
ISO/IEC JTC 1/SC 22/WG14

September 13, 2019

N2425

v 2
intmax t, a way out v.2
Ease the definition of extended integer types

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

The specifications of types [u]intmax_t and extended integer types lack to provide the extensibility feature

for which they are designed. As a consequence existing “64 bit” implementations are not able to add standard
conforming interfaces to their 128 bit or 256 bit integer types without breaking ABI compatibility.

Changelog:

— Changes from v.1, n2303:
— A detailed list of the types that are covered by [u]intmax_t is added to the normative text.

— A new pair of types is added that also captures extended integer types and that can be used for printf
and similar, but that should not be part of any API or ABI.

— The co-existence of “least” and “fast” signed and unsigned pairs of is enforced.

— Range inclusion of “least” and “fast” types with width N < M is enforced.

— Introduce type-generic macros int_abs, int_div, int_max, and int_min, intended to replace and com-
plement imaxabs and imaxdiv functions.

— Substitute integer-power functions compoundn, pown and rootn by type-generic macros of the same name

that avoid the use of the [u]intmax_t types.
— Substitute integer-power functions fromfp and similar by type-generic macros toint, touint, tointx

and touintx that avoid the use of the [u]intmax_t types.
— A previous version of this proposal has been discussed in message SC22WG14.15569 and the depending

thread on the WG14 reflector.

Note: This paper assumes the prior integration of N2412, “Two’s complement
sign representation for C2x”

Contents

1 Problem description 2

2 Suggested changes 2
2.1 Changes directly concerning [u]intmax_t 2
2.2 Marginaly corrections for exact width macros and similar 3
2.3 Tighten the rules for least and fast minimum-width integer types 4
2.4 New type aliases for the widest type pair . 4
2.5 Chasing [u]intmax_t from standard interfaces 5

2.5.1 Type-generic macros for common integer operations 6
2.5.2 Integer-power type-generic macros 7
2.5.3 Nearest integer type-generic macros 7

3 Impact 7
3.1 Existing implemenations and code . 7
3.2 Extensibility of ABI’s . 8

© 2019 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License

N2425:2 Jens Gustedt

1. PROBLEM DESCRIPTION

The interaction between the definition of extended integer types and [u]intmax_t has re-
sulted in a lack of extensibility for existing ABI. Platforms that fixed their specifications
for the basic integer types and for [u]intmax_t cannot add an extended integer type that
is wider than their current [u]intmax_t to their specification. As the current text of the
C standard stands, such an addition would force a redefintion of [u]intmax_t to the wider
types. This would have the following consequences:

— The parts of the C library that use [u]intmax_t (specific functions but also printf and
friends) must be rewritten or recompiled with the new ABI and become binary incompat-
ible with existing programs.

— Programs compiled with the new ABI would be binary incompatible on platforms that
have not been upgraded.

— The preprocessor of the implementation must be re-engineered to comply to the standard.
In particular, there would occur severe specification problems for preprocessor numbers
and their evaluation. E.g the value of ULLONG_MAX+1 is not expressible as a literal in the
language proper but would be for the preprocessor. The expression ULLONG_MAX+1 would
evaluate to true in a preprocessor conditional but to 0 (false) in later compilation phases.

As a consequence of these difficulties the concept of “extended integer type” is merely
unused by implementations. I have not heard of any implementation that uses this concept.
So as it stands this idea of “extended integer type” is basically a failure, nobody uses it,
and intmax_t is usually just long or long long.
This has lead to a sensible backlog for platforms such as gcc or clang that provide emulated
128 bit integer types (__[u]int128_t) on 64 bit platforms. They are not able to provide
them as “extended integer types” in the sense of the C standard. More and more processor
platforms even provide rudimentary support of 128 or 256 bit integers in hardware (e.g In-
tel’s AVX vector unit), so it would really be productive to give more slack to implementations
to integrate these types into existing ABI.
Generally, we should not block implementations that are able to provide exact-width integer
types for N > 64. These types can for example be used efficiently for bitsets, UUIDs,
cryptography, checksums or networking (ipv6). They have well-defined standard interfaces
in the form of ([u]intN_t) with easy to use feature tests.

2. SUGGESTED CHANGES

2.1. Changes directly concerning [u]intmax_t

I suggest to change the specification of [u]intmax_t such that they are only at least as wide
as any integer type used by the standard. Thereby the greatest-width types do not have to
cover all integer types, in particular not extended integer types that might be added later
to an ABI.
The change to the standard can be isolated in 7.20.1.15. The two main changes would be
changing p1 and add a recommended practice section:

7.20.1.5 Greatest-width integer types

:::
The

::::::
types

::::::::
intmax_t

::::
and

::::::::::
uintmax_t

::::::::
designate

::
a
::::::
signed

::::
and

:::
an

::::::::
unsigned

:::::::
integer

::::
type,

::::::::::::
respectively,

::::
that

:::
are

:::
at

::::
least

:::
as

::::
wide

:::
as

::::
any

:::::
basic

::::::
integer

:::::
type,

::::
the

:::::
types

:

char16_t
char32_t
int_fast64_t

int_least64_t
ptrdiff_t
sig_atomic_t

size_t
uint_fast64_t
uint_least64_t

wchar_t
wint_t

intmax t, a way out v.2 N2425:3

::::
and,

::::::::
provided

:::::
they

:::::
exist,

::::::::
intptr_t

::::
and

:::::::::::
uintptr_t. These types are required.

::::::
Note:

:::::::::
Extended

::::::
integer

:::::
types

:::::
that

:::
are

::::
not

:::::::
referred

:::
by

:::
the

::::::
above

:::
list

::::
and

:::::
that

:::
are

:::::
wider

:::::
than

::::::
signed

:::::
long

:::::
long

:::
int

:::::
may

::::
also

:::
be

:::::
wider

:::::
than

:::::::::
intmax_t.

:

::::::::::::::::::::::::
Recommended practice:

::::::
Unless

:::::
some

::::::::
typedef

::
in

::::
the

::::::
library

::::::
clause

::::::::
enforces

:::::::::
otherwise,

::
it

::
is

:::::::::::::
recommended

::
to

:::::::
resolve

:::::
these

::::::
types

::
to

:::::
long

:::
or

::::::::::
long long

::::
and

:::
the

:::::::::::::
corresponding

:::::::::
unsigned

:::::::::::
counterpart.

::
It
::
is
:::::::::::::

recommended
:::::
that

:::
the

:::::
same

::::
set

::
of

:::::::
integer

:::::::
literals

::
is

:::::::::::
consistently

:::::::::
accepted

:::
by

:::
all

:::::::::::
compilation

::::::::
phases,

::::
even

:::
if

:::::::::::::
greatest-width

:::::
types

:::
are

:::::::
chosen

::::
that

:::
are

::::::
wider

::::
than

:::::::::::
long long.

Question 1. Shall the requirements for the types [u]intmax_t be relaxed to cover only
basic integer types and other semantic integer types as proposed in N2425?

2.2. Marginaly corrections for exact width macros and similar

Relaxing the requirements on [u]intmax_t and have extended integer types that are wider
that that, has one marginal implication: wide extended integer types might now have literals
that cannot be use as preprocessing numbers within #if expressions. We propose to force a
diagnosis of such situations (this all happens in the preprocessor) by formulating constraints
that forbid such a use.
For the _C macros, the text for that is an addition to the end of 7.20.4 p1:

:::
For

::::::
types

::::::
wider

:::::
than

:::::::::::
uintmax_t,

:::
the

::::::::
macros

:::::
shall

:::::
only

:::
be

:::::::
defined

:::
if

::::
the

::::::::::::::
implementation

::::::::
provides

:::::::
integer

:::::::
literals

:::
for

::::
the

:::::
type

::::
that

::::
are

::::::::
suitable

:::
to

:::
be

::::
used

::
in

::::
#if

::::::::::::
preprocessing

::::::::::
directives.

:::::::::
Otherwise,

::::
the

:::::::::
definition

::
of

:::::
these

:::::::
macros

::
is

::::::::::
mandatory

:::
for

:::
any

:::
of

:::
the

:::::
types

:::::
that

:::
are

::::::::
provided

:::
by

:::
the

:::::::::::::::
implementation.

:

Question 2. Shall the _C macros for minimum-width types that are wider than
UINTMAX_WIDTH be constrained as proposed in N2425?

For the _MAX and _MIN macros, the text has a similar addition to the end of 7.20.5 p1:

:::
For

:::::
types

::::::
wider

:::::
than

::::::::::
uintmax_t

::::
and

::::
for

::::::
which

:::
the

:::::::::::::
corresponding

::::::::::
minimum

:::::
width

:::::::
integer

::::::::
constant

::::::
macro

::::
with

:::::
suffix

:::
_C

::
is

:::
not

::::::::
defined,

:::::::
7.20.4.1

::::
and

::::::::
7.20.4.2,

:::
the

::::::
macros

::::
are

:::
not

::::::::::
necessarily

:::::::
suitable

::
to

:::
be

::::
used

:::
in

:::
#if

::::::::::::
preprocessing

::::::::::
directives.

and to the addition of Constraints and Recommended practice as follows:

::::::::::::
Constraints

:
If
:::
N

::
is

:::::::
greater

::::
than

::::::::::::::
UINTMAX_WIDTH

::::
and

:::
the

:::::::::::::
corresponding

:::::::
macros

::::::::
INT N _C

:::
or

::::::::
UINT N _C

::::
are

:::
not

:::::::
defined,

::::
the

:::::::
derived

::::
_MIN

::::
and

::::
_MAX

:::::::
macros

:::
for

:::
the

::::::::::::
exact-width,

::::::::::::::
minimum-width

::::
and

::::::
fastest

:::::::::::::::
minimum-width

:::::
types

:::
for

::
N

:::::
shall

:::
not

:::
be

:::::
used

::
in

:::
an

:::
#if

::::::::::::
preprocessing

:::::::::
directive,

:::::
unless

:::::
they

:::
are

:::::::
operand

:::
of

:::
the

:::::::
defined

:::::::::::::
operator.FNT

::::::::

FNTThis
:::::::::
constraint

:::::::
reflects

:::
the

::::
fact

::::
that

:::::
these

::::::
macros

::::
may

:::::
have

:::::::::
numerical

::::::
values

::::
that

::::::
exceed

:::
the

:::::::
largest

:::::
value

::::
that

::
is
:::::::::::::
representable

::::::
during

:::::::::::::
preprocessing.

::
In

:::::
that

::::
case

:::::
these

::::::::
constants

::::
will

:::::::::
generally

::
be

:::::::::
expressed

:::
by

::::::::
constant

::::::::::
expressions

::::
that

::::
are

::::
more

::::::::
complex

::::
and

::::
not

:::::::
suitable

:::
for

:::::::::::::
preprocessing.

::::::::::::::::::::::::
Recommended practice:

::::::::
Because

:::
of

::::
the

:::::::
above

:::::::::::
constraints,

::::::::::::
applications

::::::
should

:::::
prefer

::::
the

:::::::
_WIDTH

::::::
macros

:::::
over

:::
the

:::::
_MIN

::
or

:::::
_MAX

:::::::
macros

:::
for

:::::::
feature

:::::
tests

::
in

:::
#if

:::::::::::::
preprocessing

:::::::::
directives.

:

N2425:4 Jens Gustedt

Question 3. Shall _MAX and _MIN macros of the exact-with and least and fasted
minimum-width types that are wider than UINTMAX_WIDTH be constrained not to be used
during preprocessing as proposed in N2425?

2.3. Tighten the rules for least and fast minimum-width integer types

When trying to formulate the features proposed in this paper, we noticed some lack of
precisions and requirements for the least and minimum-width integers. For example no text
currently explicitly says that the pairs of such designated types have to be the corresponding
signed and unsigned integer types, nor is the existence of these types enforced, if the fixed-
width types exist.
As such I don’t think they are a big deal and everybody does this probably in a reasonable
way. Nevertheless, I think it would help if these aspects were clarified. The corresponding
text is relatively straight forward and can be found in the annex.

Question 4. Shall complementarity of signed and unsigned least and fast minimum-
width type pairs be enforced as proposed in N2425?

Question 5. Shall the least and fast minimum-width type pairs be required if the corre-
sponding exact-width type is provided as proposed in N2425?

Question 6. Shall the value ranges for least and fast minimum-width types with width
N < M be enforced as proposed in N2425?

2.4. New type aliases for the widest type pair

A new second paragraph should be added to 7.20.1.5 to introduce the new types. We
only would require them to be at least as wide as all integer types that are introduced in
<stdint.h>; that is they would be at least as wide as [u]intmax_t and all other optional
exact-width and least and fasted minimum-width types that are provided by the plate-forme.

:::
The

::::::
types

:::::::::::::::
int_leastmax_t

::::
and

::::::::::::::::
uint_leastmax_t

:::::::::
designate

::
a
::::::
signed

:::::
and

:::
an

::::::::
unsigned

::::::
integer

:::::
type,

::::::::::::
respectively,

::::
that

:::
are

:::
at

::::
least

:::
as

::::
wide

:::
as

::::
any

::::::
integer

:::::
type

::::::
defined

:::
by

:::
the

:::::::
header

:::::::::::
<stdint.h>.

::::::
These

:::::
types

::::
are

::::::::
required.

:

The note introduced previously is then amended and results in three notes and an example
as follows.

:::::::
Note 1:

:::::
The

::::::::
intmax_t

::::
and

::::::::::
uintmax_t

:::::
types

:::
are

::::::::
intended

:::
to

:::::::
provide

:
a
::::::::
fallback

::
for

::::::::::::
applications

:::::
that

:::::
deal

:::::
with

::::::::
integers

::::
for

::::::
which

:::::
they

:::::
lack

:::::::
specific

::::::
type

:::::::::::
information.

::::
This

:::::::
mainly

::::::
occurs

::::
for

::::
two

::::::::
different

:::::::::
situations.

::::::
First,

:::
for

::::::::
integers

::::
that

:::::::
appear

:::
in

:::::::::::
conditional

::::::::
inclusion

:::::
(#if

::::::::::::
expressions,

:::::::
6.10.1)

:::::
they

::::::::
provide

:::::::
fallback

::::::
types

::::
that

::::::::
capture

::::
the

:::::::::::::::
implementation

::::::::
specific

:::::::::::
capabilities

:::::::
during

:::::::::
translation

::::::
phase

::
4.
::::::::

Second,
:::
for

:::::
some

:::::::::
semantic

::::
type

::::::::::
definitions

::::
that

:::::::
resolve

:::
to

::::::::::::::
implementation

::::::
specific

::::::
types

::::
there

::::
are

::
no

:::::::
special

:::::::::
provisions

:::
for

:::::::
printf,

:::::
scanf

:::
or

::::::
similar

:::::::::
functions.

:::
In

:::::::::
particular,

::::
the

::::::::
intmax_t

::::
and

::::::::::
uintmax_t

:::::
types

:::
are

:::::::::
intended

::
to

:::::::::
represent

::::::
values

::
of

:::
all

::::::
types

::::::
listed

:::::
above

:::::
and

::::
also

::::
the

:::::::::::
exact-width

:::::::
integer

:::::
types

:::
for

::
all

::::::::
N ≤ 64.

:

:::::::
Note 2:

::::::::::
Extended

::::::
integer

::::::
types

:::::
that

:::
are

::::
not

:::::::
referred

:::
by

::::
the

::::::
above

::::
list

::::
and

::::
that

:::
are

::::::
wider

:::::
than

:::::::
signed

::::
long

:::::
long

::::
int

:::::
may

::::
also

:::
be

:::::
wider

:::::
than

::::::::::
intmax_t.

:::
The

::::::
types

::::::::
intmax_t

::::
and

:::::::::::::::
int_leastmax_t

::::
may

:::::
then

:::
be

::::::::
different.

:

:::::::
Note 3:

:::::
The

:::::::::::::::
int_leastmax_t

::::
and

:::::::::::::::::
uint_leastmax_t

:::::
types

::::
are

:::::::::
intended

:::
to

::::::
provide

::
a
::::::::

fallback
:::
for

:::::::::::
applications

:::::
that

::::
deal

:::::
with

:::::::::
unknown

:::::::
integer

:::::
types

:::::
that

:::
are

::::::::::
potentially

:::::
wider

:::::
than

:::::::::
intmax_t

::
or

::::::::::
uintmax_t.

:

intmax t, a way out v.2 N2425:5

:::::::::
Example:

::::
An

:::::::::::::::
implementation

::::
that

::::
has

:::::::::::
historically

:::::
fixed

:::
its

:::::
type

:::::::::
intmax_t

::
to

::
a
:::

64
::::

bit
::::::

type,
:::::

and
:::::
seeks

:::
to

:::::
add

::
a
:::::

128
:::
bit

::::::::
integer

:::::::::::
exact-width

::::::
type

::
to

:::
its

:::::::::
extended

::::::::
integer

::::::
types,

:::::
may

::::
do

:::
so

:::
by

::::::::::
providing

::::::
types

:::::::::::
uint128_t,

::::::::::::::::
uint_least128_t,

::::::::::::::::
uint_least128_t,

::::::::::::::::
uint_leastmax_t

:::::
and

:::
the

::::::::::::::
corresponding

:::::
signed

::::::
types

::::
and

:::::::
macros

::
of

:::::::::
stdint.h

::::
and

::::::::::
inttypes.h

:::::::
(7.8.1)

:::::::
without

:::::::::
breaking

::::::
binary

::::::::::::
compatibility.

:

::::::::::
Application

:::::
code

:::
can

:::::
then

:::::
query

::::
the

::::
type

::::
and

:::::
print

::
it

::
by

::::::
using

:::
the

:::::::::::
appropriate

:::::::
macros:

1 #include <stdint.h>
2 #include <stdio.h>
3 #include <inttypes.h>
4 #ifdef UINT128_MAX // ok, because #ifdef
5 typedef uint128_t bitset;
6 #else
7 typedef uint_least64_t bitset;
8 #endif
9 int main(void) {

10 bitset all = -1;
11 printf("the␣largest␣set␣is␣%#"

PRIXLEASTMAX "\n", (uint_leastmax_t)
all);

12 }

The “recommended practice” introduced previously is then amended to make clear that
[u]int_leastmax_t should never take part in any API or ABI.

:::::::::::::::
Implementations

:::
and

:::::::::::
applications

::::::
should

::::
not

:::
use

:::
the

:::::
types

:::::::::::::::
int_leastmax_t

::::
and

:::::::::::::::
uint_leastmax_t

::
to

::::::::
describe

:::::::::::
application

:::::::::::::
programmable

:::::::::
interfaces.

To be fully operational, also some macros (_MAX etc) must be added to the text for stdint.h.
These additions are straight forward and can be seen in the Appendix.
The “recommended practice” introduced previously is then amended to make clear that
these macros should be used with care during preprocessing.

:
If
::::
the

::::::
macros

:::::::::::::::
INT_LEASTMAX_C

:::
and

::::::::::::::::
UINT_LEASTMAX_C

:::
are

:::
not

::::::::
defined,

:::
the

:::::::
derived

::::::
macros

:::::::::::::::::
INT_LEASTMAX_MIN,

:::::::::::::::::
INT_LEASTMAX_MAX

::::
and

:::::::::::::::::
UINT_LEASTMAX_MAX

:::::
shall

::::
not

::
be

::::
used

:::
in

::
an

::::
#if

::::::::::::
preprocessing

:::::::::
directive,

:::::
unless

:::::
they

:::
are

::::::::
operand

::
of

:::
the

::::::::
defined

::::::::
operator.

Question 7. Shall types [u]int_leastmax_t be added to the C standard as proposed in
N2425?

Question 8. If not, shall types with the indicated semantics of [u]int_leastmax_t as
proposed in N2425 but with different names be added to the C standard?

2.5. Chasing [u]intmax_t from standard interfaces

To avoid such situations where implementations get stuck because of early ABI choices, I
think that it would be good to phase out all interfaces that use [u]intmax_t, and to replace
them by type-generic macros, instead. These interfaces in the C standard are

N2425:6 Jens Gustedt

imaxabs
imaxdiv
strtoimax

strtoumax
wcstoimax
wcstoumax

compoundn
pown
rootn

fromfp
fromfpx

ufromfp
ufromfpx

Only the first six appear already in a published version of the standard, so we should not
remove them, just declare them obsolescent. The others are current additions that are not
yet published, so it is still time to completely replace them by the alternatives as proposed
below.
The basic idea for all the replacements is to use type-generic interfaces.

— For the first six, standard functions already exist for the wide basic integer types. Since
[u]intmax_t have never been used in the field with other types than long or long long,
this is just code duplication and the long long interface could clearly have worked all
along.

— In contrast to a catch-all solution with [u]intmax_t a type-generic solution always chooses
the right interface for the type at hand and avoids useless conversion to (for the function
argument) and from (for the return value) a wider type.

— Just specifying type-generic macros and not specific functions, allows implementations to
provide the functionally by functions that only have internal names or other mechanisms
to their liking. This reduces the risk of name conflicts in the source (only may occur when
the header is included) and during linking.

— Type-generic macros are also more flexible, because implementations may add cases as
they go, e.g if they introduce 128 bit floating types and integer types at the same time.

The text for all these type-generic interfaces are just additions and clearly identifiable in
the appendix, so it is not repeated here. We explain them more in detail in the following
sections.
For the {str|wcs}to[ui]max functions, the proposal is even simpler. The underlying family
of functions cannot use the type of their argument to distinguish which type should be
returned. If we want to phase out the [u]intmax_t types, such functions should simply not
be used, but the appropriate function for the sought user type should be used directly.

Question 9. Shall we mark the {str|wcs}to[ui]max functions as obsolescent as pro-
posed in N2425?

2.5.1. Type-generic macros for common integer operations

— The interface imaxabs has the particularity that it is not defined for all inputs, because
the mathematical value -INTMAX_MAX is out of range of the type intmax_t. This is an
unnecessary restriction because:
— We know that the result is not negative, anyhow.
— The type uintmax_t comprises all the possible return values.
Therefore we propose a type-generic macro that does not follow the previous interface
where we have the same return type as the parameter type. Instead, it returns the unsigned
type of the parameter type. Thereby the proposed type-generic solution is well-defined for
all argument values.

Question 10. Shall we introduce the type-generic macro int_abs to the C standard
as proposed in N2425?

Question 11. Shall we mark the imaxabs function as obsolescent as proposed in
N2425?

— The interface imaxdiv even introduces a new type imaxdiv_t that is unnecessary because
for all current implementations lldiv_t would do. Also the current version with a function
has no defined behavior if the function is called with an unsigned argument that is larger

intmax t, a way out v.2 N2425:7

than INTMAX_MAX. With our proposal it is a constraint violation to call the type-generic
macro with a first unsigned and second signed argument where there is no signed supertype
of the first argument type.

Question 12. Shall we introduce the type-generic macro int_div to the C standard
as proposed in N2425?

Question 13. Shall we mark the imaxdiv function as obsolescent as proposed in
N2425?

— As a little sidetrack we also propose to complete the picture by adding maximum and
minimum type-generic macros to the same clause. The first can profit from a similar
observation as int_abs. In case that the argument types are mixed signed and unsigned,
it is sufficient to return an unsigned type to cover all the possible return values.

Question 14. Shall we introduce the type-generic macro int_max to the C standard
as proposed in N2425?

— For the minimum, things are a bit more complicated. Here we have to require that a
common signed supertype for the two argument types must exist.

Question 15. Shall we introduce the type-generic macro int_min to the C standard
as proposed in N2425?

2.5.2. Integer-power type-generic macros

The current version of C2x proposes to add three new “integer-power function” of different
flavor. In the current proposal the type of the integer parameter is intmax_t. This is not
strictly necessary, long long should be largely enough. Our proposal uses an unspecified
integer type that could vary between implementations, as long as it is wide enough to cover
the possible values for the operation.

Question 16. Shall we replace the functions of type compoundn, rootn and pown by the
type-generic macros as proposed in N2425?

2.5.3. Nearest integer type-generic macros

The newly introduced nearest integer type functions fromfp, fromfpx, ufromfp, and
ufromfpx all use a return type of intmax_t, but for no compelling reason. As already ob-
served for other functions, a return type of long long would generally be sufficient, to
capture the possible return values.
A type-generic macro has the advantage that the return type has not to be fixed once and
for all, but that the addition of new floating point types to an implementation, would allow
to define an appropriate return type that is adapted to the situation.
Since some implementations that implement the previous API (and depending ABI) might
already be out there, we propose to rename the feature such that it better fits into the
established naming scheme.

Question 17. Shall we introduce the type-generic macros to{u}?int{x}? to the C stan-
dard as proposed in N2425?

Question 18. Shall we remove the {u}?fromfp{x}? functions from the C standard as
proposed in N2425?

3. IMPACT

3.1. Existing implemenations and code

With such a change of the C standard, no existing ABI would have to change, and the
preprocessor support for integer expressions could remain unchanged.

N2425:8 Jens Gustedt

Since the concept of extended integer types is basically not yet used by implementations,
there would also be no impact on the existing code base on existing implementations, even
if they chose to extend their ABI by some wider integer types.

3.2. Extensibility of ABI’s

This change allows platforms to add specifications of extended integer types more easily. In
particular 128 or 256 bit types can be added to 64 bit ABI as long as a conforming naming
scheme is chosen. Many implementations do so already in various forms and with non-
uniform syntax. With this change they could just typedef their extented type to uint128_t,
say, and provide the corresponding macros UINT128_MAX, UINT128_C, PRId128 etc.
There is no need to extend the language to describe additional integer types (such as long
long long), to add new number literals (-1ULLL) or to add printf conversion characters for
these in the C standard. The use of implementation specific names (__int128 or __int128_t)
and implementation specific format specifiers ("%Q") is largely sufficient if appropriately
mapped by <stdint.h> typedef and macros.

N2425 integers-new..exint-C2xworking draft — September 13, 2019 ISO/IEC 9899:202x (E)

Foreword

1 ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that
are member of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work. In the field of information technology, ISO and IEC have established a joint
technical committee, ISO/IEC JTC 1.

2 The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for
the different types of document should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

3 Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights. Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

4 Any trade name used in this document is information given for the convenience of users and does
not constitute an endorsement.

5 For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO’s adherence to
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see the
following URL: www.iso.org/iso/foreword.html.

6 This document was prepared by Technical Committee ISO/IEC JTC 1, Information technology, Sub-
committee SC 22, Programming languages, their environments and system software interfaces.

7 This fifth edition cancels and replaces the fourth edition, ISO/IEC 9899:2018. Major changes from
the previous edition include:

— remove obsolete sign representations and integer width constraints

—
:::::
allow

:::::::::
extended

::::::
integer

::::::
types

:::::
wider

:::::
than

:::::::::
intmax_t

::::
and

::::::::::
uintmax_t

:

— added a one-argument version of _Static_assert

— harmonization with ISO/IEC 9945 (POSIX):

• extended month name formats for strftime

• integration of functions: memccpy, strdup, strndup

— harmonization with floating point standard IEC 60559:

• integration of binary floating-point technical specification TS 18661-1

• integration of decimal floating-point technical specification TS 18661-2

• integration of decimal floating-point technical specification TS 18661-4a

— the macro DECIMAL_DIG is declared obsolescent

— added version test macros to certain library headers

— added the attributes feature

— added nodiscard, maybe_unused and deprecated attributes

8 A complete change history can be found in Annex M.

Foreword xiii

N2425 integers-new..exint-C2xworking draft — September 13, 2019 ISO/IEC 9899:202x (E)

7.8 Format conversion of integer types <inttypes.h>
1 The header <inttypes.h> includes the header <stdint.h> and extends it with additional facilities

provided by hosted implementations.

2 It declares functions for manipulating greatest-width integers and converting numeric character
strings to greatest-width integers, and it declares the

::::::::::
obsolescent type

imaxdiv_t

which is a structure type that is the type of the value returned by the
:::::::::::
obsolescent imaxdiv function.

For each type declared in <stdint.h>, it defines corresponding macros for conversion specifiers for
use with the formatted input/output functions.231)

Forward references: integer types <stdint.h> (7.20), formatted input/output functions (7.21.6),
formatted wide character input/output functions (7.29.2).

7.8.1 Macros for format specifiers
1 Each of the following object-like macros expands to a character string literal containing a conversion

specifier, possibly modified by a length modifier, suitable for use within the format argument of a
formatted input/output function when converting the corresponding integer type. These macro
names have the general form of PRI (character string literals for the fprintf and fwprintf family)
or SCN (character string literals for the fscanf and fwscanf family),232) followed by the conversion
specifier, followed by a name corresponding to a similar type name in 7.20.1. In these names, N
represents the width of the type as described in 7.20.1. For example, PRIdFAST32 can be used in a
format string to print the value of an integer of type int_fast32_t.

2 The fprintf macros for signed integers are:

lllll PRIdN PRIdLEASTN PRIdFASTN PRIdMAX
:::::::::::::
PRIdLEASTMAX

:
PRIdPTR

PRIiN PRIiLEASTN PRIiFASTN PRIiMAX
:::::::::::::
PRIiLEASTMAX

:
PRIiPTR

3 The fprintf macros for unsigned integers are:

lllll

PRIoN PRIoLEASTN PRIoFASTN PRIoMAX
:::::::::::::
PRIoLEASTMAX

:
PRIoPTR

PRIuN PRIuLEASTN PRIuFASTN PRIuMAX
:::::::::::::
PRIuLEASTMAX

:
PRIuPTR

PRIxN PRIxLEASTN PRIxFASTN PRIxMAX
:::::::::::::
PRIxLEASTMAX

:
PRIxPTR

PRIXN PRIXLEASTN PRIXFASTN PRIXMAX
:::::::::::::
PRIXLEASTMAX

:
PRIXPTR

4 The fscanf macros for signed integers are:

lllll SCNdN SCNdLEASTN SCNdFASTN SCNdMAX
:::::::::::::
SCNdLEASTMAX

:
SCNdPTR

SCNiN SCNiLEASTN SCNiFASTN SCNiMAX
:::::::::::::
SCNiLEASTMAX

:
SCNiPTR

5 The fscanf macros for unsigned integers are:

lllll
SCNoN SCNoLEASTN SCNoFASTN SCNoMAX

:::::::::::::
SCNoLEASTMAX

:
SCNoPTR

SCNuN SCNuLEASTN SCNuFASTN SCNuMAX
:::::::::::::
SCNuLEASTMAX

:
SCNuPTR

SCNxN SCNxLEASTN SCNxFASTN SCNxMAX
:::::::::::::
SCNxLEASTMAX

:
SCNxPTR

6 For each type that the implementation provides in <stdint.h>, the corresponding fprintf macros
shall be defined and the corresponding fscanf macros shall be defined unless the implementation
does not have a suitable fscanf length modifier for the type.

7 EXAMPLE

#include <inttypes.h>
#include <wchar.h>
int main(void)
{

uintmax_t i = UINTMAX_MAX; // this type always exists
wprintf(L"The largest integer value is %020"

231)See "future library directions" (7.31.6).
232)Separate macros are given for use with fprintf and fscanf functions because, in the general case, different format

specifiers might be required for fprintf and fscanf, even when the type is the same.

§ 7.8.1 Library 177

ISO/IEC 9899:202x (E) working draft — September 13, 2019integers-new..exint-C2x N2425

PRIxMAX "\n", i);

:: ::: :: ::: ::::::
wprintf

:
(
:
L
:
"
:::
The

::::::::
largest

:::::::::::::
preprocessor

:::::::
integer

::::::
value

:::
is

::::
%#"

::::::::
PRIxMAX

:::
"\

:
n
::
",

::
i

:
)

:
;

:: ::: :: ::: ::::::::::::::
uint_leastmax_t

::
j
::
=
::::::::::::::::::
UINT_LEASTMAX_MAX

:
;

::::::
//

:
this type always exists

:: ::: :: ::: ::::::
wprintf

:
(
:
L
:
"
:::
The

::::::::
largest

:::::::::
extended

::::::::
integer

:::::
value

:::
is

::::
%#"

:::::::::::::
PRIxLEASTMAX

:::
"\

:
n

::
",

::
j

:
)

:
;

return 0;
}

7.8.2 Functions for greatest-width integer types
1

:::
The

:::::::::
functions

:::::::::
presented

:::
in

::::
this

:::::::::
subclause

:::
are

:::::::::::
obsolescent

:::::::
features

:::::
that

::::::
should

::::
not

::
be

:::::
used

::
in

:::::
new

:::::
code.

::::
The

:::::::::
functions

::::::::
imaxabs

::::
and

:::::::::
imaxdiv

:::
can

:::
be

::::::::
replaced

:::
by

::::
the

:::::::::::
type-generic

:::::::
macros

:::::::::
int_abs

:::
and

:::::::::
int_div,

::::::::::::
respectively,

:::
as

:::::::::::
introduced

::::::
below,

:::::
and

:::::::::::
strtoimax,

:::::::::::
strtoumax,

:::::::::::
wcstoimax

::::
and

:

::::::::::
wcstoumax

:::
can

:::::::
usually

:::
be

::::::::
replaced

:::
by

::::
their

::::::::::::
counterparts

:::
for

:::::
long

:::::
long

::::::
types.

7.8.2.1 The imaxabs function
Synopsis

1 #include <inttypes.h>
intmax_t imaxabs(intmax_t j);

::
[[

::::::::::
deprecated

::
]]

::::::::
intmax_t

::::::::
imaxabs

:
(
::::::::
intmax_t

::
j
:
)
:
;

Description
2 The imaxabs function computes the absolute value of an integer j. If the result cannot be represented,

the behavior is undefined.233)

Returns
3 The imaxabs function returns the absolute value.

7.8.2.2 The imaxdiv function
Synopsis

1 #include <inttypes.h>
imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom);

::
[[

::::::::::
deprecated

::
]]

:::::::::
imaxdiv_t

::::::::
imaxdiv

:
(
::::::::
intmax_t

::::::
numer

:
,

::::::::
intmax_t

::::::
denom

:
)
:
;

Description
2 The imaxdiv function computes numer / denom and numer % denom in a single operation.

Returns
3 The imaxdiv function returns a structure of type imaxdiv_t comprising both the quotient and the

remainder. The structure shall contain (in either order) the members quot (the quotient) and rem
(the remainder), each of which has type intmax_t. If either part of the result cannot be represented,
the behavior is undefined.

7.8.2.3 The strtoimax and strtoumax functions
Synopsis

1 #include <inttypes.h>
intmax_t strtoimax(const char * restrict nptr, char ** restrict endptr, int base);
uintmax_t strtoumax(const char * restrict nptr, char ** restrict endptr, int base);

::
[[

::::::::::
deprecated

::
]]

::::::::
intmax_t

::::::::::
strtoimax

:
(
:::::
const

:::::
char

::*::::::::
restrict

:::::
nptr

:
,

:: ::: :: ::: ::::
char

::**:::::::::
restrict

:::::::
endptr

:
,
::::
int

:::::
base

:
)

:
;

::
[[

::::::::::
deprecated

::
]]

:::::::::
uintmax_t

::::::::::
strtoumax

:
(
:::::
const

:::::
char

::* ::::::::
restrict

:::::
nptr

:
,

:: ::: :: ::: ::::
char

::**:::::::::
restrict

:::::::
endptr

:
,
::::
int

:::::
base

:
)

:
;

233)The absolute value of the most negative number may not be representable.

178 Library § 7.8.2.3

N2425 integers-new..exint-C2xworking draft — September 13, 2019 ISO/IEC 9899:202x (E)

Description
2 The strtoimax and strtoumax functions are equivalent to the strtol, strtoll, strtoul, and

strtoull functions, except that the initial portion of the string is converted to intmax_t and
uintmax_t representation, respectively.

Returns
3 The strtoimax and strtoumax functions return the converted value, if any. If no conversion could

be performed, zero is returned. If the correct value is outside the range of representable values,
INTMAX_MAX, INTMAX_MIN, or UINTMAX_MAX is returned (according to the return type and sign of the
value, if any), and the value of the macro ERANGE is stored in errno.

Forward references: the strtol, strtoll, strtoul, and strtoull functions (7.22.1.7).

7.8.2.4 The wcstoimax and wcstoumax functions
Synopsis

1 #include <stddef.h> // for wchar_t
#include <inttypes.h>
intmax_t wcstoimax(const wchar_t *restrict nptr, wchar_t **restrict endptr, int base);
uintmax_t wcstoumax(const wchar_t *restrict nptr, wchar_t **restrict endptr, int base);

::
[[

::::::::::
deprecated

::
]]

::::::::
intmax_t

::::::::::
wcstoimax

:
(
:::::
const

::::::::
wchar_t

::* :::::::
restrict

:::::
nptr

:
,

:: ::: :: ::: ::::::
wchar_t

:::**::::::::
restrict

:::::::
endptr

:
,
::::
int

:::::
base

:
)

:
;

::
[[

::::::::::
deprecated

::
]]

:::::::::
uintmax_t

::::::::::
wcstoumax

:
(
:::::
const

::::::::
wchar_t

::* :::::::
restrict

:::::
nptr

:
,

:: ::: :: ::: ::::::
wchar_t

:::**::::::::
restrict

:::::::
endptr

:
,
::::
int

:::::
base

:
)

:
;

Description
2 The wcstoimax and wcstoumax functions are equivalent to the wcstol, wcstoll, wcstoul, and

wcstoull functions except that the initial portion of the wide string is converted to intmax_t and
uintmax_t representation, respectively.

Returns
3 The wcstoimax function returns the converted value, if any. If no conversion could be performed,

zero is returned. If the correct value is outside the range of representable values, INTMAX_MAX,
INTMAX_MIN, or UINTMAX_MAX is returned (according to the return type and sign of the value, if any),
and the value of the macro ERANGE is stored in errno.

Forward references: the wcstol, wcstoll, wcstoul, and wcstoull functions (7.29.4.1.3).
:

7.8.3 Type-generic macros for common integer operations
1

::::
This

::::::
clause

::::::::
presents

::::::::::::
type-generic

::::::::
macros

::::
that

:::::
shall

:::::::
behave

:::
as

::
if

::
a

::::::::
function

:::::
with

::::
the

:::::::::
indicated

:::::::::
prototype

:::::
were

::::::
called.

:::::
The

:::::
types

::
T

:::::
(and

:
S
:::::

were
:::::::::::

applicable)
:::::
shall

::
be

::::
any

::::::::::
supported

:::::::
integer

:::::
type

::::
with

::
a

::::::::::
conversion

:::::
rank

::
of

::::
int

::
or

:::::::
higher.

::::::
When

::::::
called,

::::
the

:::::::::::::
corresponding

:::::::::
prototype

:::
to

::
be

::::::::
applied

:
is
:::::::::::

determined
:::

by
::::
the

:::::::::
promoted

:::::
type

::
of

::::
the

::::
first

::::::
macro

:::::::::
argument

::::
for

::
T,

:::::
and,

::
if

:::::::::
applicable

:::
by

::::
the

:::::::::
promoted

::::
type

::
of

::::
the

::::::
second

::::::::::
argument

:::
for

::
S.

::::
The

::::::
return

::::
type

::
R
::
is

:::::::::::
determined

::
as

:::::::::
indicated

::
in

:::::
each

::::::
clause.

:

:::::::::::
Constraints

2
::::::::::
Arguments

::
to

:::::
these

:::::::
macros

:::::
shall

::
be

:::::::
integer

:::::::::::
expressions.

:

7.8.3.1 The int_abs type-generic macro
Synopsis

1
:
#
:::::::
include

:
<inttypes.h>

:
R
::::::::
int_abs

:
(

:
T

::
j

:
)

:
;

:::::::::::
Description

2
:::
The

:
int_abs type-generic macro

:::::::::
computes

:::
the

::::::::
absolute

::::::
value

::
of

:::
an

:::::::
integer

::
j.

::
R
::
is
::::

the
:::::::::
unsigned

§ 7.8.3.1 Library 179

ISO/IEC 9899:202x (E) working draft — September 13, 2019integers-new..exint-C2x N2425

:::::::
version

::
of

::
T.234)

:::::::
Returns

3
:::
The

:
int_abs type-generic macro

:::::::
returns

:::
the

::::::::
absolute

::::::
value.

:

7.8.3.2 The int_max type-generic macro
Synopsis

1
:
#
:::::::
include

:
<inttypes.h>

:
R
::::::::
int_max

:
(

:
T

::
j

:
,

::
S

:
k
:
)
:
;

:::::::::::
Description

2
:::
The

:
int_max type-generic macro

::::::::
computes

::::
the

::::::::::
maximum

::::::
value

::
of

:::::
two

::::::::
integers

::
j

::::
and

:::
k.

:::
R

::::
shall

:::
be

::::
the

::::::::
common

::::
real

:::::
type

:::
of

:::::::
integer

:::::
types

::
T
::::
and

::
S
:::
as

:::::::::::
determined

:::
by

:::
the

::::::
usual

::::::::::
arithmetic

:::::::::::
conversions.235)

:::::::
Returns

3
:::
The

:
int_max type-generic macro

:::::::
returns

:::
the

::::::::::
maximum

:::::
value

::
of

:::
its

::::::::::
arguments.

:

7.8.3.3 The int_min type-generic macro
Synopsis

1
:
#
:::::::
include

:
<inttypes.h>

:
R
::::::::
int_min

:
(

:
T

::
j

:
,

::
S

:
k
:
)
:
;

:::::::::::
Constraints

2
:::
The

::::::
types

:
T
::::

and
::
S
:::::
shall

:::
be

:::::::
integer

:::::
types

:::::
such

::::
that

:::::
there

:::::
exists

:::
an

:::::::
integer

:::::
type

::::
that

:::::::::
comprises

::::
the

:::::
value

::::::
ranges

:::
of

:::::
both.236)

:::::::::::
Description

3
:::
The

:
int_min type-generic macro

:::::::::
computes

:::
the

:::::::::
minimum

::::::
value

::
of

::::
two

::::::::
integers

:
j
::::
and

::
k.
:::

If
:
T
::::
and

:

:
S
::::
are

:::::
either

:::::
both

:::::::
signed

::
or

:::::
both

:::::::::
unsigned,

::::
the

::::::
return

:::::
type

::
R

::::
shall

:::
be

:::::
their

:::::::::
common

::::
real

::::
type

:::
as

::::::::::
determined

:::
by

:::
the

::::::
usual

::::::::::
arithmetic

:::::::::::
conversions.

:::::::::::
Otherwise,

::
R

::::
shall

:::
be

:::
the

:::::::
signed

:::::::
integer

::::
type

:::
of

:::::::::
minimum

::::
rank

::::
that

::::::::::
comprises

:::
the

:::::
value

:::::::
ranges

::
of

:::::
both.

:

:::::::
Returns

4
:::
The

:
int_min type-generic macro

:::::::
returns

:::
the

:::::::::
minimum

::::::
value

::
of

:::
its

::::::::::
arguments.

:

7.8.3.4 The int_div type-generic macro
Synopsis

1
:
#
:::::::
include

:
<inttypes.h>

:
R
::::::::
int_div

:
(

:
T

::::::
numer,

::
S
::::::
denom

:
)
:
;

:::::::::::
Constraints

2
:
If
::
T
::
is

:::
an

:::::::::
unsigned

::::
type

::::
and

::
S

::
is

:
a
:::::::
signed

::::
type

:::::
there

:::::
shall

:::
be

:
a
:::::::
signed

:::::::
integer

::::
type

::::
that

::::::::::
comprises

:::
the

:::::
value

::::::
range

::
of

::
T.237)

:::::::::::
Description

3
:::
The

:
int_div type-generic macro

:::::::::
computes

:::::::::::::::
numer / denom

::::
and

::::::::::::::::
numer % denom

::
in

::
a
:::::::

single

:::::::::
operation.

:::
If

::
T

::
is

:::
an

:::::::::
unsigned

:::::
type

::::
and

::
S
::
is

::
a
:::::::
signed

::::
type

:::
let

::
Q
:::

be
::::
the

::::::
signed

:::::::
integer

:::::
type

:::
of

:::::::::
minimum

:::::
rank

::::
that

::::::::::
comprises

::::
the

:::::
value

::::::
range

:::
of

:::
T;

:::::::::
otherwise

:::
let

::
Q
:::

be
:::
T.

:::
If

::
Q
::
is
::::

one
:::

of
::::
the

:::::
types

::::
int,

::::::::::
long int

::
or

:::::::::::::::
long long int,

::
R
::
is
:::::::
div_t,

:::::::
ldiv_t

:::
or

::::::::
lldiv_t,

::::::::::::
respectively;

::::::::::
otherwise

234)
:
If
:
T
::
is

:
a
:::::
signed

::::
type,

::::
even

::
the

:::::::
negative

::
of

::
the

::::::::
minimum

::::
value

::
of

:
T
:::
fits

:::
into

::
R.

235)
:
If
:::
one

::
of

:
T
:::
and

::
S
::
is

:
a
:::::
signed

::::
type

:::
and

:::
the

::::
other

:
is
::::::::

unsigned,
:::
the

:::::::
maximum

::
of
:::

the
:::::
result

:
is
:::::
never

::::::
negative

:::
and

::
is
::::
thus

:::::
within

::
the

:::::
value

::::
range

::
of

:
R.

236)
:
If
:
T
:::
and

::
S

::
are

:::
the

:::::
widest

:::::
signed

:::
and

:::::::
unsigned

::::::
integer

::::
types,

:::::::::
respectively,

::::
such

:
a
::::
type

:::
does

:::
not

::::
exist.

237)
:
If
:
T
::
is

::
the

::::::
widest

:::::::
unsigned

:::::
integer

:::
type

::::
such

:
a
::::
type

::::
does

::
not

::::
exist.

180 Library § 7.8.3.4

N2425 integers-new..exint-C2xworking draft — September 13, 2019 ISO/IEC 9899:202x (E)

:
R
::
is

::
a

::::::::
structure

:::::
type

::::
that

::::::::
contains

:::
(in

::::::
either

::::::
order)

:::
the

:::::::::
members

:::::
quot

::::
(the

:::::::::
quotient)

::::
and

::::
rem

::::
(the

::::::::::
remainder),

:::::
each

::
of

::::::
which

::::
has

::::
type

::
Q.

:

4
:
If
::
S
::
is
:::::::

signed
::::
and

:::::::::::::::::::::::::::::::::
int_abs(numer)< int_abs(denom)

:::::::
holds,

:::
the

::::::
result

::::
has

:
a
:::::::::

quotient
::
of

::::::
value

:
0
::::
and

::
a
::::::::::
remainder

::
of

::::::
value

:::::::
numer.

:::::::::::
Otherwise,

::::::
numer

::::
and

::::::
denom

::::
are

::::::::::
converted

::
to

::
Q
::::::
before

::::
the

:::::::::
operation.

:

:::::::
Returns

5
:::
The

:
int_div type-generic macro

::::::
returns

::
a
::::::::
structure

:::
of

:
a
:::::
type

:
R
:::::::::::
comprising

::::
both

::::
the

::::::::
quotient

::::
and

:::
the

::::::::::
remainder.

::
If

:::::
either

:::::
part

::
of

:::
the

::::::
result

::::::
cannot

:::
be

:::::::::::
represented,

:::
the

:::::::::
behavior

::
is

:::::::::
undefined.

§ 7.8.3.4 Library 181

ISO/IEC 9899:202x (E) working draft — September 13, 2019integers-new..exint-C2x N2425

14 The math rounding direction macros

FP_INT_UPWARD
FP_INT_DOWNWARD
FP_INT_TOWARDZERO
FP_INT_TONEARESTFROMZERO
FP_INT_TONEAREST

represent the rounding directions of the functions ceil, floor, trunc, round, and roundeven,
respectively, that convert to integral values in floating-point formats. They expand to integer con-
stant expressions with distinct values suitable for use as the second argument to the fromfp,
ufromfp, fromfpx, and ufromfpx functions

::::::
toint,

::::::::
touint,

::::::::
tointx,

::::
and

:::::::::
touintx

::::::::::::
type-generic

:::::::
macros,

:::
see

::::
7.25.

15 The macro

FP_FAST_FMA

is optionally defined. If defined, it indicates that the fma function generally executes about as fast as,
or faster than, a multiply and an add of double operands.246) The macros

FP_FAST_FMAF
FP_FAST_FMAL

are, respectively, float and long double analogs of FP_FAST_FMA. If defined, these macros expand
to the integer constant 1.

16 The macros

FP_FAST_FMAD32
FP_FAST_FMAD64
FP_FAST_FMAD128

are, respectively, _Decimal32, _Decimal64, and _Decimal128 analogs of FP_FAST_FMA.

17 Each of the macros

FP_FAST_FADD
FP_FAST_FADDL
FP_FAST_DADDL
FP_FAST_FSUB
FP_FAST_FSUBL

FP_FAST_DSUBL
FP_FAST_FMUL
FP_FAST_FMULL
FP_FAST_DMULL
FP_FAST_FDIV

FP_FAST_FDIVL
FP_FAST_DDIVL
FP_FAST_FSQRT
FP_FAST_FSQRTL
FP_FAST_DSQRTL

FP_FAST_FFMA
FP_FAST_FFMAL
FP_FAST_DFMAL

is optionally defined. If defined, it indicates that the corresponding function generally executes
about as fast, or faster, than the corresponding operation or function of the argument type with
result type the same as the argument type followed by conversion to the narrower type. For
FP_FAST_FFMA, FP_FAST_FFMAL, and FP_FAST_DFMAL, the comparison is to a call to fma or fmal
followed by a conversion, not to separate multiply, add, and conversion. If defined, these macros
expand to the integer constant 1.

18 The macros

FP_FAST_D32ADDD64
FP_FAST_D32ADDD128
FP_FAST_D64ADDD128
FP_FAST_D32SUBD64
FP_FAST_D32SUBD128
FP_FAST_D64SUBD128

FP_FAST_D32MULD64
FP_FAST_D32MULD128
FP_FAST_D64MULD128
FP_FAST_D32DIVD64
FP_FAST_D32DIVD128
FP_FAST_D64DIVD128

FP_FAST_D32FMAD64
FP_FAST_D32FMAD128
FP_FAST_D64FMAD128
FP_FAST_D32SQRTD64
FP_FAST_D32SQRTD128
FP_FAST_D64SQRTD128

246)Typically, the FP_FAST_FMA macro is defined if and only if the fma function is implemented directly with a hardware
multiply-add instruction. Software implementations are expected to be substantially slower.

192 Library § 7.12

ISO/IEC 9899:202x (E) working draft — September 13, 2019integers-new..exint-C2x N2425

Returns

3 The cbrt functions return x
1
3 .

Synopsis replace

#include <stdint.h>
#include <math.h>
double compoundn(double x, intmax_t n);
float compoundnf(float x, intmax_t n);
long double compoundnl(long double x, intmax_t n);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 compoundnd32(_Decimal32 x, intmax_t n);
_Decimal64 compoundnd64(_Decimal64 x, intmax_t n);
_Decimal128 compoundnd128(_Decimal128 x, intmax_t n);
#endif

Description

The compute 1 plus x, raised to the power n. A domain error occurs if x < −1. A range error may
occur if n is too large, depending on x. A pole error may occur if x equals −1 and n < 0.

Returns

The return (1 + x)n.

7.12.7.2 The fabs functions
Synopsis

1 #include <math.h>
double fabs(double x);
float fabsf(float x);
long double fabsl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fabsd32(_Decimal32 x);
_Decimal64 fabsd64(_Decimal64 x);
_Decimal128 fabsd128(_Decimal128 x);
#endif

Description
2 The fabs functions compute the absolute value of a floating-point number x.

Returns
3 The fabs functions return |x|.

7.12.7.3 The hypot functions
Synopsis

1 #include <math.h>
double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 hypotd32(_Decimal32 x, _Decimal32 y);
_Decimal64 hypotd64(_Decimal64 x, _Decimal64 y);
_Decimal128 hypotd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The hypot functions compute the square root of the sum of the squares of x and y, without undue

overflow or underflow. A range error may occur.

3

212 Library § 7.12.7.3

N2425 integers-new..exint-C2xworking draft — September 13, 2019 ISO/IEC 9899:202x (E)

Returns

4 The hypot functions return
√
x2 + y2.

7.12.7.4 The pow functions
Synopsis

1 #include <math.h>
double pow(double x, double y);
float powf(float x, float y);
long double powl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 powd32(_Decimal32 x, _Decimal32 y);
_Decimal64 powd64(_Decimal64 x, _Decimal64 y);
_Decimal128 powd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The pow functions compute x raised to the power y. A domain error occurs if x is finite and negative

and y is finite and not an integer value. A range error may occur. A domain error may occur if x is
zero and y is zero. A domain error or pole error may occur if x is zero and y is less than zero.

Returns
3 The pow functions return xy.

Synopsis replace

#include <stdint.h>
#include <math.h>
double pown(double x, intmax_t n);
float pownf(float x, intmax_t n);
long double pownl(long double x, intmax_t n);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 pownd32(_Decimal32 x, intmax_t n);
_Decimal64 pownd64(_Decimal64 x, intmax_t n);
_Decimal128 pownd128(_Decimal128 x, intmax_t n);
#endif

Description

The compute x raised to the th power. A range error may occur. A pole error may occur if x equals
0 and n < 0.

Returns

The return xn.

7.12.7.5 The powr functions
Synopsis

1 #include <math.h>
double powr(double y, double x);
float powrf(float y, float x);
long double powrl(long double y, long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 powrd32(_Decimal32 y, _Decimal32 x);
_Decimal64 powrd64(_Decimal64 y, _Decimal64 x);
_Decimal128 powrd128(_Decimal128 y, _Decimal128 x);
#endif

§ 7.12.7.5 Library 213

ISO/IEC 9899:202x (E) working draft — September 13, 2019integers-new..exint-C2x N2425

Description

2 The powr functions compute x raised to the power y as ey log x. A domain error occurs if x < 0 or if x
and y are both zero. A range error may occur. A pole error may occur if x equals zero and finite
y < 0.

Returns
3 The powr functions return xy.

Synopsis replace

#include <stdint.h>
#include <math.h>
double rootn(double x, intmax_t n);
float rootnf(float x, intmax_t n);
long double rootnl(long double x, intmax_t n);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 rootnd32(_Decimal32 x, intmax_t n);
_Decimal64 rootnd64(_Decimal64 x, intmax_t n);
_Decimal128 rootnd128(_Decimal128 x, intmax_t n);
#endif

Description

The compute the principal th root of x. A domain error occurs if n is 0 or if x < 0 and n is even. A
range error may occur if n is −1. A pole error may occur if x equals zero and n < 0.

Returns

The return x
1
n .

7.12.7.6 The rsqrt functions
Synopsis

1 #include <math.h>
double rsqrt(double x);
float rsqrtf(float x);
long double rsqrtl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 rsqrtd32(_Decimal32 x);
_Decimal64 rsqrtd64(_Decimal64 x);
_Decimal128 rsqrtd128(_Decimal128 x);
#endif

Description
2 The rsqrt functions compute the reciprocal of the square root of the argument. A domain error

occurs if the argument is less than zero. A pole error may occur if the argument equals zero.

Returns

3 The rsqrt functions return 1√
x

.

7.12.7.7 The sqrt functions
Synopsis

1 #include <math.h>
double sqrt(double x);
float sqrtf(float x);
long double sqrtl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 sqrtd32(_Decimal32 x);
_Decimal64 sqrtd64(_Decimal64 x);
_Decimal128 sqrtd128(_Decimal128 x);

214 Library § 7.12.7.7

N2425 integers-new..exint-C2xworking draft — September 13, 2019 ISO/IEC 9899:202x (E)

long long int llroundd32(_Decimal32 x);
long long int llroundd64(_Decimal64 x);
long long int llroundd128(_Decimal128 x);
#endif

Description
2 The lround and llround functions round their argument to the nearest integer value, rounding

halfway cases away from zero, regardless of the current rounding direction. If the rounded value is
outside the range of the return type, the numeric result is unspecified and a domain error or range
error may occur.

Returns
3 The lround and llround functions return the rounded integer value.

7.12.9.8 The roundeven functions
Synopsis

1 #include <math.h>
double roundeven(double x);
float roundevenf(float x);
long double roundevenl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 roundevend32(_Decimal32 x);
_Decimal64 roundevend64(_Decimal64 x);
_Decimal128 roundevend128(_Decimal128 x);
#endif

Description
2 The roundeven functions round their argument to the nearest integer value in floating-point format,

rounding halfway cases to even (that is, to the nearest value that is an even integer), regardless of
the current rounding direction.

Returns
3 The roundeven functions return the rounded integer value.

7.12.9.9 The trunc functions
Synopsis

1 #include <math.h>
double trunc(double x);
float truncf(float x);
long double truncl(long double x);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 truncd32(_Decimal32 x);
_Decimal64 truncd64(_Decimal64 x);
_Decimal128 truncd128(_Decimal128 x);
#endif

Description
2 The trunc functions round their argument to the integer value, in floating format, nearest to but no

larger in magnitude than the argument.

Returns
3 The trunc functions return the truncated integer value.

Synopsis replace
Description

§ 7.12.9.9 Library 219

ISO/IEC 9899:202x (E) working draft — September 13, 2019integers-new..exint-C2x N2425

The fromfp and ufromfp functions round x, using the math rounding direction indicated by
round, to a signed or unsigned integer, respectively, of width bits, and return the result value
in the integer type designated by intmax_t or uintmax_t, respectively. If the value of the round
argument is not equal to the value of a math rounding direction macro, the direction of rounding
is unspecified. If the value of width exceeds the width of the function type, the rounding is to
the full width of the function type. The fromfp and ufromfp functions do not raise the "inexact"
floating-point exception. If x is infinite or NaN or rounds to an integral value that is outside the
range of any supported integer type of the specified width, or if width is zero, the functions return
an unspecified value and a domain error occurs.

Returns

The fromfp and ufromfp functions return the rounded integer value.

Upward rounding of double x to type int, without raising the "inexact" floating-point exception,
is achieved by

Synopsis replace
Description

The fromfpx and ufromfpx functions differ from the fromfp and ufromfp functions, respectively,
only in that the fromfpx and ufromfpx functions raise the "inexact" floating-point exception if a
rounded result not exceeding the specified width differs in value from the argument x.

Returns

The fromfpx and ufromfpx functions return the rounded integer value.

Conversions to integer types that are not required to raise the inexact exception can be done simply
by rounding to integral value in floating type and then converting to the target integer type. For
example, the conversion of long double x to uint64_t, using upward rounding, is done by

7.12.10 Remainder functions
7.12.10.1 The fmod functions
Synopsis

1 #include <math.h>
double fmod(double x, double y);
float fmodf(float x, float y);
long double fmodl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 fmodd32(_Decimal32 x, _Decimal32 y);
_Decimal64 fmodd64(_Decimal64 x, _Decimal64 y);
_Decimal128 fmodd128(_Decimal128 x, _Decimal128 y);
#endif

Description
2 The fmod functions compute the floating-point remainder of x/y.

Returns
3 The fmod functions return the value x − ny, for some integer n such that, if y is nonzero, the result

has the same sign as x and magnitude less than the magnitude of y. If y is zero, whether a domain
error occurs or the fmod functions return zero is implementation-defined.

7.12.10.2 The remainder functions
Synopsis

1 #include <math.h>
double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);
#ifdef __STDC_IEC_60559_DFP__

220 Library § 7.12.10.2

ISO/IEC 9899:202x (E) working draft — September 13, 2019integers-new..exint-C2x N2425

7.20 Integer types <stdint.h>
1 The header <stdint.h> declares sets of integer types having specified widths, and defines corre-

sponding sets of macros.282) It also defines macros that specify limits of integer types corresponding
to types defined in other standard headers.

2 Types are defined in the following categories:

— integer types having certain exact widths;

— integer types having at least certain specified widths;

— fastest integer types having at least certain specified widths;

— integer types wide enough to hold pointers to objects;

— integer types having greatest width.

(Some of these types may denote the same type.)

3 Corresponding macros specify limits of the declared types and construct suitable constants.

4 For each type described herein that the implementation provides,283) <stdint.h> shall declare that
typedef name and define the associated macros. Conversely, for each type described herein that
the implementation does not provide, <stdint.h> shall not declare that typedef name nor shall it
define the associated macros. An implementation shall provide those types described as "required",
but need not provide any of the others (described as "optional").

5 The feature test macro __STDC_VERSION_STDINT_H__ expands to the token yyyymmL.

7.20.1 Integer types
1 When typedef names differing only in the absence or presence of the initial u are defined, they shall

denote corresponding signed and unsigned types as described in 6.2.5; an implementation providing
one of these corresponding types shall also provide the other.

2 In the following descriptions, the symbol N represents an unsigned decimal integer with no leading
zeros (e.g., 8 or 24, but not 04 or 048).

7.20.1.1 Exact-width integer types
1 The typedef name intN_t designates a signed integer type with width N and no padding bits. Thus,

int8_t denotes such a signed integer type with a width of exactly 8 bits.

2 The typedef name uintN_t designates an unsigned integer type with width N and no padding bits.
Thus, uint24_t denotes such an unsigned integer type with a width of exactly 24 bits.

3 These types are optional. However, if an implementation provides integer types with widths of 8,
16, 32, or 64 bits, and no padding bits, it shall define the corresponding typedef names.

7.20.1.2 Minimum-width integer types
1 The typedef name int_leastN_t designates a signed integer type with a width of at least N, such

that no signed integer type with lesser size has at least the specified width. Thus, int_least32_t
denotes a signed integer type with a width of at least 32 bits.

2 The typedef name uint_leastN_t designates an unsigned integer type with a width of at least
N, such that no unsigned integer type with lesser size has at least the specified width. Thus,
uint_least16_t denotes an unsigned integer type with a width of at least 16 bits.

3
:
If
::::::
either

::
of

::::
the

:::::
types

:::::::::::
int_least

:
N_t

::
or

:::::::::::
uint_least

::
N_t

:::
are

:::::::::
provided,

:::
the

::::::
other

::
is

:::::::::
provided,

::::
too,

:::
and

:::::
they

:::
are

:::
the

:::::::::::::
corresponding

:::::::
signed

::
an

:::::::::
unsigned

:::::
types

::
of

:::::
each

:::::
other.

::
If
::::
the

:::::
types

::::::::::
int_least

::
N_t

:::
and

:::::::::::
int_least

::
M_t

:::
are

:::::::::
provided

:::
for

::::::::
N < M ,

:::
the

::::::
width

::
of

::::
the

:::::::
former

::
is

:::
less

:::::
than

:::
or

:::::
equal

::
to

::::
the

:::::
width

:::
of

:::
the

:::::
latter.

:

4 The following types are required:
282)See "future library directions" (7.31.12).
283)Some of these types might denote implementation-defined extended integer types.

256 Library § 7.20.1.2

N2425 integers-new..exint-C2xworking draft — September 13, 2019 ISO/IEC 9899:202x (E)

int_least8_t
int_least16_t
int_least32_t
int_least64_t

uint_least8_t
uint_least16_t
uint_least32_t
uint_least64_t

::
as

:::
are

::::
the

:::::
types

:::::::::::
int_least

::
N_t

::::
and

:::::::::::
uint_least

::
N_t

:::
for

::
all

:::
N

::
for

::::::
which

::::
the

:::::::::::
exact-width

::::::
types

:::
int

::
N_t

::::
and

:::::
uint

:
N_t

:::
are

:::::::::
provided. All other types of this form are optional.

7.20.1.3 Fastest minimum-width integer types

1 Each of the following types designates an integer type that is usually fastest284) to operate with
among all integer types that have at least the specified width.

2 The typedef name int_fastN_t designates the fastest signed integer type with a width of at least
N. The typedef name uint_fastN_t designates the fastest unsigned integer type with a width of at
least N.

3
:
If
::::::
either

::
of

:::
the

::::::
types

:::::::::
int_fast

::
N_t

::
or

::::::::::
uint_fast

::
N_t

::
are

:::::::::
provided,

::::
the

:::::
other

::
is

:::::::::
provided,

::::
too,

::::
and

::::
they

:::
are

:::
the

::::::::::::::
corresponding

::::::
signed

:::
an

:::::::::
unsigned

:::::
types

::
of

:::::
each

:::::
other.

::
If
::::
the

:::::
types

:::::::::
int_fast

::
N_t

::::
and

:::::::::
int_fast

::
M_t

:::
are

:::::::::
provided

:::
for

::::::::
N < M ,

:::
the

::::::
width

::
of

:::
the

:::::::
former

::
is

::::
less

::::
than

:::
or

:::::
equal

:::
to

:::
the

::::::
width

::
of

:::
the

::::::
latter.

4 The following types are required:

int_fast8_t
int_fast16_t
int_fast32_t
int_fast64_t

uint_fast8_t
uint_fast16_t
uint_fast32_t
uint_fast64_t

::
as

:::
are

:::
the

:::::
types

:::::::::
int_fast

::
N_t

:::
and

::::::::::
uint_fast

::
N_t

:::
for

::
all

::
N

::
for

::::::
which

:::
the

:::::::::::
exact-width

:::::
types

::::
int

::
N_t

:::
and

:::::
uint

::
N_t

:::
are

:::::::::
provided.

:
All other types of this form are optional.

7.20.1.4 Integer types capable of holding object pointers
1 The following type designates a signed integer type with the property that any valid pointer to void

can be converted to this type, then converted back to pointer to void, and the result will compare
equal to the original pointer:

intptr_t

The following type designates an unsigned integer type with the property that any valid pointer
to void can be converted to this type, then converted back to pointer to void, and the result will
compare equal to the original pointer:

uintptr_t

These types are optional.

7.20.1.5 Greatest-width integer types
1 The following type designates a signed integer type capable of representing any value of any signed

integer type: The following type designates
::::
The

:::::
types

:::::::::
intmax_t

::::
and

::::::::::
uintmax_t

:::::::::
designate

:
a
:::::::
signed

:::
and

:::
an

:::::::::
unsigned

:::::::
integer

:::::
type,

:::::::::::
respectively,

::::
that

::::
are

::
at

:::::
least

::
as

:::::
wide

:::
as

:::
any

:::::
basic

:::::::
integer

:::::
type,

::::
the

:::::
types

:::::::::
char16_t

:::::::::
char32_t

::::::::::::::
int_fast64_t

:::::::::::::::
int_least64_t

::::::::::
ptrdiff_t

::::::::::::::
sig_atomic_t

:::::::
size_t

:::::::::::::::
uint_fast64_t

::::::::::::::::
uint_least64_t

::::::::
wchar_t

:::::::
wint_t

284)The designated type is not guaranteed to be fastest for all purposes; if the implementation has no clear grounds for
choosing one type over another, it will simply pick some integer type satisfying the signedness and width requirements.

§ 7.20.1.5 Library 257

ISO/IEC 9899:202x (E) working draft — September 13, 2019integers-new..exint-C2x N2425

::::
and,

:::::::::
provided

::::
they

:::::
exist,

:::::::::
intptr_t

::::
and

:::::::::::
uintptr_t.

::::::
These

:::::
types

:::
are

:::::::::
required.

2
:::
The

::::::
types

::::::::::::::::
int_leastmax_t

::::
and

:::::::::::::::::
uint_leastmax_t

:::::::::
designate

::
a
::::::
signed

:::::
and an unsigned integer

typecapable of representing any value of any unsigned integer type: ,
::::::::::::
respectively,

::::
that

:::
are

::
at

:::::
least

::
as

:::::
wide

::
as

::::
any

:::::::
integer

::::
type

:::::::
defined

:::
by

:::
the

:::::::
header <stdint.h> .

::::::
These

:::::
types

:::
are

:::::::::
required.

:

3 NOTE 1
:::
The

:::::::
intmax_t

:::
and

:::::::::
uintmax_t

::::
types

:::
are

:::::::
intended

::
to

::::::
provide

:
a
::::::
fallback

:::
for

:::::::::
applications

:::
that

::::
deal

::::
with

::::::
integers

::
for

:::::
which

::::
they

:::
lack

::::::
specific

::::
type

::::::::::
information.

::::
This

:::::
mainly

::::::
occurs

::
for

::::
two

::::::
different

::::::::
situations.

:::::
First,

:::
for

::::::
integers

::::
that

:::::
appear

::
in

::::::::
conditional

:::::::
inclusion

:
(
::
#if

:::::::::
expressions,

:::::
6.10.1)

:::
they

::::::
provide

::::::
fallback

::::
types

:::
that

::::::
capture

:::
the

:::::::::::
implementation

::::::
specific

::::::::
capabilities

:::::
during

::::::::
translation

:::::
phase

::
4.

::::::
Second,

::
for

::::
some

:::::::
semantic

::::
type

::::::::
definitions

:::
that

:::::
resolve

::
to
::::::::::::
implementation

::::::
specific

::::
types

::::
there

:::
are

::
no

:::::
special

::::::::
provisions

:::
for

::::::
printf,

:::::
scanf

::
or

:::::
similar

::::::::
functions.

::
In

::::::::
particular,

:::
the

:::::::
intmax_t

:::
and

:::::::::
uintmax_t

::::
types

::
are

:::::::
intended

::
to

:::::::
represent

:::::
values

::
of

::
all

::::
types

::::
listed

:::::
above

:::
and

:::
also

:::
the

:::::::::
exact-width

:::::
integer

::::
types

:::
for

::
all

::::::
N ≤ 64.

:

4 NOTE 2
::::::
Extended

::::::
integer

::::
types

:::
that

:::
are

:::
not

::::::
referred

::
by

:::
the

::::
above

:::
list

:::
and

:::
that

:::
are

::::
wider

::::
than

:::::
signed

::::
long

::::
long

:::
int

::::
may

:::
also

::
be

::::
wider

::::
than

::::::::
intmax_t.

:::
The

::::
types

:::::::
intmax_t

::::
and

::::::::::::
int_leastmax_t

::::
may

:::
then

::
be

:::::::
different.

:

5 NOTE 3
:::
The

::::::::::::
int_leastmax_t

:::
and

::::::::::::::
uint_leastmax_t

::::
types

:::
are

:::::::
intended

::
to

::::::
provide

:
a
::::::
fallback

:::
for

:::::::::
applications

:::
that

::::
deal

:::
with

::::::::
unknown

:::::
integer

::::
types

:::
that

:::
are

::::::::
potentially

::::
wider

::::
than

:::::::
intmax_t

::
or
:::::::::
uintmax_t.

6 EXAMPLE
::
An

::::::::::::
implementation

:::
that

:::
has

:::::::::
historically

::::
fixed

::
its

::::
type

:::::::
intmax_t

::
to
::
a

::
64

::
bit

::::
type,

:::
and

:::::
seeks

::
to

:::
add

:
a
:::

128
:::

bit

:::::
integer

:::::::::
exact-width

::::
type

::
to

::
its

:::::::
extended

::::::
integer

:::::
types,

::::
may

::
do

::
so
:::

by
::::::::
providing

::::
types

:::::::::
uint128_t,

::::::::::::::
uint_least128_t,

:

:::::::::::::
uint_least128_t,

::::::::::::::
uint_leastmax_t

:::
and

:::
the

:::::::::::
corresponding

:::::
signed

::::
types

:::
and

::::::
macros

::
of <stdint.h>

:::
and <inttypes.h>

::::
(7.8.1)

::::::
without

:::::::
breaking

:::::
binary

::::::::::
compatibility.

::::::::
Application

::::
code

:::
can

::::
then

::::
query

:::
the

:::
type

:::
and

::::
print

::
it

::
by

::::
using

:::
the

:::::::::
appropriate

:::::
macros:

:

uintmax_t

:: ::: :
#
:::::::
include

::
<

:::::
stdint

:
.
:
h
:
>

:: ::: :
#
:::::::
include

::
<

::::
stdio

:
.
:
h
:
>

:: ::: :
#
:::::::
include

::
<

:::::::
inttypes

:
.
:
h
:
>

:: ::: :
#
:::::
ifdef

:::::::::::
UINT128_MAX

:: ::: :::::::
typedef

:::::::::
uint128_t

:::::::
bitset

:
;

:: ::: :
#
::::
else

:: ::: :::::::
typedef

::::::::::::::
uint_least64_t

:::::::
bitset

:
;

:: ::: :
#
:::::
endif

:: ::: :::
int

:::::
main

:
(

:::
void

:
)
::
{

:: ::: :: ::: :::::
bitset

::::
all

::
=
::::
-1;

:: ::: :: ::: :::::
printf

::
("

:::
the

::::::::
largest

::::
set

:::
is

::::
%#"

::::::::::::
PRIXLEASTMAX

:::
"\

:
n
::
",

::
(
:::::::::::::::
uint_leastmax_t

:
)
:::
all

:
)

:
;

:: ::: :
}

These types are required.

:::::::::::::::::::::
Recommended practice

7
::::::
Unless

::::::
some

::::::::
typedef

:::
in

::::
the

::::::
library

:::::::
clause

::::::::
enforces

::::::::::
otherwise,

:::
it

::
is

::::::::::::::
recommended

::
to

::::::::
resolve

:::::::::
intmax_t

::
to

:::::::
signed

::::::
long

::::
int

::
or

:::::::
signed

:::::
long

::::::
long

::::
int.

:::
It

::
is

:::::::::::::
recommended

:::::
that

:::
the

::::::
same

:::
set

::
of

:::::::
integer

::::::
literals

::
is

:::::::::::
consistently

::::::::
accepted

:::
by

:::
all

:::::::::::
compilation

:::::::
phases,

:::::
even

::
if

:::::::::
intmax_t

::
is

::::::
chosen

:::
to

::
be

::::::
wider

::::
than

:::::::
signed

:::::
long

:::::
long

::::
int.

::::::::::::::::
Implementations

::::
and

:::::::::::
applications

:::::::
should

::::
not

:::
use

:::
the

::::::
types

:::::::::::::::
int_leastmax_t

::::
and

:::::::::::::::::
uint_leastmax_t

::
to

::::::::
describe

::::::::::
application

::::::::::::::
programmable

:::::::::
interfaces.285)

7.20.2 Widths of specified-width integer types
1 The following object-like macros specify the width of the types declared in <stdint.h>. Each macro

name corresponds to a similar type name in 7.20.1.

2 Each
::::::
Unless

::::::::
specified

::::::::::
otherwise,

::::
each

:
instance of any defined macro shall be replaced by a constant

expression suitable for use in #if preprocessing directives. Its implementation-defined value shall
be equal to or greater than the value given below, except where stated to be exactly the given value.
An implementation shall define only the macros corresponding to those typedef names it actually
provides.286)

7.20.2.1 Width of exact-width integer types

1

285)
:::
This

:::::::
document

::::
does

:::
not

:::
use

::::
them

:::::
further

::
in

:::
any

::
of

::
its

::::::
clauses.

286)The exact-width and pointer-holding integer types are optional.

258 Library § 7.20.2.1

N2425 integers-new..exint-C2xworking draft — September 13, 2019 ISO/IEC 9899:202x (E)

INTN_WIDTH exactly N
UINTN_WIDTH exactly N

7.20.2.2 Width of minimum-width integer types

1 INT_LEASTN_WIDTH exactly UINT_LEASTN_WIDTH
UINT_LEASTN_WIDTH N

7.20.2.3 Width of fastest minimum-width integer types

1 INT_FASTN_WIDTH exactly UINT_FASTN_WIDTH
UINT_FASTN_WIDTH N

7.20.2.4 Width of integer types capable of holding object pointers

1 INTPTR_WIDTH exactly UINTPTR_WIDTH
UINTPTR_WIDTH 16

7.20.2.5 Width of greatest-width integer types

1 INTMAX_WIDTH exactly UINTMAX_WIDTH
UINTMAX_WIDTH 64
INT_LEASTMAX_WIDTH exactly UINT_LEASTMAX_WIDTH
UINT_LEASTMAX_WIDTH /* see above */

7.20.3 Width of other integer types
1 The following object-like macros specify the width of integer types corresponding to types defined

in other standard headers.

2 Each instance of these macros shall be replaced by a constant expression suitable for use in #if
preprocessing directives. Its implementation-defined value shall be equal to or greater than the
corresponding value given below. An implementation shall define only the macros corresponding
to those typedef names it actually provides.287)

7.20.3.1 Width of ptrdiff_t

1 PTRDIFF_WIDTH 17

7.20.3.2 Width of sig_atomic_t

1 SIG_ATOMIC_WIDTH 8

7.20.3.3 Width of size_t

1 SIZE_WIDTH 16

7.20.3.4 Width of wchar_t

1 WCHAR_WIDTH 8

287)A freestanding implementation need not provide all of these types.

§ 7.20.3.4 Library 259

ISO/IEC 9899:202x (E) working draft — September 13, 2019integers-new..exint-C2x N2425

7.20.3.5 Width of wint_t

1 WINT_WIDTH 16

7.20.4 Macros for integer constants
1 The following function-like macros expand to integer constants suitable for initializing objects that

have integer types corresponding to types defined in <stdint.h>. Each macro name corresponds to
a similar type name in 7.20.1.2 or 7.20.1.5.

:::
For

:::::
types

::::::
wider

:::::
than

::::::::::
uintmax_t,

::::
the

:::::::
macros

::::
shall

:::::
only

::
be

:::::::
defined

::
if
::::
the

::::::::::::::
implementation

:::::::::
provides

::::::
integer

:::::::
literals

:::
for

::::
the

::::
type

::::
that

:::
are

::::::::
suitable

::
to

:::
be

:::::
used

::
in

::::
#if

::::::::::::
preprocessing

::::::::::
directives.

::::::::::
Otherwise,

::::
the

:::::::::
definition

::
of

:::::
these

:::::::
macros

::
is

:::::::::::
mandatory

:::
for

:::
any

:::
of

:::
the

:::::
types

::::
that

:::
are

:::::::::
provided

:::
by

:::
the

:::::::::::::::
implementation.

:

2 The argument in any instance of these macros shall be an unsuffixed integer constant (as defined in
6.4.4.1) with a value that does not exceed the limits for the corresponding type.

3 Each invocation of one of these macros shall expand to an integer constant expression suitable for
use in #if preprocessing directives. The type of the expression shall have the same type as would
an expression of the corresponding type converted according to the integer promotions. The value
of the expression shall be that of the argument.

7.20.4.1 Macros for minimum-width integer constants
1 The

:
If
::::::::
defined,

:::
the

:
macro INTN_C(value) expands to an integer constant expression corresponding

to the
:::::::::
promoted type int_leastN_t. The

:
If
::::::::
defined,

::::
the macro UINTN_C(value) expands to an

integer constant expression corresponding to the
:::::::::
promoted

:
type uint_leastN_t. For example, if

2 EXAMPLE
:
If uint_least64_t is a name for the type unsigned long long int, then UINT64_C(0x123) might expand to

the integer constant 0x123ULL.

7.20.4.2 Macros for greatest-width integer constants
1 The following macro expands to an integer constant expression having the value specified by its

argument and the type intmax_t:

INTMAX_C(value)

The following macro expands to an integer constant expression having the value specified by its
argument and the type uintmax_t:

UINTMAX_C(value)

2
:
If
:::::::::

defined,
:::
the

::::::::::
following

:::::::
macro

::::::::
expands

:::
to

:::
an

:::::::
integer

::::::::
constant

:::::::::::
expression

:::::::
having

::::
the

::::::
value

::::::::
specified

:::
by

::
its

:::::::::
argument

::::
and

:::
the

:::::
type

::::::::::::::::
int_leastmax_t:

:

:: ::: :::::::::::::
INT_LEASTMAX_C

:
(value

:
)

:
If
:::::::::

defined,
:::
the

::::::::::
following

:::::::
macro

::::::::
expands

:::
to

:::
an

:::::::
integer

::::::::
constant

:::::::::::
expression

:::::::
having

::::
the

::::::
value

::::::::
specified

:::
by

::
its

:::::::::
argument

::::
and

:::
the

:::::
type

:::::::::::::::::
uint_leastmax_t:

:

:: ::: ::::::::::::::
UINT_LEASTMAX_C

:
(value

:
)

7.20.5 Maximal and minimal values of integer types
1 For all integer types for which there is a macro with suffix _WIDTH holding the width, maximum

macros with suffix _MAX and, for all signed types, minimum macros with suffix _MIN are defined as
by 5.2.4.2. If it is unspecified if a type is signed or unsigned and the implementation has it as an
unsigned type, a minimum macro with extension _MIN, and value 0 of the corresponding type is
defined.

:::
For

:::::
types

:::::
wider

:::::
than

::::::::::
uintmax_t

::::
and

:::
for

::::::
which

:::
the

:::::::::::::
corresponding

:::::::::
minimum

::::::
width

:::::::
integer

:::::::
constant

:::::::
macro

::::
with

::::::
suffix

:::
_C

::
is

:::
not

::::::::
defined,

:::::::
7.20.4.1

::::
and

::::::::
7.20.4.2,

::::
the

:::::::
macros

:::
are

:::
not

:::::::::::
necessarily

:::::::
suitable

::
to

:::
be

::::
used

:::
in

:::
#if

:::::::::::::
preprocessing

::::::::::
directives.

:

260 Library § 7.20.5

N2425 integers-new..exint-C2xworking draft — September 13, 2019 ISO/IEC 9899:202x (E)

2 EXAMPLE
:
If
::::::::::::
UINTMAX_WIDTH

::
is

::
64,

:::
no

:::::
literals

:::::
wider

:::
than

:::
64

::::
exist,

:::
and

:::::::
int128_t

::::
and

::::::::
uint128_t

:::
are

:::::
names

::
for

::::::
extend

:::::
integer

:::::
types,

:::
then

:::
the

:::::::
following

:::
are

::::
valid

::::::::
definitions.

:
#
::::::
define

:::::::::::
UINT128_MAX

:::::
(~((

:::::::::
uint128_t

:
)
::
+0

:
u
:
)
:
)

:
#
::::::
define

::::::::::
INT128_MAX

::::::
(((((

::::::::
int128_t

:
)
:::
+1)

::::::
<<126)

:::
-1)

:::::*2+1)

:
#
::::::
define

::::::::::
INT128_MIN

:::
(-

::::::::::
INT128_MAX

:::
-1)

::::::::::
Nevertheless,

:
in
:::
#if

:::::::::
expressions

::::
these

:::::
macros

::::::
expand

::
to

::::
valid

:::::
integer

:::::::::
expressions

::
but

::::
will

:::
only

::::::
evaluate

::
to

:::
the

::::
same

:::::
values

:
as
::::::::::
UINT64_MAX,

::::::::
INT64_MAX

:::
and

:::::::::
INT64_MIN,

:::::::::
respectively.

:::::::::::
Constraints

3
:
If
:::

N
::
is

:::::::
greater

::::
than

:::::::::::::::
UINTMAX_WIDTH

::::
and

::::
the

:::::::::::::
corresponding

::::::::
macros INT

:
N_C

::
or

:
UINT

:
N_C

:::
are

::::
not

:::::::
defined,

::::
the

::::::::
derived

:::::
_MIN

::::
and

::::::
_MAX

:::::::
macros

:::
for

::::
the

::::::::::::
exact-width,

::::::::::::::::
minimum-width

::::
and

:::::::
fastest

:::::::::::::::
minimum-width

:::::
types

:::
for

:::
N

::::
shall

::::
not

:::
be

:::::
used

::
in

:::
an

::::
#if

:::::::::::::
preprocessing

:::::::::
directive,

::::::
unless

::::
they

::::
are

:::::::
operand

:::
of

:::
the

::::::::
defined

::::::::
operator.

:

4
:
If
::::

the
::::::::

macros
:
INT_LEASTMAX_C

:::
and

:
UINT_LEASTMAX_C

::
are

::::
not

::::::::
defined,

::::
the

::::::::
derived

::::::::
macros

:

::::::::::::::::::
INT_LEASTMAX_MIN,

::::::::::::::::::
INT_LEASTMAX_MAX

::::
and

::::::::::::::::::::
UINT_LEASTMAX_MAX

:::::
shall

::::
not

:::
be

:::::
used

::
in

::::
an

::::
#if

::::::::::::
preprocessing

:::::::::
directive,

::::::
unless

:::::
they

:::
are

::::::::
operand

::
of

:::
the

::::::::
defined

:::::::::
operator.288)

:::::::::::::::::::::
Recommended practice

5
:::::::
Because

::
of

::::
the

::::::
above

::::::::::
constraints,

::::::::::::
applications

:::::::
should

:::::
prefer

::::
the

:::::::
_WIDTH

:::::::
macros

::::
over

::::
the

:::::
_MIN

::
or

:

::::
_MAX

:::::::
macros

:::
for

:::::::
feature

::::
tests

:::
in

:::
#if

:::::::::::::
preprocessing

::::::::::
directives.

288)
:::
This

::::::::
constraint

:::::
reflects

:::
the

:::
fact

::::
that

::::
these

::::::
macros

::::
may

::::
have

::::::::
numerical

:::::
values

:::
that

::::::
exceed

:::
the

:::::
largest

::::
value

::::
that

::
is

::::::::::
representable

:::::
during

:::::::::::
preprocessing.

::
In

:::
that

::::
case

::::
these

:::::::
constants

:::
will

:::::::
generally

::
be
::::::::

expressed
::
by

:::::::
constant

::::::::
expressions

::::
that

::
are

::::
more

:::::::
complex

:::
and

::
not

::::::
suitable

:::
for

:::::::::::
preprocessing.

§ 7.20.5 Library 261

N2425 integers-new..exint-C2xworking draft — September 13, 2019 ISO/IEC 9899:202x (E)

<math.h> <complex.h> type-generic
function function macro
acos cacos acos
asin casin asin
atan catan atan
acosh cacosh acosh
asinh casinh asinh
atanh catanh atanh
cos ccos cos
sin csin sin
tan ctan tan
cosh ccosh cosh
sinh csinh sinh
tanh ctanh tanh
exp cexp exp
log clog log
pow cpow pow
sqrt csqrt sqrt
fabs cabs fabs

If at least one argument for a generic parameter is complex, then use of the macro invokes a complex
function; otherwise, use of the macro invokes a real function.

9 For each unsuffixed function in <math.h> without a c-prefixed counterpart in <complex.h> (except
functions that round result to narrower type, modf, and canonicalize), the corresponding type-
generic macro has the same name as the function. These type-generic macros are:

acospi
asinpi
atan2pi
atan2
atanpi
cbrt
ceil
compoundncopysign
cospi
erfc

erf
exp10m1
exp10
exp2m1
exp2
expm1
fdim
floor
fmaxmag
fmax

fma
fminmag
fmin
fmod
frexp
fromfpxfromfphypot
ilogb
ldexp
lgamma
llogb

llrint
llround
log10p1
log10
log1p
log2p1
log2
logb
logp1
lrint

lround
nearbyint
nextafter
nextdown
nexttoward
nextup
pownpowr
remainder
remquo
rint

rootnroundeven
round
rsqrt
scalbln
scalbn
sinpi
tanpi
tgamma
trunc
ufromfpxufromfp

If all arguments for generic parameters are real, then use of the macro invokes a real function
(provided <math.h> defines a function of the determined type); otherwise, use of the macro is
undefined.

10 For each unsuffixed function in <complex.h> that is not a c-prefixed counterpart to a function
in <math.h>, the corresponding type-generic macro has the same name as the function. These
type-generic macros are:

carg cimag conj cproj creal

Use of the macro with any argument of standard floating or complex type invokes a complex
function. Use of the macro with an argument of decimal floating type is undefined.

11 The functions that round result to a narrower type have type-generic macros whose names are
obtained by omitting any suffix from the function names. Thus, the macros with f or d prefix are:

fadd
dadd

fsub
dsub

fmul
dmul

fdiv
ddiv

ffma
dfma

fsqrt
dsqrt

and the macros with d32 or d64 prefix are:

§ 7.25 Library 323

N2425 integers-new..exint-C2xworking draft — September 13, 2019 ISO/IEC 9899:202x (E)

15 EXAMPLE With the declarations

#include <tgmath.h>
int n;
float f;
double d;
long double ld;
float complex fc;
double complex dc;
long double complex ldc;
#ifdef __STDC_IEC_60559_DFP__
_Decimal32 d32;
_Decimal64 d64;
_Decimal128 d128;
#endif

functions invoked by use of type-generic macros are shown in the following table:

macro use invokation
exp(n) exp(n), the function
acosh(f) acoshf(f)
sin(d) sin(d), the function
atan(ld) atanl(ld)
log(fc) clogf(fc)
sqrt(dc) csqrt(dc)
pow(ldc, f) cpowl(ldc, f)
remainder(n, n) remainder(n, n), the function
nextafter(d, f) nextafter(d, f), the function
nexttoward(f, ld) nexttowardf(f, ld)
copysign(n, ld) copysignl(n, ld)
ceil(fc) undefined
rint(dc) undefined
fmax(ldc, ld) undefined
carg(n) carg(n), the function
cproj(f) cprojf(f)
creal(d) creal(d), the function
cimag(ld) cimagl(ld)
fabs(fc) cabsf(fc)
carg(dc) carg(dc), the function
cproj(ldc) cprojl(ldc)
fsub(f, ld) fsubl(f, ld)
fdiv(d, n) fdiv(d, n), the function
dfma(f, d, ld) dfmal(f, d, ld)
dadd(f, f) daddl(f, f)
dsqrt(dc) undefined
exp(d64) expd64(d64)
sqrt(d32) sqrtd32(d32)
fmax(d64, d128) fmaxd128(d64, d128)
pow(d32, n) powd64(d32, n)
remainder(d64, d) undefined
creal(d64) undefined
remquo(d32, d32, &n) undefined
llquantexp(d) undefined
quantize(dc) undefined
samequantum(n, n) undefined
d32sub(d32, d128) d32subd128(d32, d128)
d32div(d64, n) d32divd64(d64, n)
d64fma(d32, d64, d128) d64fmad128(d32, d64, d128)
d64add(d32, d32) d64addd128(d32, d32)
d64sqrt(d) undefined
dadd(n, d64) undefined

7.25.1 Integer-power type-generic macros
1

::
In

:::
the

:::::::::
following

:::::::::::::
specifications

:::
the

:::::
type

::
T

::
of

:::
the

:::::
first

:::::::::
prototype

::::::::::
parameter

:
x
::::::::::::
corresponds

::
to

::
a
::::
real

:::::::
floating

:::::
point

:::::
type

::::
that

::
is

::::::::::
supported

::
by

::::
the

:::::::::::::::
implementation,

::
or

:::
to

:::
an

::::::
imple

:::::
men

::
ta

:::::::::::
tion-defined

:::
set

§ 7.25.1 Library 325

ISO/IEC 9899:202x (E) working draft — September 13, 2019integers-new..exint-C2x N2425

::
of

::::::::
complex

:::::::
floating

::::::
types.

::::
IT

:::::::::::
corresponds

::
to

::
a
:::::::
signed

::::::
integer

:::::
type

::::
that

::::::::::
comprises

:::
all

::::::::::
admissible

::::::
values

:::
for

:::
the

:::::::::
operation

:::
on

::::
type

:::
T.

::
A

::::::
macro

:::
call

:::::
with

::::
first

:::::::::
argument

::
X

::::
then

::::
has

:::
the

:::::
same

::::::
effects

:::
as

:
if
::
a
::::::::
function

::::
with

::::
the

:::::::::
indicated

:::::::::
prototype

:::
for

:::
TX

::::::
would

:::
be

::::::
called,

::::::
where

:::
TX

::
is

:::
the

:::::
type

::
of

::
X

::
if

::::
that

:::
has

::
a

:::::::
floating

:::::
point

:::::
type,

::
or

:::::::
double

::::::::::
otherwise.

:

:::::::::::
Constraints

2
:::
The

::::
first

:::::::::
argument

:::
to

:
a
::::
call

::
of

:::::
these

:::::::
macros

::::
shall

:::::::::::
correspond

::
to

:::
an

::::::::::
expression

::::
that

:::
has

::::::
either

:::
one

:::
of

:::
the

:::::::::
supported

::::::
types

::::::::
specified

:::
for

::
T

::
or

:::
has

:::
an

:::::::
integer

:::::
type.

::::
The

::::::
second

:::::::::
argument

:::::
shall

::
be

:::
an

:::::::
integer

::::::::::
expression;

::
if

:
it
::::
has

:
a
::::::
value

::::
that

::::::
cannot

:::
be

:::::::::
converted

::
to

::::
the

::::
type

:::
IT,

::::
the

::::::::
behavior

::
is

::::::::::
undefined.

:

7.25.1.1 The compoundn type-generic macro
Synopsis

1 #include <tgmath.h>
T compoundn(T x, IT n);

:::::::::::
Description

2
:::
The

:
compoundn type-generic macro

:::::::::
computes

:
1
::::
plus

::
x,

::::::
raised

::
to

:::
the

::::::
power

::
n.
:::

A
:::::::
domain

:::::
error

::::::
occurs

:
if
::::::::
x < −1.

::
A

::::::
range

:::::
error

::::
may

::::::
occur

::
if

:
n
::
is

::::
too

:::::
large,

::::::::::
depending

:::
on

::
x.

:::
A

::::
pole

:::::
error

:::::
may

:::::
occur

::
if

::
x

::::::
equals

:::
−1

::::
and

:::::
n < 0.

:

:::::::
Returns

3
:::
The

:
compoundn type-generic macro

::::::
returns

::::::::
(1 + x)n.

:

7.25.1.2 The pown type-generic macro
Synopsis

1 #include <tgmath.h>
T pown(T x, IT n);

:::::::::::
Description

2
:::
The

:
pown type-generic macro

:::::::::
computes

::
x

::::::
raised

::
to

:::
the

:
n

:

th
:::::::
power.

::
A

:::::
range

:::::
error

::::
may

::::::
occur.

::
A
:::::
pole

::::
error

:::::
may

:::::
occur

::
if

:
x
:::::::
equals

:
0
::::
and

::::::
n < 0.

:::::::
Returns

3
:::
The

:
pown type-generic macro

:::::::
returns

:::
xn.

7.25.1.3 The rootn type-generic macro
Synopsis

1 #include <tgmath.h>
T rootn(T x, IT n);

:::::::::::
Description

2
:::
The

:
rootn type-generic macro

:::::::::
computes

:::
the

::::::::
principal

:
n
::

th
::::
root

::
of

::
x.

:::
A

:::::::
domain

:::::
error

::::::
occurs

::
if
::
n

::
is

:
0
::
or

::
if
::::::
x < 0

::::
and

:
n
::
is

:::::
even.

:::
A

:::::
range

:::::
error

:::::
may

:::::
occur

::
if
::
n

::
is

:::
−1.

:::
A

::::
pole

:::::
error

:::::
may

:::::
occur

::
if

:
x
:::::::

equals

::::
zero

::::
and

:::::
n < 0.

:

:::::::
Returns

3
:::
The

:
rootn type-generic macro

:::::::
returns

:::
x

1
n

::::
with

::::
the

:::::
same

::::
type

:::
as

::
x

::
if

::::
that

::::
type

::
is
::
a
:::::::
floating

::::::
point

::::
type

::
or

:::::::
double

::::::::::
otherwise.

:

7.25.2 Nearest integer type-generic macros
1

::
In

:::
the

:::::::::
following

:::::::::::::
specifications

:::
the

:::::
type

::
T

::
of

:::
the

:::::
first

:::::::::
prototype

::::::::::
parameter

:
x
::::::::::::
corresponds

::
to

::
a
::::
real

:::::::
floating

:::::
point

::::
type

::::
that

::
is

::::::::::
supported

::
by

:::
the

:::::::::::::::
implementation.

::::
The

::::::
return

:::::
types

:::
ST

::::
and

::
UT

:::::::::::
correspond

::
to

::::::
signed

::::
and

:::::::::
unsigned

:::::::
integer

:::::
types,

::::::::::::
respectively,

::::
that

:::
are

::
at

:::::
least

::
as

:::::
wide

::
as

:::::
long

::::::
long.

::
A

::::::
macro

:::
call

:::::
with

::::
first

:::::::::
argument

:
X
:::::
then

:::
has

:::
the

:::::
same

:::::::
effects

::
as

::
if

:
a
::::::::
function

:::::
with

:::
the

:::::::::
indicated

:::::::::
prototype

:::
for

326 Library § 7.25.2

N2425 integers-new..exint-C2xworking draft — September 13, 2019 ISO/IEC 9899:202x (E)

::
TX

::::::
would

:::
be

::::::
called,

::::::
where

:::
TX

::
is

:::
the

::::
type

:::
of

:
X
::
if

::::
that

:::
has

::
a

:::::::
floating

:::::
point

:::::
type,

::
or

:::::::
double

::::::::::
otherwise.

:

:::::::::::
Constraints

2
:::
The

::::
first

::::::::::
argument

::
to

::
a

:::
call

:::
of

:::::
these

:::::::
macros

:::::
shall

::::::::::
correspond

:::
to

::
an

::::::::::
expression

:::::
that

:::
has

::::
one

::
of

::::
the

:::::::::
supported

:::::
types

:::::::::
specified

:::
for

:
T
:::
or

:::
has

:::
an

:::::::
integer

:::::
type.

7.25.2.1 The toint and touint type-generic macros
Synopsis

1
:: ::: :

#
:::::::
include

:
<tgmath.h>

:: ::: ::
ST

::::::
toint

:
(

:
T

:
x
:
,
::::
int

::::::
round

:
,
:::::::::
unsigned

::::
int

::::::
width

:
)

:
;

:: ::: ::
UT

:::::::
touint

:
(

:
T

:
x
:
,
::::
int

::::::
round

:
,
:::::::::
unsigned

::::
int

::::::
width

:
)

:
;

:::::::::::
Description

2
:::
The

::::::
toint

::::
and

:::::::
touint

::::::::::::
type-generic

:::::::
macros

::::::
round

::
x,

:::::
using

::::
the

:::::
math

::::::::
rounding

:::::::::
direction

:::::::::
indicated

::
by

:::::::
round,

::
to

::
a

::::::
signed

:::
or

:::::::::
unsigned

:::::::
integer,

:::::::::::
respectively,

:::
of

::::::
width

::::
bits,

::::
and

::::::
return

::::
the

:::::
result

::::::
value

::
in

:::
the

:::::::
integer

::::
type

:::::::::::
designated

::
by

:::
ST

:::
or

:::
UT,

:::::::::::
respectively.

:::
If

:::
the

:::::
value

:::
of

:::
the

::::::
round

:::::::::
argument

::
is
::::
not

:::::
equal

::
to

:::
the

::::::
value

::
of

::
a

:::::
math

:::::::::
rounding

::::::::
direction

:::::::
macro,

:::
the

::::::::
direction

:::
of

::::::::
rounding

::
is
::::::::::::
unspecified.

::
If

:::
the

:::::
value

:::
of

::::::
width

:::::::
exceeds

::::
the

::::::
width

::
of

::::
the

::::::
return

:::::
type,

:::
the

:::::::::
rounding

::
is
:::

to
:::
the

::::
full

::::::
width

::
of

::::
the

::::::
return

:::::
type.

::::
The

::::::
toint

::::
and

:::::::
touint

::::::::::::
type-generic

:::::::
macros

::
do

::::
not

:::::
raise

:::
the

:::::::::
"inexact"

:::::::::::::
floating-point

:::::::::
exception.

:::
If

:
x
:::

is
:::::::
infinite

::
or

::::
NaN

:::
or

:::::::
rounds

::
to

:::
an

::::::::
integral

:::::
value

:::::
that

::
is

:::::::
outside

::::
the

:::::
range

:::
of

::::
any

:::::::::
supported

:::::::
integer

:::::
type

::
of

:::
the

:::::::::
specified

::::::
width,

:::
or

::
if

::::::
width

::
is

:::::
zero,

:::
the

::::::::::::
type-generic

:::::::
macros

::::::
return

::
an

:::::::::::
unspecified

:::::
value

::::
and

::
a

:::::::
domain

:::::
error

:::::::
occurs.

:::::::
Returns

3
:::
The

::::::
toint

::::
and

:::::::
touint

::::::::::::
type-generic

:::::::
macros

::::::
return

:::
the

::::::::
rounded

:::::::
integer

::::::
value.

4 EXAMPLE
::::::
Upward

:::::::
rounding

::
of

:::::
double

::
x
::
to

:::
type

::::
int,

::::::
without

:::::
raising

:::
the

:::::::
"inexact"

::::::::::
floating-point

:::::::
exception,

::
is
:::::::
achieved

::
by

:: ::: :
(
:::
int

:
)

:::::
toint

:
(x

:
,
::::::::::::::
FP_INT_UPWARD

:
,
::::::::::
INT_WIDTH

:
)

7.25.2.2 The tointx and touintx type-generic macros
Synopsis

1
:: ::: :

#
:::::::
include

:
<tgmath.h>

:: ::: ::
ST

:::::::
tointx

:
(

:
T

:
x
:
,
::::
int

::::::
round

:
,
:::::::::
unsigned

::::
int

::::::
width

:
)

:
;

:: ::: ::
UT

::::::::
touintx

:
(T

::
x
:
,
::::
int

::::::
round

:
,
:::::::::
unsigned

::::
int

::::::
width

:
)

:
;

:::::::::::
Description

2
:::
The

::::::::
tointx

::::
and

::::::::
touintx

::::::::::::
type-generic

:::::::
macros

::::::
differ

:::::
from

::::
the

::::::
toint

::::
and

::::::::
touint

::::::::::::
type-generic

:::::::
macros,

:::::::::::
respectively,

:::::
only

::
in

::::
that

::::
the

:::::::
tointx

::::
and

::::::::
touintx

:::::::::::
type-generic

:::::::
macros

:::::
raise

:::
the

:::::::::
"inexact"

::::::::::::
floating-point

:::::::::
exception

::
if

:
a
:::::::::
rounded

:::::
result

:::
not

::::::::::
exceeding

:::
the

::::::::
specified

::::::
width

::::::
differs

:::
in

:::::
value

:::::
from

:::
the

:::::::::
argument

::
x.

:

:::::::
Returns

3
:::
The

:::::::
tointx

::::
and

::::::::
touintx

::::::::::::
type-generic

:::::::
macros

::::::
return

:::
the

::::::::
rounded

:::::::
integer

::::::
value.

4 NOTE
:::::::::
Conversions

::
to

:::::
integer

::::
types

:::
that

:::
are

:::
not

::::::
required

::
to

:::
raise

:::
the

:::::
inexact

::::::::
exception

:::
can

::
be

:::
done

::::::
simply

::
by

:::::::
rounding

::
to

:::::
integral

:::::
value

::
in

:::::
floating

::::
type

:::
and

::::
then

::::::::
converting

:
to
:::
the

::::
target

::::::
integer

::::
type.

:::
For

::::::
example,

:::
the

::::::::
conversion

::
of

::::
long

:::::
double

::
x

:
to
::::::::
uint64_t,

::::
using

:::::::
upward

:::::::
rounding,

:
is
::::

done
:::

by

:: ::: :
(
::::::::
uint64_t

:
)

::::
ceill

:
(
:
x
:
)

§ 7.25.2.2 Library 327

ISO/IEC 9899:202x (E) working draft — September 13, 2019integers-new..exint-C2x N2425

7.31 Future library directions
1 The following names are grouped under individual headers for convenience. All external names

described below are reserved no matter what headers are included by the program.

7.31.1 Complex arithmetic <complex.h>
1 The function names

cacospi
casinpi
catanpi
ccompoundn
ccospi
cerfc
cerf

cexp10m1
cexp10
cexp2m1
cexp2
cexpm1
clgamma
clog10p1

clog10
clog1p
clog2p1
clog2
clogp1
cpown
cpowr

crootn
crsqrt
csinpi
ctanpi
ctgamma

and the same names suffixed with f or l may be added to the declarations in the <complex.h>
header.

7.31.2 Character handling <ctype.h>
1 Function names that begin with either is or to, and a lowercase letter may be added to the declara-

tions in the <ctype.h> header.

7.31.3 Errors <errno.h>
1 Macros that begin with E and a digit or E and an uppercase letter may be added to the macros

defined in the <errno.h> header.

7.31.4 Floating-point environment <fenv.h>
1 Macros that begin with FE_ and an uppercase letter may be added to the macros defined in the

<fenv.h> header.

7.31.5 Characteristics of floating types <float.h>
1 Macros that begin with DBL_, DEC32_, DEC64_, DEC128_, DEC_, FLT_, or LDBL_ and an uppercase

letter may be added to the macros defined in the <float.h> header.

7.31.6 Format conversion of integer types <inttypes.h>
1 Macros that begin with either PRI or SCN, and either a lowercase letter or X may be added to the

macros defined in the <inttypes.h> header.

2 Function names that begin with str, or wcs and a lowercase letter may be added to the declarations
in the <inttypes.h> header.

3
:::
The

:::::
type

::::::::::
imaxdiv_t

::::
and

:::
the

:::::::::
functions

:::::::::
imaxabs,

::::::::
imaxdiv,

:::::::::::
strtoimax,

:::::::::::
strtoumax,

::::::::::
wcstoimax

::::
and

::::::::::
wcstoumax

:::
are

:::::::::::
obsolescent

::::::::
features.

7.31.7 Localization <locale.h>
1 Macros that begin with LC_ and an uppercase letter may be added to the macros defined in the

<locale.h> header.

7.31.8 Mathematics <math.h>
1 Macros that begin with FP_ or MATH_ and an uppercase letter may be added to the macros defined

in the <math.h> header.

2 Use of the DECIMAL_DIG macro is an obsolescent feature. A similar type-specific macro, such as
LDBL_DECIMAL_DIG, can be used instead.

3 Function names that begin with is and a lowercase letter may be added to the declarations in the
<math.h> header.

388 Library § 7.31.8

N2425 integers-new..exint-C2xworking draft — September 13, 2019 ISO/IEC 9899:202x (E)

4 The function names

cracosh
cracospi
cracos
crasinh
crasinpi
crasin
cratan2pi
cratan2

cratanh
cratanpi
cratan
crcompoundn
crcosh
crcospi
crcos
crexp10m1

crexp10
crexp2m1
crexp2
crexpm1
crexp
crhypot
crlog10p1
crlog10

crlog1p
crlog2p1
crlog2
crlogp1
crlog
crpown
crpowr
crpow

crrootn
crrsqrt
crsinh
crsinpi
crsin
crtanh
crtanpi
crtan

and the same names suffixed with f, l, d32, d64, or d128 may be added to the <math.h> header.
The cr prefix is intended to indicate a correctly rounded version of the function.

7.31.9 Signal handling <signal.h>
1 Macros that begin with either SIG and an uppercase letter or SIG_ and an uppercase letter may be

added to the macros defined in the <signal.h> header.

7.31.10 Atomics <stdatomic.h>
1 Macros that begin with ATOMIC_ and an uppercase letter may be added to the macros defined

in the <stdatomic.h> header. Typedef names that begin with either atomic_ or memory_, and
a lowercase letter may be added to the declarations in the <stdatomic.h> header. Enumeration
constants that begin with memory_order_ and a lowercase letter may be added to the definition
of the memory_order type in the <stdatomic.h> header. Function names that begin with atomic_

and a lowercase letter may be added to the declarations in the <stdatomic.h> header.

2 The macro ATOMIC_VAR_INIT is an obsolescent feature.

7.31.11 Boolean type and values <stdbool.h>
1 The ability to undefine and perhaps then redefine the macros bool, true, and false is an obsolescent

feature.

7.31.12 Integer types <stdint.h>
1 Typedef names beginning with int or uint and ending with _t may be added to the types defined

in the <stdint.h> header. Macro names beginning with INT or UINT and ending with _MAX, _MIN,
_WIDTH, or _C may be added to the macros defined in the <stdint.h> header.

7.31.13 Input/output <stdio.h>
1 Lowercase letters may be added to the conversion specifiers and length modifiers in fprintf and

fscanf. Other characters may be used in extensions.

2 The use of ungetc on a binary stream where the file position indicator is zero prior to the call is an
obsolescent feature.

7.31.14 General utilities <stdlib.h>
1 Function names that begin with str or wcs and a lowercase letter may be added to the declarations

in the <stdlib.h> header.

2 Invoking realloc with a size argument equal to zero is an obsolescent feature.

7.31.15 String handling <string.h>
1 Function names that begin with str, mem, or wcs and a lowercase letter may be added to the

declarations in the <string.h> header.

7.31.16 Date and time <time.h>
Macros beginning with TIME_ and an uppercase letter may be added to the macros in the <time.h>
header.

§ 7.31.16 Library 389

N2425 integers-new..exint-C2xworking draft — September 13, 2019 ISO/IEC 9899:202x (E)

acos
asin
atan
acosh
asinh
atanh
cos
sin
tan
cosh
sinh
tanh
exp
log
pow

sqrt
fabs
acospi
asinpi
atan2pi
atan2
atanpi
cbrt
ceil
compoundncopysign
cospi
erfc
erf
exp10m1
exp10

exp2m1
exp2
expm1
fdim
floor
fmaxmag
fmax
fma
fminmag
fmin
fmod
frexp
fromfpxfromfphypot
ilogb
ldexp

lgamma
llogb
llrint
llround
log10p1
log10
log1p
log2p1
log2
logb
logp1
lrint
lround
nearbyint
nextafter

nextdown
nexttoward
nextup
pownpowr
remainder
remquo
rint
rootnroundeven
round
rsqrt
scalbln
scalbn
sinpi
tanpi
tgamma

trunc
ufromfpxufromfp
fadd
dadd
fsub
dsub
fmul
dmul
fdiv
ddiv
ffma
dfma
fsqrt
dsqrt

Only if the implementation does not define __STDC_NO_COMPLEX__:

carg cimag conj cproj creal

Only if the implementation defines __STDC_IEC_60559_DFP__:

d32add
d64add
d32sub

d64sub
d32mul
d64mul

d32div
d64div
d32fma

d64fma
d32sqrt
d64sqrt

quantize
samequantum
quantum

llquantexp

B.25 Threads <threads.h>

__STDC_NO_THREADS__

thread_local
ONCE_FLAG_INIT
TSS_DTOR_ITERATIONS
cnd_t
thrd_t
tss_t

mtx_t
tss_dtor_t
thrd_start_t
once_flag
mtx_plain
mtx_recursive
mtx_timed

thrd_timedout
thrd_success
thrd_busy
thrd_error
thrd_nomem

void call_once(once_flag *flag, void (*func)(void));
int cnd_broadcast(cnd_t *cond);
void cnd_destroy(cnd_t *cond);
int cnd_init(cnd_t *cond);
int cnd_signal(cnd_t *cond);
int cnd_timedwait(cnd_t *restrict cond, mtx_t *restrict mtx,

const struct timespec *restrict ts);
int cnd_wait(cnd_t *cond, mtx_t *mtx);
void mtx_destroy(mtx_t *mtx);
int mtx_init(mtx_t *mtx, int type);
int mtx_lock(mtx_t *mtx);
int mtx_timedlock(mtx_t *restrict mtx, const struct timespec *restrict ts);
int mtx_trylock(mtx_t *mtx);
int mtx_unlock(mtx_t *mtx);
int thrd_create(thrd_t *thr, thrd_start_t func, void *arg);
thrd_t thrd_current(void);
int thrd_detach(thrd_t thr);
int thrd_equal(thrd_t thr0, thrd_t thr1);
_Noreturn void thrd_exit(int res);
int thrd_join(thrd_t thr, int *res);

§ B.25 Library summary 425

N2425 working draft — September 13, 2019 ISO/IEC 9899:202x (E)

roundToIntegralExact rint 7.12.9.4, F.10.6.4
nextUp nextup 7.12.11.5, F.10.8.5
nextDown nextdown 7.12.11.6, F.10.8.6
remainder remainder, remquo 7.12.10.2, F.10.7.2,

7.12.10.3, F.10.7.3
minNum fmin 7.12.12.3, F.10.9.3
maxNum fmax 7.12.12.2, F.10.9.2
minNumMag fminmag 7.12.12.5, F.10.9.5
maxNumMag fmaxmag 7.12.12.4, F.10.9.4
scaleB scalbn, scalbln 7.12.6.19, F.10.3.19
logB logb, ilogb, llogb 7.12.6.17, F.10.3.17,

7.12.6.8, F.10.3.8,
7.12.6.10, F.10.3.10

addition + , fadd, faddl, daddl 6.5.6, 7.12.14.1,
F.10.11

subtraction - , fsub, fsubl, dsubl 6.5.6, 7.12.14.2,
F.10.11

multiplication * , fmul, fmull, dmull 6.5.5, 7.12.14.3,
F.10.11

division /, fdiv, fdivl, ddivl 6.5.5, 7.12.14.4,
F.10.11

squareRoot sqrt, fsqrt, fsqrtl, dsqrtl 7.12.7.7, F.10.4.10,
7.12.14.6, F.10.11

fusedMultiplyAdd fma, ffma, ffmal, dfmal 7.12.13.1, F.10.10.1,
7.12.14.5, F.10.11

convertFromInt cast and implicit conversion 6.3.1.4, 6.5.4
convertToIntegerTiesToEven
convertToIntegerTowardZero
convertToIntegerTowardPositive
convertToIntegerTowardNegative

fromfp, ufromfp
::::::
toint,

:::::::
touint 7.25.2.1, F.10.6.10

convertToIntegerTiesToAway fromfp, ufromfp
::::::
toint,

:::::::
touint ,

lround, llround
7.25.2.1, F.10.6.10,
7.12.9.7, F.10.6.7

convertToIntegerExactTiesToEven
convertToIntegerExactTowardZero
convertToIntegerExactTowardPositive
convertToIntegerExactTowardNegative
convertToIntegerExactTiesToAway

fromfpx, ufromfpx
:::::::
tointx,

::

::::::::
touintx

7.25.2.2, F.10.6.11

convertFormat - different formats cast and implicit conversions 6.3.1.5, 6.5.4
convertFormat - same format canonicalize 7.12.11.7, F.10.8.7
convertFromDecimalCharacter strtod, wcstod, scanf, wscanf,

decimal floating constants
7.22.1.5, 7.29.4.1.1,
7.21.6.4, 7.29.2.12,
F.5

convertToDecimalCharacter printf, wprintf, strfromd 7.21.6.3, 7.29.2.11,
7.22.1.3, F.5

convertFromHexCharacter strtod, wcstod, scanf, wscanf,
hexadecimal floating constants

7.22.1.5, 7.29.4.1.1,
7.21.6.4, 7.29.2.12,
F.5

convertToHexCharacter printf, wprintf, strfromd 7.21.6.3, 7.29.2.11,
7.22.1.3, F.5

copy memcpy, memmove 7.24.2.1, 7.24.2.3
negate -(x) 6.5.3.3
abs fabs 7.12.7.2, F.10.4.3
copySign copysign 7.12.11.1, F.10.8.1
compareQuietEqual == 6.5.9, F.9.3

§ F.3 IEC 60559 floating-point arithmetic 437

ISO/IEC 9899:202x (E) working draft — September 13, 2019integers-new..exint-C2x N2425

17 The integer constant 10 provides the radix operation defined in IEC 60559 for decimal floating-point
arithmetic.

18 The samequantumdN functions (7.12.15.2) provide the sameQuantum operation defined in IEC 60559
for decimal floating-point arithmetic.

19 The fe_dec_getround (7.6.5.3) and fe_dec_setround (7.6.5.6) functions provide the getDeci-
malRoundingDirection and setDecimalRoundingDirection operations defined in IEC 60559 for
decimal floating-point arithmetic. The macros (7.6) FE_DEC_DOWNWARD, FE_DEC_TONEAREST,
FE_DEC_TONEARESTFROMZERO, FE_DEC_TOWARDZERO, and FE_DEC_UPWARD, which are used in con-
junction with the fe_dec_getround and fe_dec_setround functions, represent the IEC 60559
rounding-direction attributes roundTowardNegative, roundTiesToEven, roundTiesToAway, round-
TowardZero, and roundTowardPositive, respectively.

20 The quantumdN (7.12.15.3) and llquantexpdN (7.12.15.4) functions compute the quantum and
the (quantum) exponent q defined in IEC 60559 for decimal numbers viewed as having integer
significands.

21 The encodedecdN (7.12.16.1) and decodedecdN (7.12.16.2) functions provide the encodeDecimal
and decodeDecimal operations defined in IEC 60559 for decimal floating-point arithmetic.

22 The encodebindN (7.12.16.3) and decodebindN (7.12.16.4) functions provide the encodeBinary and
decodeBinary operations defined in IEC 60559 for decimal floating-point arithmetic.

23 The C functions
:::
and

::::::::::::
type-generic

::::::
macros

:
in the following table provide operations recommended

by IEC 60559 and similar operations. Correct rounding, which IEC 60559 specifies for its operations,
is not required for the C functions in the table. See also 7.31.8.

IEC 60559 operation C function or macro Clause
exp exp 7.12.6.1, F.10.3.1
expm1 expm1 7.12.6.6, F.10.3.6
exp2 exp2 7.12.6.4, F.10.3.4
exp2m1 exp2m1 7.12.6.5, F.10.3.5
exp10 exp10 7.12.6.2, F.10.3.2
exp10m1 exp10m1 7.12.6.3, F.10.3.3
log log 7.12.6.11, F.10.3.11
log2 log2 7.12.6.15, F.10.3.15
log10 log10 7.12.6.12, F.10.3.12
logp1 log1p, logp1 7.12.6.14, F.10.3.14
log2p1 log2p1 7.12.6.16, F.10.3.16
log10p1 log10p1 7.12.6.13, F.10.3.13
hypot hypot 7.12.7.3, F.10.4.4
rSqrt rsqrt 7.12.7.6, F.10.4.9
compound compoundn 7.25.1.1, F.10.4.2
rootn rootn 7.25.1.3, F.10.4.8
pown pown 7.25.1.2, F.10.4.6
pow pow 7.12.7.4, F.10.4.5
powr powr 7.12.7.5, F.10.4.7
sin sin 7.12.4.6, F.10.1.6
cos cos 7.12.4.5, F.10.1.5
tan tan 7.12.4.7, F.10.1.7
sinPi sinpi 7.12.4.13, F.10.1.13
cosPi cospi 7.12.4.12, F.10.1.12

tanpi 7.12.4.14, F.10.1.14
asinpi 7.12.4.9, F.10.1.9
acospi 7.12.4.8, F.10.1.8

atanPi atanpi 7.12.4.10, F.10.1.10
atan2Pi atan2pi 7.12.4.11, F.10.1.11
asin asin 7.12.4.2, F.10.1.2

... continued ...

440 IEC 60559 floating-point arithmetic § F.3

N2425 integers-new..exint-C2xworking draft — September 13, 2019 ISO/IEC 9899:202x (E)

... continued ...
IEC 60559 operation C function Clause
acos acos 7.12.4.1, F.10.1.1
atan atan 7.12.4.3, F.10.1.3
atan2 atan2 7.12.4.4, F.10.1.4
sinh sinh 7.12.5.5, F.10.2.5
cosh cosh 7.12.5.4, F.10.2.4
tanh tanh 7.12.5.6, F.10.2.6
asinh asinh 7.12.5.2, F.10.2.2
acosh acosh 7.12.5.1, F.10.2.1
atanh atanh 7.12.5.3, F.10.2.3

F.4 Floating to integer conversion
1 If the integer type is _Bool, 6.3.1.2 applies and the conversion raises no floating-point exceptions if

the floating-point value is not a signaling NaN. Otherwise, if the floating value is infinite or NaN
or if the integral part of the floating value exceeds the range of the integer type, then the "invalid"
floating-point exception is raised and the resulting value is unspecified. Otherwise, the resulting
value is determined by 6.3.1.4. Conversion of an integral floating value that does not exceed the
range of the integer type raises no floating-point exceptions; whether conversion of a non-integral
floating value raises the "inexact" floating-point exception is unspecified.389)

F.5 Conversions between binary floating types and decimal character se-
quences

1 The <float.h> header defines the macro

CR_DECIMAL_DIG

if and only if __STDC_WANT_IEC_60559_BFP_EXT__ is defined as a macro at the point in the source
file where <float.h> is first included. If defined, CR_DECIMAL_DIG expands to an integral constant
expression suitable for use in #if preprocessing directives whose value is a number such that
conversions between all supported IEC 60559 binary formats and character sequences with at most
CR_DECIMAL_DIG significant decimal digits are correctly rounded. The value of CR_DECIMAL_DIG
shall be at least M +3, where M is the maximum value of the T_DECIMAL_DIG macros for IEC 60559
binary formats. If the implementation correctly rounds for all numbers of significant decimal digits,
then CR_DECIMAL_DIG shall have the value of the macro UINTMAX_MAX.

2 Conversions of types with IEC 60559 binary formats to character sequences with more than
CR_DECIMAL_DIG significant decimal digits shall correctly round to CR_DECIMAL_DIG significant
digits and pad zeros on the right.

3 Conversions from character sequences with more than CR_DECIMAL_DIG significant decimal digits
to types with IEC 60559 binary formats shall correctly round to an intermediate character sequence
with CR_DECIMAL_DIG significant decimal digits, according to the applicable rounding direction,
and correctly round the intermediate result (having CR_DECIMAL_DIG significant decimal digits) to
the destination type. The "inexact" floating-point exception is raised (once) if either conversion
is inexact.390) (The second conversion may raise the "overflow" or "underflow" floating-point
exception.)

4 The specification in this subclause assures conversion between IEC 60559 binary format and decimal
character sequence follows all pertinent recommended practice. It also assures conversion from
IEC 60559 format to decimal character sequence with at least T_DECIMAL_DIG digits and back, using
to-nearest rounding, is the identity function, where T is the macro prefix for the format.

389)IEC 60559 recommends that implicit floating-to-integer conversions raise the "inexact" floating-point exception for
non-integer in-range values. In those cases where it matters, library functions can be used to effect such conversions with or
without raising the "inexact" floating- point exception. See fromfp

:::::
toint , ufromfp

::::::
touint , fromfpx

::::::
tointx , ufromfpx

::::::
touintx , rint, lrint, llrint, and nearbyint in <tgmath.h>

:::
and <math.h>

:
,
:::::::::
respectively.

390)The intermediate conversion is exact only if all input digits after the first CR_DECIMAL_DIG digits are 0.

§ F.5 IEC 60559 floating-point arithmetic 441

ISO/IEC 9899:202x (E) working draft — September 13, 2019integers-new..exint-C2x N2425

F.10.6.8 The roundeven functions
1

— roundeven(±0) returns ±0.

— roundeven(±∞) returns ±∞.

2 The returned value is exact and is independent of the current rounding direction mode.

3 See the sample implementation for ceil in F.10.6.1.

F.10.6.9 The trunc functions
1 The trunc functions use IEC 60559 rounding toward zero (regardless of the current rounding

direction).

— trunc(±0) returns ±0.

— trunc(±∞) returns ±∞.

2 The returned value is exact and is independent of the current rounding direction mode.

F.10.6.10 The toint and touint type-generic macros
1 The fromfp and ufromfp functions

::::::
toint

::::
and

:::::::
touint

::::::::::::
type-generic

:::::::
macros

:
raise the "invalid"

floating-point exception and return an unspecified value if the floating-point argument x is in-
finite or NaN or rounds to an integral value that is outside the range of any supported integer type of
the specified width.

2 These functions
:::::::::::
type-generic

:::::::
macros

:
do not raise the "inexact" floating-point exception.

F.10.6.11 The tointx and touintx type-generic macros
1 The fromfpx and ufromfpx functions

::::::
tointx

::::
and

::::::::
touintx

::::::::::::
type-generic

:::::::
macros raise the "invalid"

floating-point exception and return an unspecified value if the floating-point argument x is infinite
or NaN or rounds to an integral value that is outside the range of any supported integer type of the
specified width.

2 These functions
:::::::::::
type-generic

:::::::
macros raise the "inexact" floating-point exception if a valid result

differs in value from the floating-point argument x.

F.10.7 Remainder functions
F.10.7.1 The fmod functions

1 — fmod(±0, y) returns ±0 for y not zero.

— fmod(x, y) returns a NaN and raises the "invalid" floating-point exception for x infinite or y
zero (and neither is a NaN).

— fmod(x,±∞) returns x for x not infinite.

2 When subnormal results are supported, the returned value is exact and is independent of the current
rounding direction mode.

3 The double version of fmod behaves as though implemented by

#include <math.h>
#include <fenv.h>
#pragma STDC FENV_ACCESS ON
double fmod(double x, double y)
{

double result;
result = remainder(fabs(x), (y = fabs(y)));
if (signbit(result)) result += y;
return copysign(result, x);

}

458 IEC 60559 floating-point arithmetic § F.10.7.1

N2425 integers-new..exint-C2xworking draft — September 13, 2019 ISO/IEC 9899:202x (E)

J.5.15 Additional stream types and file-opening modes
1 Additional mappings from files to streams are supported (7.21.2).

2 Additional file-opening modes may be specified by characters appended to the mode argument of
the fopen function (7.21.5.3).

J.5.16 Defined file position indicator
1 The file position indicator is decremented by each successful call to the ungetc or ungetwc function

for a text stream, except if its value was zero before a call (7.21.7.10, 7.29.3.10).

J.5.17 Math error reporting
1 Functions declared in <complex.h> and <math.h> raise SIGFPE to report errors instead of, or in

addition to, setting errno or raising floating-point exceptions (7.3, 7.12).

J.6 Reserved identifiers and keywords
1 A lot of identifier preprocessing tokens are used for specific purposes in regular clauses or appendices

from translation phase 3 onwards. Using any of these for a purpose different from their description
in this document, even if the use is in a context where they are normatively permitted, may have an
impact on the portability of code and should thus be avoided.

J.6.1 Rule based identifiers
1 The following 38 regular expressions characterize identifiers that are systematically reserved by

some clause this document.

atomic_[a-z][a-zA-Z0-9_]*
ATOMIC_[A-Z][a-zA-Z0-9_]*
[a-zA-Z][a-zA-Z0-9_]*
cnd_[a-z][a-zA-Z0-9_]*
DBL_[A-Z][a-zA-Z0-9_]*
DEC128_[A-Z][a-zA-Z0-9_]*
DEC32_[A-Z][a-zA-Z0-9_]*
DEC64_[A-Z][a-zA-Z0-9_]*
DEC_[A-Z][a-zA-Z0-9_]*
E[0-9A-Z][a-zA-Z0-9_]*
FE_[A-Z][a-zA-Z0-9_]*
FLT_[A-Z][a-zA-Z0-9_]*
FP_[A-Z][a-zA-Z0-9_]*
INT[a-zA-Z0-9_]*_C
INT[a-zA-Z0-9_]*_MAX
INT[a-zA-Z0-9_]*_MIN
int[a-zA-Z0-9_]*_t
INT[a-zA-Z0-9_]*_WIDTH
is[a-z][a-zA-Z0-9_]*

LC_[A-Z][a-zA-Z0-9_]*
LDBL_[A-Z][a-zA-Z0-9_]*
MATH_[A-Z][a-zA-Z0-9_]*
mem[a-z][a-zA-Z0-9_]*
mtx_[a-z][a-zA-Z0-9_]*
PRI[a-zX][a-zA-Z0-9_]*
SCN[a-zX][a-zA-Z0-9_]*
SIG[A-Z][a-zA-Z0-9_]*
SIG_[A-Z][a-zA-Z0-9_]*
str[a-z][a-zA-Z0-9_]*
thrd_[a-z][a-zA-Z0-9_]*
TIME_[A-Z][a-zA-Z0-9_]*
to[a-z][a-zA-Z0-9_]*
tss_[a-z][a-zA-Z0-9_]*
UINT[a-zA-Z0-9_]*_C
UINT[a-zA-Z0-9_]*_MAX
uint[a-zA-Z0-9_]*_t
UINT[a-zA-Z0-9_]*_WIDTH
wcs[a-z][a-zA-Z0-9_]*

2 The following 636
:::
672

:
identifiers or keywords match these patterns and have particular semantics

provided by this document.

_Alignas
__alignas_is_defined
_Alignof
__alignof_is_defined
_Atomic
atomic_bool
ATOMIC_BOOL_LOCK_FREE
atomic_char
atomic_char16_t

ATOMIC_CHAR16_T_LOCK_FREE
atomic_char32_t
ATOMIC_CHAR32_T_LOCK_FREE
ATOMIC_CHAR_LOCK_FREE
atomic_compare_exchange_strong
atomic_compare_exchange_strong_explicit
atomic_compare_exchange_weak
atomic_compare_exchange_weak_explicit
atomic_exchange

§ J.6.1 Portability issues 501

N2425 integers-new..exint-C2xworking draft — September 13, 2019 ISO/IEC 9899:202x (E)

toupper
towctrans
towlower
towupper
tss_create
tss_delete
tss_dtor_t
tss_get
tss_set
tss_t

::::::::::
UINT128_C

::::::::::::
UINT128_MAX

::::::::::
uint128_t

:::::::::::::::
UINT128_WIDTH
UINT16_C
UINT16_MAX
uint16_t
UINT16_WIDTH
UINT32_C
UINT32_MAX
uint32_t
UINT32_WIDTH
UINT64_C
UINT64_MAX
uint64_t
UINT64_WIDTH
UINT8_C
UINT8_MAX
uint8_t
UINT8_WIDTH

::::::::::::::::
uint_fast128_t
uint_fast16_t
uint_fast32_t
uint_fast64_t
uint_fast8_t

:::::::::::::::::
uint_least128_t
uint_least16_t
uint_least32_t
uint_least64_t
uint_least8_t

:::::::::::::::::
UINT_LEASTMAX_C

:::::::::::::::::::
UINT_LEASTMAX_MAX

:::::::::::::::::
uint_leastmax_t

:::::::::::::::::::::
UINT_LEASTMAX_WIDTH
UINT_MAX
UINTMAX_C
UINTMAX_MAX

uintmax_t
UINTMAX_WIDTH
UINTPTR_MAX
uintptr_t
UINTPTR_WIDTH
UINT_WIDTH
__VA_ARGS__

wcscat
wcscat_s
wcschr
wcscmp
wcscoll
wcscpy
wcscpy_s
wcscspn
wcsftime
wcslen
wcsncat
wcsncat_s
wcsncmp
wcsncpy
wcsncpy_s
wcsnlen_s
wcspbrk
wcsrchr
wcsrtombs
wcsrtombs_s
wcsspn
wcsstr
wcsto
wcstod
wcstod128
wcstod32
wcstod64
wcstof
wcstoimax
wcstok
wcstok_s
wcstol
wcstold
wcstoll
wcstombs
wcstombs_s
wcstoul
wcstoull
wcstoumax
wcsxfrm

J.6.2 Particular identifiers or keywords
1 The following 1190

::::
1149

:
identifiers or keywords are not covered by the above and have particular

semantics provided by this document.

abort
abort_handler_s
abs

acos
acosd128
acosd32

acosd64
acosf
acosh

§ J.6.2 Portability issues 507

ISO/IEC 9899:202x (E) working draft — September 13, 2019integers-new..exint-C2x N2425

Annex M
(informative)

Change History

M.1 Fifth Edition
1 Major changes in this fifth edition (__STDC_VERSION__ yyyymmL) include:

— remove obsolete sign representations and integer width constraints

—
:::::
allow

:::::::::
extended

::::::
integer

::::::
types

:::::
wider

:::::
than

:::::::::
intmax_t

::::
and

::::::::::
uintmax_t

:

— added a one-argument version of _Static_assert

— harmonization with ISO/IEC 9945 (POSIX):

• extended month name formats for strftime

• integration of functions: memccpy, strdup, strndup

— harmonization with floating point standard IEC 60559:

• integration of binary floating-point technical specification TS 18661-1

• integration of decimal floating-point technical specification TS 18661-2

• integration of decimal floating-point technical specification TS 18661-4a

— the macro DECIMAL_DIG is declared obsolescent

— added version test macros to certain library headers

— added the attributes feature

— added nodiscard, maybe_unused and deprecated attributes

M.2 Fourth Edition
1 There were no major changes in the fourth edition (__STDC_VERSION__ 201710L), only technical

corrections and clarifications.

M.3 Third Edition
1 Major changes in the third edition (__STDC_VERSION__ 201112L) included:

— conditional (optional) features (including some that were previously mandatory)

— support for multiple threads of execution including an improved memory sequencing model,
atomic objects, and thread-local storage (<stdatomic.h> and <threads.h>)

— additional floating-point characteristic macros (<float.h>)

— querying and specifying alignment of objects (<stdalign.h>, <stdlib.h>)

— Unicode characters and strings (<uchar.h>) (originally specified in ISO/IEC TR 19769:2004)

— type-generic expressions

— static assertions

— anonymous structures and unions

— no-return functions

— macros to create complex numbers (<complex.h>)

— support for opening files for exclusive access

566 Change History § M.3

	Problem description
	Suggested changes
	Changes directly concerning `[u]intmaxt`
	Marginaly corrections for exact width macros and similar
	Tighten the rules for least and fast minimum-width integer types
	New type aliases for the widest type pair
	Chasing `[u]intmaxt` from standard interfaces
	Type-generic macros for common integer operations
	Integer-power type-generic macros
	Nearest integer type-generic macros

	Impact
	Existing implemenations and code
	Extensibility of ABI's

