sep_by_space
Set to a value indicating the separation of the currency_symbol, the sign string, and
the value for a nonnegative locally formatted monetary quantity.

char_n_sep_by_space
Set to a value indicating the separation of the currency_symbol, the sign string, and
the value for a negative locally formatted monetary quantity.

char _p_sign_posn
Set to a value indicating the positioning of the positive_sign for a nonnegative locally
formatted monetary quantity.

§7.11.2.1 Library 189

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

char_n_sign_posn
Set to a value indicating the positioning of the negative_sign for a negative locally
formatted monetary quantity.

char_xint_curr_symbol
The international currency symbol applicable to the current locale. The first three
characters contain the alphabetic international currency symbol in accordance with
those specified in ISO 4217. The fourth character (immediately preceding the null
character) is the character used to separate the international currency symbol from the
monetary quantity.

The number of fractional digits (those after the decimal-point) to be displayed in an
internationally formatted monetary quantity.

char_int_p_cs_precedes
Set to 1 or 0 if the int_curr_symbol respectively precedes or succeeds the value for a
nonnegative internationally formatted monetary quantity.

char_int_n_cs_precedes
Set to 1 or 0 if the int_curr_symbol respectively precedes or succeeds the value for a
negative internationally formatted monetary quantity.

char_int_p_sep_by_space
Set to a value indicating the separation of the int_curr_symbol, the sign string, and
the value for a nonnegative internationally formatted monetary quantity.

char_int_n_sep_by_space
Set to a value indicating the separation of the int_curr_symbol, the sign string, and
the value for a negative internationally formatted monetary quantity.

char_int_p_sign_posn
Set to a value indicating the positioning of the positive_sign for a nonnegative
internationally formatted monetary quantity.

char_int_n_sign_posn
Set to a value indicating the positioning of the negative_sign for a negative interna-
tionally formatted monetary quantity.

The elements of grouping and mon_grouping are interpreted according to the following;:

CHAR_MAX No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder of the digits.

other The integer value is the number of digits that compose the current group. The next
element is examined to determine the size of the next group of digits before the current
group.

The values of p_sep_by_space, n_sep_by_space, int_p_sep_by_space, and
int_n_sep_by_space are interpreted according to the following:

0 No space separates the currency symbol and value.

1 If the currency symbol and sign string are adjacent, a space separates them from the value;
otherwise, a space separates the currency symbol from the value.

2 If the currency symbol and sign string are adjacent, a space separates them; otherwise, a space
separates the sign string from the value.

190 Library §7.11.2.1

10

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

For int_p_sep_by_space and int_n_sep_by_space, the fourth character of int_curr_symbol is
used instead of a space.

The values of p_sign_posn, n_sign_posn, int_p_sign_posn, and int_n_sign_posn are inter-
preted according to the following;:

0_ Parentheses surround the quantity and currency symbol.

1 The sign string precedes the quantity and currency symbol.

2 The sign string succeeds the quantity and currency symbol.

3 The sign string immediately precedes the currency symbol.

4 The sign string immediately succeeds the currency symbol.

The implementation shall behave as if no library function calls the Localeconv function.

Returns

The localeconv function returns a pointer to the filled-in object. The structure pointed to by the
return value shall not be modified by the program, but may be overwritten by a subsequent call
to the localeconv function. In addition, calls to the setlocale function with categories LC_ALL,

LC_MONETARY, or LC_NUMERIC may overwrite the contents of the structure.

EXAMPLE 1 The following table illustrates rules which might well be used by four countries to format monetary quantities.

Local format International format

Positive Positive

Country

| Negative

| Negative

Countryl
Country?2
Country3
Country4

1.234,56 mk
L.1.234
£1.234,56
SFrs.1,234.56

-1.234,56 mk
-L.1.234
f-1.234,56
SFrs.1,234.56C

FIM 1.234,56
ITL 1.234

NLG 1.234,56
CHF 1,234.56

FIM -1.234,56
-ITL 1.234

NLG -1.234,56
CHF 1,234.56C

For these four countries, the respective values for the monetary members of the structure returned by localeconv could be:

|| Countryl |

Country2 |

Country3 |

Country4

mon_decimal_point
mon_thousands_sep
mon_grouping
positive_sign
negative_sign
currency_symbol
frac_digits
p—cs_precedes
n_cs_precedes
p—sep_by_space
n_sep_by_space
p—sign_posn
n_sign_posn
int_curr_symbol
int_frac_digits
int_p_cs_precedes
int_n_cs_precedes
int_p_sep_by_space
int_n_sep_by_space
int_p_sign_posn
int_n_sign_posn

§7.11.2.1

n\3n

"mk
2

k)

BRENRF RPN

FIM "

3"

wp

HRP O O®ORKHO®

"ITL "

e el)

"3

"\u0192"

BRENRE RPN

"NLG "

AR NR RPN

Library

n\3n
nen
"SFrs."
2

N OO

CHF "

NHFER RPN

191

ISO/IEC 9899:202x (E)

working draft — September 25, 2019

2434

11 EXAMPLE 2 The following table illustrates how the cs_precedes, sep_by_space, and sign_posn members affect the

formatted value.

p—sep_by_space

p—cs_precedes | p_sign_posn 0 [1 [2
0 0 (1.25%) (1.25 %) (1.259%)
1 +1.25% +1.25 % + 1.25%
2 1.25%+ 1.25 $+ 1.25% +
30| 1.25+% | 1.25 +% 1.25+ §
4 1.25%+ 1.25 $+ 1.25% +
1 0 ($1.25) ($ 1.25) ($1.25)
1 +$1.25 +$ 1.25 + $1.25
2 $1.25+ $ 1.25+ $1.25 +
3 +$1.25 +$ 1.25 + $1.25
4 $+1.25 $+ 1.25 $ +1.25

192

Library

§7.11.2.1

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

7.12 Mathematics <math.h>

The header <math.h> declares two types and many mathematical functions and defines several
macros. Most synopses specify a family of functions consisting of a principal function with one
or more double parameters, a double return value, or both; and other functions with the same
name but with f and 1 suffixes, which are corresponding functions with float and long double
parameters, return values, or both.?? Integer arithmetic functions and conversion functions are
discussed later.

The feature test macro __STDC_VERSION_MATH_H__ expands to the token yyyymmL.
The types

float_t
double_t

are floating types at least as wide as float and double, respectively, and such that double_t is
at least as wide as float_t. If FLT_EVAL_METHOD equals 0, float_t and double_t are float and
double, respectively; if FLT_EVAL_METHOD equals 1, they are both double; if FLT_EVAL_METHOD
equals 2, they are both long double; and for other values of FLT_EVAL_METHOD, they are otherwise
implementation-defined.?V

The types

. -Decimal32 t
_____Decimaled_t

are decimal floating types at least as wide as _Decimal32 and _Decimal64, respectively,
and such that _Decimal64_t is at least as wide as _Decimal32_t. _If DEC_EVAL_METHOD
equals 0, _Decimal32_t and _Decimal64_t are _Decimal32 and _Decimal64, respectively;
if DEC_EVAL_METHOD equals 1, they are both _Decimal64; if DEC_EVAL_METHOD equals 2, they are

both _Decimall28; and for other values of DEC_EVAL_METHOD, they are otherwise implementa-
tion-defined.

The macro

\ HUGE_VAL

expands to a positive double constant expression, not necessarily representable as a float. The
macros

HUGE_VALF
HUGE_VALL

are respectively float and long double analogs of HUGE_VAL.24?

The macro_

_____HUGE VAL D32

expands to a constant expression of type _Decimal32 representing positive infinity. The macros

. HUGE VAL D64
_____HUGE VAL D128

240)Particularly on systems with wide expression evaluation, a <math. h> function might pass arguments and return values
in wider format than the synopsis prototype indicates.

24DThe types float_t and double_t are intended to be the implementation’s most efficient types at least as wide as
float and double, respectively. For FLT_EVAL_METHOD equal 0, 1, or 2, the type float_t is the narrowest type used by the
implementation to evaluate floating expressions.

242)HUGE_VAL, HUGE_VALF, and HUGE_VALL can be positive infinities in an implementation that supports infinities.

§7.12 Library 193

10

11

12

13

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

are respectively _Decimal64 and _Decimall28 analogs of HUGE_VAL_D32.

The macro

\ INFINITY

expands to a constant expression of type float representing positive or unsigned infinity, if available;
else to a positive constant of type float that overflows at translation time.?*

The macro

\ DEC_INFINITY

expands to a constant expression of type _Decimal32 representing positive infinity.

The macro

\ NAN

is defined if and only if the implementation supports quiet NaNs for the float type. It expands to a
constant expression of type float representing a quiet NaN.

The macro

\ DEC_NAN

expands to a constant expression of type _Decimal32 representing a quiet NalN.
The signaling NaN macros

SNANF
SNAN
SNANL

each is defined if and only if the respective t

a constant expression of the respective type representing a signaling NaN. If a signaling NaN macro
is used for initializing an object of the same type that has static or thread-local storage duration, the
object is initialized with a signaling NaN value.

The decimal signaling NaN macros

SNAND32
SNAND64
SNAND128

each expands to a constant expression of the respective decimal floating type representing a
signaling NaN. If a signaling NaN macro is used for initializing an object of the same e that
has static or thread-local storage duration, the object is initialized with a signaling NaN value.

The number classification macros

FP_INFINITE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO

represent the mutually exclusive kinds of floating-point values. They expand to integer constant
expressions with distinct values. Additional implementation-defined floating-point classifications,
with macro definitions beginning with FP_ and an uppercase letter, may also be specified by the
implementation.

243)In this case, using INFINITY will violate the constraint in 6.4.4 and thus require a diagnostic.

194 Library §7.12

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

The math rounding direction macros

. FP_INT_UPWARD
_____FP_INT_DOWNWARD
_____FP_INT_TOWARDZERO
_____FP_INT_TONEARESTFROMZERO
_____FP_INT_TONEAREST

represent the rounding directions _of the functions ceil, floor, trunc, round, and roundeven,
respectively, that convert to integral values in floating-point formats. They expand to integer
constant expressions with distinct values suitable for use as the second argument to the fromfp,
ufromfp, fromfpx, and ufromfpx functions.

The macro

\ FP_FAST_FMA

is optionally defined. If defined, it indicates that the fma function generally executes about as fast as,
or faster than, a multiply and an add of double operands.?*» The macros

FP_FAST_FMAF
FP_FAST_FMAL

are, respectively, float and long double analogs of FP_FAST_FMA. If defined, these macros expand
to the integer constant 1.

The macros

. FP_FAST_FMAD32
_____FP_FAST_FMAD64
. ___FP_FAST_FMAD128

are, respectively, _Decimal32, _Decimal64, and _Decimall28 analogs of FP_FAST_FMA.
Each of the macros

FP_FAST_FADD ~ FP_FAST.DSUBL ~ FP_FAST.FDIVL ~ FP_FAST_FFMA_
FP_FAST_FADDL ~ FP_FAST_FMUL FP_FAST.DDIVL ~ FP_FAST_FFMAL
FP_FAST DADDL ~ FP_FAST_FMULL ~ FP_FASTFSQRT FP_FAST_DFMAL_
FP_FAST_FSUB FP_FASTDMULL FP_FAST_FSQRTL_
FP_FAST_FSUBL ~ FP_FASTFDIV FP_FAST_DSQRTL_

is optionally defined. If defined, it indicates that the corresponding function generally executes
about as fast, or faster, than the corresponding operation or function of the argument type with
result type the same as the argument type followed by conversion to _the narrower type. For
FP_FAST_FFMA, FP_FAST_FFMAL and FP_FAST_DEMAL, the comparison is to a call to fma or fmal
followed by a conversion, not to separate multiply, add, and conversion. If defined, these macros
expand to the integer constant 1.

The macros

FP_FAST_D32ADDD64 ~ FP_FAST.D32MULDG4 FP_FAST_D32FMADG4.
FP_FAST_D32ADDD128 FP_FAST.D32MULD128 FP_FAST D32FMAD128
FP_FAST_D64ADDD128 FP_FASTD64MULD128 FP_FAST_D64FMAD128
FP_FAST_D32SUBD64 ~ FP_FAST.D32DIVD64 ~ FP_FAST_D32SQRTDG4
FP_FAST_D32SUBD128 FP_FAST.D32DIVD128 ~ FP_FAST_D32SQRTD128
FP_FAST_D64SUBD128 FP_FAST.D64DIVD128 FP_FAST_D64SQRTD128

24)Typically, the FP_FAST_FMA macro is defined if and only if the fma function is implemented directly with a hardware
multiply-add instruction. Software implementations are expected to be substantially slower.

§7.12 Library 195

19

20

21

ISO/IEC 9899:202x (E)

working draft — September 25, 2019

C17..C201909 2434

are analogs of FP_FAST_FADD, FP_FAST_FADDL, FP_FAST_DADDL, etc., for decimal floating types.

The

macros

FP_ILOGBO
FP_ILOGBNAN

expand to integer constant expressions whose values are returned by ilogb(x) if x is zero or
NaN, respectively. The value of FP_ILOGBO shall be either INT_MIN or-INT_MAX . The value of
FP_ILOGBNAN shall be either INT_MAX or INT_MIN.

The

The macros

_____FPLLOGBO
_____FP_LLOGBNAN.

expand to integer constant expressions whose values are returned by 1logb (x) if x is zero or

NaN, respectively. The value of FP_LLOGBO shall be LONG_MIN if the value of FP_ILOGBO is INT_MIN,
and shall be -LONG_MAX_if the value of FP_ILOGBO is-INT_MAX . The value of FP_LLOGBNAN shall

be LONG_MAX if the value of FP_TLOGBNAN is INT_MAX, and shall be LONG_MIN if the value of

The

macros

MATH_ERRNO
MATH_ERREXCEPT

expand to the integer constants 1 and 2, respectively; the macro

math_errhandling

expands to an expression that has type int and the value MATH_ERRNO, MATH_ERREXCEPT, or the
bitwise OR of both. The value of math_errhandling is constant for the duration of the program. It is
unspecified whether math_errhandling is a macro or an identifier with external linkage. If a macro
definition is suppressed or a program defines an identifier with the name math_errhandling, the
behavior is undefined. If the expression math_errhandling & MATH_ERREXCEPT can be nonzero,
the implementation shall define the macros FE_DIVBYZERO, FE_INVALID, and FE_OVERFLOW in

<fenv.h>.

7.12.1 Treatment of error conditions

The behavior of each of the functions in <math.h> is specified for all representable values of its
input arguments, except where explicitly stated otherwise. Each function shall execute as if it were a
single operation without raising SIGFPE and without generating any of the floating-point exceptions
“invalid”, “divide-by-zero”, or “overflow” except to reflect the result of the function.

For all functions, a domain error occurs if and only if an input argument is outside the domain over
which the mathematical function is defined. The description of each function lists any required
domain errors; an implementation may define additional domain errors, provided that such errors

are consistent with the mathematical definition of the function.

245)

Whether a signaling NaN

input causes a domain error is implementation-defined. On a domain error, the function returns
an implementation-defined value; if the integer expression math_errhandling & MATH_ERRNO

is nonzero, the integer expression errno acquires the value EDOM; if the integer expression
math_errhandling & MATH_ERREXCEPT is nonzero, the “invalid” floating-point exception is raised.

Similarly, a pole error (also known as a singularity or infinitary) occurs if and only if the mathematical
function has an exact infinite result as the finite input argument(s) are approached in the limit (for ex-
ample, Log (0.0)). The description of each function lists any required pole errors; an implementation
may define additional pole errors, provided that such errors are consistent with the mathematical

25)In an implementation that supports infinities, this allows an infinity as an argument to be a domain error if the
mathematical domain of the function does not include the infinity.

196

Library

§7.12.1

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

definition of the function. On a pole error, the function returns an implementation-defined value;
if the integer expression math_errhandling & MATH_ERRNO is nonzero, the integer expression
errno acquires the value ERANGE; if the integer expression math_errhandling & MATH_ERREXCEPT
is nonzero, the “divide-by-zero” floating-point exception is raised.

Likewise, a range error occurs if and only if the mathematical result of the function cannot be
represented in an object of the specified type, due to extreme magnitude. The description of each
function lists any required range errors; an implementation may define additional range errors,
provided that such errors are consistent with the mathematical definition of the function and are the
result of either overflow or underflow.

A floating result overflows if the magnitude of the mathematical result is finite but so large that
the mathematical result cannot be represented without extraordinary roundoff error in an object
of the specified type. If a floating result overflows and default rounding is in effect, then the
function returns the value of the macro HUGE_VAL, HUGE_VALF, or HUGE_VALL according to the
return type, with the same sign as the correct value of the function; if the integer expression
math_errhandling & MATH_ERRNO is nonzero, the integer expression errno acquires the value
ERANGE; if the integer expression math_errhandling & MATH_ERREXCEPT is nonzero, the “overflow”
floating-point exception is raised.

The result underﬂows if the magmtude of the mathemat1cal result is sesma}kﬂaa%theﬁaﬂ%emaﬁea}

Wzmwe 20 If the result under-
flows, the function returns an implementation-defined value whose magnitude is no greater
than the smallest normalized positive number in the specified type; if the integer expression
math_errhandling & MATH_ERRNO is nonzero, whether errno acquires the value ERANGE is imple-
mentation-defined; if the integer expression math_errhandling & MATH_ERREXCEPT is nonzero,
whether the “underflow” floating-point exception is raised is implementation-defined.

If a domain, pole, or range error occurs and the integer expression math_errhandling & MATH_ERRNO
is zero,2”) then errno shall either be set to the value corresponding to the error or left unmodified. If
no such error occurs, errno shall be left unmodified regardless of the setting of math_errhandling.

7.12.2 The FP_CONTRACT pragma
Synopsis

#include <math.h>
#pragma STDC FP_CONTRACT on-off-switch

Description

The FP_CONTRACT pragma can be used to allow (if the state is “on”) or disallow (if the state is
“off”) the implementation to contract expressions (6.5). Each pragma can occur either outside
external declarations or preceding all explicit declarations and statements inside a compound
statement. When outside external declarations, the pragma takes effect from its occurrence until
another FP_CONTRACT pragma is encountered, or until the end of the translation unit. When inside
a compound statement, the pragma takes effect from its occurrence until another FP_CONTRACT
pragma is encountered (including within a nested compound statement), or until the end of the
compound statement; at the end of a compound statement the state for the pragma is restored to
its condition just before the compound statement. If this pragma is used in any other context, the
behavior is undefined. The default state (“on” or “off”) for the pragma is implementation-defined.

7.12.3 Classification macros

In the synopses in this subclause, real-floating indicates that the argument shall be an expression of
real floating type.

7.12.3.1 The fpclassify macro

240)The term underflow here is intended to encompass both “gradual underflow” as in IEC 60559and also “flush-to-zero”
underflow.
247)Math errors are being indicated by the floating-point exception flags rather than by errno.

§7.12.3.1 Library 197

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

Synopsis

#include <math.h>
int fpclassify(real-floating x);

Description

The fpclassify macro classifies its argument value as NaN, infinite, normal, subnormal, zero, or
into another implementation-defined category. First, an argument represented in a format wider
than its semantic type is converted to its semantic type. Then classification is based on the type of
the argument.%)

Returns

The fpclassify macro returns the value of the number classification macro appropriate to the value
of its argument.

7.12.3.2 The iscanonical macro
Synopsis

_____#include <math.h>
. int iscanonical(real-floating x);

Description

The iscanonical macro determines whether its argument value is canonical (5.2.4.2.2). First, an
argument represented in a format wider than its semantic e is converted to its semantic type.
Then, determination is based on the e of the arcument.

Returns

The iscanonical macro returns a nonzero value if and only if its argument is canonical.
7.12.3.3 The isfinite macro
Synopsis

#include <math.h>
int isfinite(real-floating x);

Description

The isfinite macro determines whether its argument has a finite value (zero, subnormal, or
normal, and not infinite or NalN). First, an argument represented in a format wider than its semantic
type is converted to its semantic type. Then determination is based on the type of the argument.

Returns
The isfinite macro returns a nonzero value if and only if its argument has a finite value.

7.12.3.4 The isinf macro
Synopsis

#include <math.h>
int isinf(real-floating x);

Description

The isinf macro determines whether its argument value is an infinity (positive or negative). First,
an argument represented in a format wider than its semantic type is converted to its semantic type.
Then determination is based on the type of the argument.

248)Gince an expression can be evaluated with more range and precision than its type has, it is important to know the type
that classification is based on. For example, a normal long double value might become subnormal when converted to
double, and zero when converted to float.

198 Library §7.12.3.4

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Returns
The isinf macro returns a nonzero value if and only if its argument has an infinite value.

7.12.3.5 The isnan macro
Synopsis

#include <math.h>
int isnan(real-floating Xx);

Description

The isnan macro determines whether its argument value is a NaN. First, an argument represented
in a format wider than its semantic type is converted to its semantic type. Then determination is
based on the type of the argument.?*?)

Returns
The isnan macro returns a nonzero value if and only if its argument has a NaN value.

7.12.3.6 The isnormal macro
Synopsis

#include <math.h>
int isnormal(real-floating Xx);

Description

The isnormal macro determines whether its argument value is normal (neither zero, subnormal,
infinite, nor NaN). First, an argument represented in a format wider than its semantic type is
converted to its semantic type. Then determination is based on the type of the argument.

Returns

The isnormal macro returns a nonzero value if and only if its argument has a normal value.

7.12.3.7 The signbit macro
Synopsis

#include <math.h>
int signbit(real-floating x);

Description

The signbit macro determines whether the sign of its argument value is negative.>")

Returns
The signbit macro returns a nonzero value if and only if the sign of its argument value is negative.

7.12.3.8 The issignaling macro
Synopsis

. #include <math.h>

_____int_issignaling(real-floating x);

Description
The issignaling macro determines whether its argument value is a signaling NaN.

Returns

29)For the isnan macro, the type for determination does not matter unless the implementation supports NaNs in the
evaluation type but not in the semantic type.

B0)The signbit macro reports the sign of all values, including infinities, zeros, and NaNs. If zero is unsigned, it is treated
as positive.

§7.12.3.8 Library 199

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

The issignaling macro returns a nonzero value if and only if its argument is a signaling NaN.?>"
7.12.3.9 The issubnormal macro
Synopsis

_____#include <math.h>
... int issubnormal(real-floating x);

Description

The issubnormal macro determines whether its argument value is subnormal. First, an argument
represented in a format wider than its semantic e is converted to its semantic type. Then
determination is based on the type of the arcument.

Returns

The issubnormal macro returns a nonzero value if and only if its argument is subnormal.
7.12.3.10 The iszero macro
Synopsis

_____#include <math.h>
. int iszero(real-floating X);

Description

The iszero macro determines whether its argument value is (positive, negative, or unsigned) zero.
First, an arcument represented in a format wider than its semantic type is converted to its semantic
type. Then, determination is based on the type of the argument.

Returns
The iszero macro returns a nonzero value if and only if its argument is zero.
7.12.4 Trigonometric functions

7.12.4.1 The acos functions
Synopsisreplace Synopsis

#include <math.h>

double acos(double x);

float acosf(float x);

long double acosl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 acosd32(_Decimal32 x);
_Decimal64 acosd64(_Decimal64d x);
_Decimall28 acosd128(_Decimall28 x);
#endif

Description

The acos functions compute the principal value of the arc cosine of x. A domain error occurs for
arguments not in the interval [—1, +1].

Returns
The acos functions return arccos x in the interval [0, 7] radians.

BDE3 specifies that issignaling (and all the other classification macros), raise no floating-point exception if the argument

is a variable, or any other expression whose value is represented in the format of its semantic type, even if the value is a

200 Library §7.124.1

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

7.12.4.2 The asin functions
Synepsisreplace Synopsis

#include <math.h>

double asin(double x);

float asinf(float x);

long double asinl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 asind32(_Decimal32 x);
_Decimal64 asind64(_Decimal64 x);
_Decimall28 asind128(_Decimall28 x);
#endif

Description

The asin functions compute the principal value of the arc sine of x. A domain error occurs for
arguments not in the interval [—1, +1].

Returns
The asin functions return arcsin x in the interval {—#/2:—+#/2}-[—F ., + 7] radians.

7.12.4.3 The atan functions
Synopsisreplace Synopsis

#include <math.h>

double atan(double x);

float atanf(float x);

long double atanl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 atand32(_Decimal32 x);
_Decimal64 atand64(_Decimal64 x);
_Decimall28 atand128(_Decimall28 x);
#endif

Description
The atan functions compute the principal value of the arc tangent of x.

Returns
The atan functions return arctan x in the interval {—/2:—+#/2}-[— 7, 47| radians.

7.12.4.4 The atan2 functions
Synepsisreplace Synopsis

#include <math.h>

double atan2(double y, double x);

float atan2f(float y, float x);

long double atan2l(long double y, long double x);
#ifdef _STDC_IEC_60559_DFP__

_Decimal32 atan2d32(_Decimal32 y, _Decimal32 x);
_Decimal64 atan2d64(_Decimal64 y, _Decimal64 x);
_Decimall28 atan2d128(_Decimall28 y, _Decimall28 x);
#endif

Description

The atan2 functions compute the value of the arc tangent of y/x, using the signs of both arguments
to determine the quadrant of the return value. A domain error may occur if both arguments are zero.

Returns
The atan2 functions return arctan y/x in the interval [—7, +7| radians.

§7.12.4.4 Library 201

ISO/IEC 9899:202x (E) working draft — September 25, 2019

7.12.4.5 The cos functions
Synopsisreplace Synopsis

C17..C201909 2434

#include <math.h>

double cos(double x);

float cosf(float x);

long double cosl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 cosd32(_Decimal32 x);
_Decimal64 cosd64(_Decimal64 x);
_Decimall28 cosd128(_Decimall28 x);
#endif

Description

The cos functions compute the cosine of x (measured in radians).

Returns
The cos functions return cos Xx.

7.12.4.6 The sin functions
Synepsisreplace Synopsis

#include <math.h>

double sin(double x);

float sinf(float x);

long double sinl(long double Xx);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 sind32(_Decimal32 x);
_Decimal64 sind64(_Decimal64 x);
_Decimall28 sind128(_Decimall28 x);
#endif

Description
The sin functions compute the sine of x (measured in radians).

Returns
The sin functions return sin X.

7.12.4.7 The tan functions
Synepsisreplace Synopsis

#include <math.h>

double tan(double x);

float tanf(float x);

long double tanl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 tand32(_Decimal32 x);
_Decimal64 tand64(_Decimalé4 x);
_Decimall28 tand128(_Decimall28 x);
#endif

Description
The tan functions return the tangent of x (measured in radians).

Returns
The tan functions return tan x.

7.12.4.8 The acospi functions
Synopsis

202 Library

§7.124.8

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

#include <math.h>

double acospi(double x);

float acospif(float x);

long double acospil(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 acospid32(_Decimal32 x);
_Decimal64 acospid64(_Decimal6é4 x);
_Decimall28 acospid128(_Decimall28 x);
#endif

Description

2 The acospi functions compute the principal value of the arc cosine of x, divided by =, thus
measuring the angle in half-revolutions. A domain error occurs for arcuments not in the interval
SN

Returns

3 The acospi functions return arccos(x) /7 in the interval [0, 1].

7.12.4.9 The asinpi functions
Synopsis

1 #include <math.h>

double asinpi(double x);

float asinpif(float x);

long double asinpil(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 asinpid32(_Decimal32 x);
_Decimal64 asinpid64(_Decimal64 x);
_Decimall28 asinpid128(_Decimall28 x);
#endif

Description

2 The asinpi functions compute the principal value of the arc sine of x, divided by =, thus measurin:
the angle in half-revolutions. A domain error occurs for areuments not in the interval [—1, +1]. A
range error occurs if the magnitude of nonzero x is too small.

Returns

3 The asinpi functions return arcsin(x) /7 in the interval [1, +1].

7.12.4.10 The atanpi functions
Synopsis

1 #include <math.h>

double atanpi(double x);

float atanpif(float x);

long double atanpil(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 atanpid32(_Decimal32 x);
_Decimal64 atanpid64(_Decimal64 x);
_Decimall28 atanpid128(_Decimall28 x);
#endif

Description

2 The atanpi functions compute the principal value of the arc tangent of x, divided by =, thus

measuring the angle in half-revolutions. A range error occurs if the magnitude of nonzero X is
too small.

Returns

3 The atanpi functions return arctan(x)/r. in the interval [, +1].

§7.12.4.10 Library 203

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

7.12.4.11 The atan2pi functions
Synopsis

#include <math.h>

double atan2pi(double y, double x);

float atan2pif(float y, float x);

long double atan2pil(long double y, long double x);
#ifdef _STDC_IEC_60559_DFP__

_Decimal32 atan2pid32(_Decimal32 y, _Decimal32 x);
_Decimal6é4 atan2pid64(_Decimalé4 y, _Decimal6d Xx);
_Decimall28 atan2pidl28(_Decimall28 y, _Decimall28 x);
#endif

Description

The atan2pi functions compute the angle, measured in half-revolutions, subtended at the origin
by the point (x,y) and the positive x-axis. Thus, the atan2pi functions compute arctan(%)/m, in
the range [~1, +1]. A domain error may occur if both arguments are zero. A range error occurs if X
is positive and the magnitude of nonzero ¥ is too small.

Returns

The atan2pi functions return the computed angle, in the interval [—1, 41].

7.12.4.12 The cospi functions
Synopsis

#include <math.h>

double cospi(double x);

float cospif(float x);

long double cospil(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 cospid32(_Decimal32 x);
_Decimal64 cospid64(_Decimal64d Xx);
_Decimall28 cospid128(_Decimall28 x);
#endif

Description
The cospi functions compute the cosine of 7 x x, thus regarding x as a measurement in

Returns

The cospi functions return cos(r X X)._

7.12.4.13 The sinpi functions
Synopsis

#include <math.h>

double sinpi(double Xx);

float sinpif(float x);

long double sinpil(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 sinpid32(_Decimal32 x);
_Decimal6é4 sinpid64(_Decimal64 x);
_Decimall28 sinpid128(_Decimall28 x);
#endif

Description
The sinpi functions compute the sine of 7 x x, thus regarding x as a measurement in

Returns

204 Library §7.12.4.13

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

3 The sinpi functions return sin(m x x).

7.12.4.14 The tanpi functions
Synopsis

1 #include <math.h>

double tanpi(double x);

float tanpif(float x);

long double tanpil(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 tanpid32(_Decimal32 x);
_Decimal64 tanpid64(_Decimal64 Xx);
_Decimall28 tanpidl28(_Decimall28 x);
#endif

Description

2 The tanpi functions compute the tagent of 7 x x, thus regarding x as a measurement in

Returns
3 The tanpi functions return tan(m x x)._

7.12.5 Hyperbolic functions
7.12.5.1 The acosh functions
Synoepsisreplace Synopsis

1 #include <math.h>

double acosh(double x);

float acoshf(float x);

long double acoshl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 acoshd32(_Decimal32 x);
_Decimal64 acoshd64(_Decimal64 Xx);
_Decimall28 acoshd128(_Decimall28 x);
#endif

Description

2 The acosh functions compute the (nonnegative) arc hyperbolic cosine of x. A domain error occurs
for arguments less than 1.

Returns
3 The acosh functions return arcosh x in the interval [0, +00].

7.12.5.2 The asinh functions
Synoepsisreplace Synopsis

1 #include <math.h>

double asinh(double x);

float asinhf(float x);

long double asinhl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 asinhd32(_Decimal32 x);
_Decimal64 asinhd64(_Decimal64 x);
_Decimall28 asinhd128(_Decimall28 x);
#endif

Description
2 The asinh functions compute the arc hyperbolic sine of x.

§7.12.5.2 Library 205

2

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

Returns
The asinh functions return arsinh x.

7.12.5.3 The atanh functions
Synepsisreplace Synopsis

#include <math.h>

double atanh(double x);

float atanhf(float x);

long double atanhl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 tanhd32(_Decimal32 x);
_Decimal64 tanhd64(_Decimal64 x);
_Decimall28 tanhd128(_Decimall28 x);
#endif

Description

The atanh functions compute the arc hyperbolic tangent of x. A domain error occurs for arguments

not in the interval [—1, +1]. A pole error may occur if the argument equals-1 or+1.

Returns
The atanh functions return artanh x.

7.12.5.4 The cosh functions
Synepsisreplace Synopsis

#include <math.h>

double cosh(double x);

float coshf(float x);

long double coshl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 coshd32(_Decimal32 x);
_Decimal64 coshd64(_Decimal64 x);
_Decimall28 coshd128(_Decimall28 x);
#endif

Description

The cosh functions compute the hyperbolic cosine of x. A range error occurs if the magnitude of x

is too large.

Returns
The cosh functions return cosh x.

7.12.5.5 The sinh functions
Synopsisreplace Synopsis

#include <math.h>

double sinh(double x);

float sinhf(float x);

long double sinhl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 sinhd32(_Decimal32 x);
_Decimal64 sinhd64(_Decimal64 x);
_Decimall28 sinhd128(_Decimall28 x);
#endif

Description

The sinh functions compute the hyperbolic sine of x. A range error occurs if the magnitude of x is

too large.

206 Library

§7.1255

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Returns
The sinh functions return sinh x.

7.12.5.6 The tanh functions
Synepsistreplace Synopsis

#include <math.h>

double tanh(double x);

float tanhf(float x);

long double tanhl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 tanhd32(_Decimal32 x);
_Decimal64 tanhd64(_Decimal64 x);
_Decimall28 tanhd128(_Decimall28 x);
#endif

Description

The tanh functions compute the hyperbolic tangent of x.

Returns
The tanh functions return tanh x.

7.12.6 Exponential and logarithmic functions
7.12.6.1 The exp functions
Synoepsisreplace Synopsis

#include <math.h>

double exp(double Xx);

float expf(float x);

long double expl(long double Xx);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 expd32(_Decimal32 x);
_Decimal64 expd64(_Decimalé4 x);
_Decimall28 expd128(_Decimall28 x);
#endif

Description

The exp functions compute the base-e exponential of x. A range error occurs if the magnitude of x is
too large.

Returns

The exp functions return e*.

7.12.6.2 The expl0 functions
Synopsis

#include <math.h>

double explO(double x);

float explof(float x);

long double explOl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 expl0d32(_Decimal32 x);
_Decimal64 expl0d64(_Decimal64 x);
_Decimall28 expl0d128(_Decimall28 x);
#endif

Description

The expl0 functions compute the base-10 exponential of x. A range error occurs if the magnitude
of finite x is too large.

§7.12.6.2 Library 207

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

Returns
The expl0 functions return 10,

7.12.6.3 The explOml functions
Synopsis

#include <math.h>

double explOml(double x);

float explOmlf(float x);

long double explOmll(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 explOmld32(_Decimal32 x);
_Decimal64 explOmld64(_Decimalé4 x);
_Decimall28 explOmld128(_Decimall28 x);
#endif

Description

The exp10ml functions compute the base-10 exponential of the argument, minus 1. A range error
occurs if finite x is too large or if the magnitude of nonzero x is too small.

Returns

The expl0ml functions return 10X — 1.

7.12.6.4 The exp2 functions
Synepsisreplace Synopsis

#include <math.h>

double exp2(double x);

float exp2f(float x);

long double exp2l(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 exp2d32(_Decimal32 x);
_Decimal64 exp2d64(_Decimalé4 x);
_Decimall28 exp2d128(_Decimall28 x);
#endif

Description

The exp2 functions compute the base-2 exponential of x. A range error occurs if the magnitude of x
is too large.

Returns
The exp2 functions return 2.

7.12.6.5 The exp2ml functions
Synopsis

#include <math.h>

double exp2ml(double Xx);

float exp2mlf(float x);

long double exp2mll(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 exp2mld32(_Decimal32 x);
_Decimal6é4 exp2mld64(_Decimal64 x);
_Decimall28 exp2mld128(_Decimall28 x);
#endif

Description

The exp2ml functions compute the base-2 exponential of the argument, minus 1. A range error
occurs if the magnitude of x is too large or if the magnitude of nonzero x is too small.

208 Library §7.12.6.5

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

Returns

The exp2ml functions return 2* — 1.

7.12.6.6 The expml functions
Synepsistreplace Synopsis

#include <math.h>

double expml(double x);

float expmlf(float x);

long double expmll(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 expmld32(_Decimal32 x);
_Decimal64 expmld64(_Decimal64 Xx);
_Decimall28 expmld128(_Decimall28 x);
#endif

Description

The expml functions compute the base-e exponential of the argument, minus 1. A range error occurs
if positive x is too large.??

Returns

The expml functions return ¢* — 1.

7.12.6.7 The frexp functions
Synopsisreplace Synopsis

#include <math.h>

double frexp(double value, int xp);

float frexpf(float value, int xp);

long double frexpl(long double value, int xp);
#ifdef _STDC_IEC_60559_DFP__

_Decimal32 frexpd32(_Decimal32 value, int xp);
_Decimal64 frexpd64(_Decimal64 value, int x*p);
_Decimall28 frexpdl28(_Decimall28 value, int x*p);
#endif

Description
The frexp functions break a floating-point number into a normalized fraction and an integral-power
of 2integer exponent. They store the integer in the int object pointed to by exp-p. If the type of

the function is a standard floating type, the exponent is an integral power of 2. If the type of the
function is a decimal floating type, the exponent is an integral power of 10.

Returns

If value is not a floating-point number or if the integral power of2-is outside the range of int,
the results are unspecified. Otherwise, the frexp functions return the value x, such that x has a
magnitude in the interval 1/2-+)-[1, 1) or zero, and value equals x-<-2P—x x 2P, when the type
of the function is a standard floating type; or x has a magnitude in the interval [1/10. 1) or zero, and

value equals x x 10*P, when the type of the function is a decimal floating type. If value is zero,
both parts of the result are zero.

7.12.6.8 The ilogb functions
Synopsisreplace Synopsis

i #include <math.h>

\ int ilogb(double x);

\ int ilogbf(float x);

\ int ilogbl(long double x);

‘ #ifdef _STDC_IEC_60559_DFP__

252)For small magnitude x, expml (x) is expected to be more accurate than exp(x) - 1.

§7.12.6.8 Library 209

ISO/IEC 9899:202x (E) working draft — September 25, 2019 C17..C201909 2434

\ int ilogbd32(_Decimal32 x);

\ int ilogbd64(_Decimal64 x);

\ int iloghd128(_Decimall28 x);
\ #endif

Description

The ilogb functions extract the exponent of x as a signed int value. If x is zero they compute the
value FP_ILOGBO; if x is infinite they compute the value INT_MAX; if x is a NaN they compute the
value FP_ILOGBNAN; otherwise, they are equivalent to calling the corresponding logb function and
easting-converting the returned value to type int. A domain error or range error may occur if x is
zero, infinite, or NaN. If the correct value is outside the range of the return type, the numeric result
is unspecified and a domain error or range error may occur.

Returns
The ilogb functions return the exponent of x as a signed int value.

Forward references: the logb functions (7.12.6.17).

7.12.6.9 The ldexp functions
Synopsisreplace Synopsis

#include <math.h>

double ldexp(double x, int p);

float ldexpf(float x, int p);

long double ldexpl(long double x, int p);
#ifdef _STDC_IEC_60559_DFP__

_Decimal32 ldexpd32(_Decimal32 x, int p);
_Decimal64 ldexpd64(_Decimal64 x, int p);
_Decimall28 ldexpd128(_Decimall28 x, int p);
#endif

Description

The ldexp functions multiply a floating-point number by an integral power of 2-2 when the type of
the function is a standard floating type, or by an integral power of 10 when the type of the function
is a decimal floating type. A range error may occur.

Returns

The ldexp functions return x—<2*2x x 2P when the type of the function is a standard floating type,
or return X x 10P when the type of the function is a decimal floating type.

7.12.6.10 The 1logb functions
Synopsis

#include <math.h>

~~kong int llogb(double x);

... Long int llogbf(float x);

o~ Long int 1logbl(long double x);
o Hifdef __STDC_IEC 60559 _DFP__
o~ long dnt llogbd32(Decimal32 x);
... Long int llogbd64(Decimaled x);

_____#endif
Description

The 1logb functions extract the exponent of x as a signed long int value. If x is zero they compute
the value FP_LLOGBO; if X is infinite they compute the value LONG_MAX; if x is a NalN they compute

210 Library §7.12.6.10

2434 C17..C201909 working draft — September 25, 2019 ISO/IEC 9899:202x (E)

the value FP_LLOGBNAN; otherwise, they are equivalent to calling the corresponding logb function
and converting the returned value to type long int. A domain error or range error may occur if
x is zero, infinite, or NaN. If the correct value is outside the range of the return type, the numeric
result is unspecified.

Returns
The 1logb functions return the exponent of x as a signed long int value.
Forward references: the logb functions (7.12.6.17).

7.12.6.11 The log functions
Synopsis

#include <math.h>

double log(double x);

float logf(float x);

long double logl(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 logd32(_Decimal32 x);
_Decimal64 logd64(_Decimal64 x);
_Decimall28 logdl28(_Decimall28 x);
#endif

Description

The log functions compute the base-e (natural) logarithm of x. A domain error occurs if the
argument is negative. A pole error may occur if the argument is zero.

Returns
The log functions return log, x.

7.12.6.12 The logl0 functions
Synoepsisreplace Synopsis

#include <math.h>

double logl0(double x);

float loglOf(float x);

long double logl01l(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 1log10d32(_Decimal32 x);
_Decimal64 1o0g10d64(_Decimal64 Xx);
_Decimall28 1logl0d128(_Decimall28 x);
#endif

Description

The 1og10 functions compute the base-10 (common) logarithm of x. A domain error occurs if the
argument is negative. A pole error may occur if the argument is zero.

Returns
The 1og10 functions return log; x.

7.12.6.13 The logl0p1l functions
Synopsisreplace Synopsis

#include <math.h>

double loglOpl(double x);

float loglOplf(float x);

long double loglOpll(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 1logl10pld32(_Decimal32 x);
_Decimal64 1oglOpld64(_Decimalé4d x);
_Decimall28 logl0pld128(_Decimall28 x);

§7.12.6.13 Library 211

ISO/IEC 9899:202x (E)

#endif

working draft — September 25, 2019

C17..C201909 2434

Description

The logl10pl functions compute the base-10 logarithm of 1 plus the argument. A domain error
occurs if the argument is less than —1. A pole error may occur if the argument equals —1. A range

error occurs if the magnitude of nonzero X is too small.
Returns

The 1og10p1 functions return logo(1 4 x)..

7.12.6.14 The loglp and logpl functions
Synopsis

#include <math.h>

double loglp(double Xx);

float loglpf(float x);

long double loglpl(long double x);
double logpl(double Xx);

float logplf(float x);

long double logpll(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 loglpd32(_Decimal32 x);
_Decimal64 loglpd64(_Decimal64 x);
_Decimall28 loglpdl28(_Decimall28 x);
_Decimal32 logpld32(_Decimal32 x);
_Decimal64 logpld64(_Decimal64d x);
_Decimall28 logpld128(_Decimall28 x);
#endif

Description
The loglp functions are equivalent to the logpl functions. These functions compute the base-e

(natural) logarithm of 1 plus the argument.”®® A domain error occurs if the argument is less than

—1. A pole error may occur if the argument equals —1.

Returns

The loglp and logpl functions return log, (1 + X).

7.12.6.15 The log2 functions
Synopsisreplace Synopsis

#include <math.h>

double log2(double x);

float log2f(float x);

long double log21l(long double x);
#ifdef _STDC_IEC_60559_DFP__
_Decimal32 log2d32(_Decimal32 x);
_Decimal64 log2d64(_Decimal64d x);
_Decimall28 log2d128(_Decimall28 x);
#endif

Description

The log2 functions compute the base-2 logarithm of x. A domain error occurs if the argument is less

than zero. A pole error may occur if the argument is zero.

Returns

The log2 functions return log, X.

253)For small magnitude x, Logpl(