
Proposal for C2x

WG14 N2410

Title: The noreturn attribute

Author, affiliation: Aaron Ballman, GrammaTech

Date: 2019-08-15

Proposal category: New features

Target audience: General developers, compiler/tooling developers

Abstract: C11 added support for the _Noreturn function type specifier whereas C++11 added support

for the [[noreturn]] attribute. This proposal attempts to bring the two features into cross-language

alignment.

Prior art: C++

The noreturn attribute
Reply-to: Aaron Ballman (aaron@aaronballman.com)
Document No: N2410
Date: 2019-08-15

Summary of Changes

N2410

 Original proposal.

Introduction
Some functions are defined to never return back to the caller. For instance, functions that terminate the

program by calling abort() or _Exit(), or functions that call longjmp() to resume execution

elsewhere. There are advantages to program readability and performance when the user is able to mark

these functions as not returning. To support this case, C++11 adopted an attribute spelled

[[noreturn]] in 2008 [WG21 N2761], while C11 adopted a function specifier spelled _Noreturn to

do the same in 2010 [N1478].

Rationale
Now that C2x has support for attributes using the same syntax as C++ [N2269], the _Noreturn function

specifier may be a point of confusion for users, especially ones who write function declarations in a

header file shared included in both a C and C++ translation unit. The _Noreturn keyword will not be

known to a C++ implementation and the [[noreturn]] attribute will not be known to a C

implementation, despite the semantics of the concept being the same between languages.

Proposal
This paper proposes adding a new attribute, spelled [[noreturn]] and deprecates use of _Noreturn.

To ease transition to a new language standard, this paper also proposes a migration path forward for

users who are using the old _Noreturn or noreturn spellings.

[[noreturn]]
This paper proposes adding a new attribute spelled [[noreturn]]. The [[noreturn]] attribute is

used to specify that a function does not return execution to its caller. It has the same semantics as the

current _Noreturn function specifier in that it is undefined behavior to return from a function marked

[[noreturn]], with the recommendation that implementations diagnose such a situation.

_Noreturn
The _Noreturn function specifier keyword is replaced by a predefined macro of the same spelling. The

predefined macro will expand to [[noreturn]], allowing code previously written with _Noreturn to

continue to work. Despite this predefined macro being a new addition for C2x, the macro is deprecated

in order to encourage users to use the more language-agnostic [[noreturn]] spelling directly.

noreturn
The noreturn macro continues to expand to _Noreturn, which in turn will be expanded to

[[noreturn]], allowing code previously written with noreturn to continue to work. The

<stdnoreturn.h> header file is deprecated in order to encourage users to use the more language-

agnostic [[noreturn]] spelling directly. Note that having noreturn expand to [[noreturn]] was

considered, but has a usability issue where including <stdnoreturn.h> means that a subsequent use

of [[noreturn]] will be macro expanded to [[[[noreturn]]]] and be a constraint violation.

Standard library interfaces
The standard library interfaces that currently use the _Noreturn keyword will instead use the

[[noreturn]] attribute.

Proposed Wording
The wording proposed is a diff from N2385. Green text is new text, while red text is deleted text.

Modify 6.4.1p1 (the table of keywords) to remove the _Noreturn keyword.

Modify 6.7.4p1:

1 function-specifier:
 inline
 _Noreturn

Delete 6.7.4p8, p9, and p12:

8 A function declared with a _Noreturn function specifier shall not return to its caller.

9 The implementation should produce a diagnostic message for a function declared with a _Noreturn

function specifier that appears to be capable of returning to its caller.

12 EXAMPLE 2

_Noreturn void f () {

 abort(); // ok

}

_Noreturn void g (int i) { // causes undefined behavior if i <= 0

 if (i > 0) abort();

}

Add a new subclause after 6.7.11.2:

Drafting note: I would like the UB in paragraph 2 to be the C equivalent of C++’s “ill-formed, no

diagnostic required” so that it’s clear that this isn’t just your garden variety UB. The example was

extended from the previous example to clarify that “appears to be capable” also applies to non-void

return types.

6.7.11.3 The noreturn attribute

Constraints

1 The noreturn attribute shall be applied to the identifier in a function declarator. It shall appear at

most once in each attribute list and no attribute argument clause shall be present.

Semantics

2 The first declaration of a function shall specify the noreturn attribute if any declaration of that

function specifies the noreturn attribute. If a function is declared with the noreturn attribute in one

translation unit and the same function is declared without the noreturn attribute in another

translation unit, the behavior is undefined.

3 If a function f is called where f was previously declared with the noreturn attribute and f eventually

returns, the behavior is undefined.

Recommended Practice

4 The implementation should produce a diagnostic message for a function declared with a noreturn

attribute that appears to be capable of returning to its caller.

5 EXAMPLE 1

 [[noreturn]] void f(void) {

 abort(); // ok

 }

 [[noreturn]] void g(int i) { // causes undefined behavior if i <= 0

 if (i > 0) abort();

 }

 [[noreturn]] int h(void);

Implementations are encouraged to diagnose the definition of g() because it is capable of returning to

its caller. Implementations are similarly encouraged to diagnose the declaration of h() because it

appears capable of returning to its caller due to the non-void return type.

Modify 6.10.8.1p1:

1 The following macro names shall be defined by the implementation:

_Noreturn Expands to [[noreturn]]. The _Noreturn macro is an obsolescent feature.

__DATE__ The date of translation of the preprocessing translation unit: a character string literal of the

form "Mmm dd yyyy", where the names of the months are the same as those generated by the

asctime function, and the first character of dd is a space character if the value is less than 10. If the

date of translation is not available, an implementation-defined valid date shall be supplied.

__FILE__ The presumed name of the current source file (a character string literal).179)

__LINE__ The presumed line number (within the current source file) of the current source line (an

integer constant).179)

__STDC__ The integer constant 1, intended to indicate a conforming implementation.

__STDC_HOSTED__ The integer constant 1 if the implementation is a hosted implementation or the

integer constant 0 if it is not.

__STDC_VERSION__ The integer constant 201710L.180)

__TIME__ The time of translation of the preprocessing translation unit: a character string literal of the

form "hh:mm:ss" as in the time generated by the asctime function. If the time of translation is not

available, an implementation-defined valid time shall be supplied.

Modify 7.13.2.1p1:

1 #include <setjmp.h>
 _Noreturn[[noreturn]] void longjmp(jmp_buf env, int val);

Modify 7.22.4.1p1:

1 #include <stdlib.h>
 _Noreturn[[noreturn]] void abort(void);

Modify 7.22.4.4p1:

1 #include <stdlib.h>
 _Noreturn[[noreturn]] void exit(int status);

Modify 7.22.4.5p1:

1 #include <stdlib.h>
 _Noreturn[[noreturn]] void _Exit(int status);

Modify 7.22.4.7p1:

1 #include <stdlib.h>
 _Noreturn[[noreturn]] void quick_exit(int status);

Modify 7.23 (the subclause title):

7.23 _Noreturn[[noreturn]] <stdnoreturn.h>

Add a new paragraph 7.23p2:

2 The noreturn macro and the <stdnoreturn.h> header are obsolescent features.

Modify 7.26.5.5p1:

1 #include <threads.h>
 _Noreturn[[noreturn]] void thrd_exit(int res);

Acknowledgements
I would like to acknowledge the following people for their contributions to this work: myself.

References
[N1478]

Supporting the ‘noreturn’ property in C1x. David Svoboda. http://www.open-

std.org/jtc1/sc22/wg14/www/docs/n1478.htm

[N2269]

Attributes in C. Aaron Ballman. http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2269.pdf

[WG21 N2761]

Towards support for attributes in C++. Jens Maurer, Michael Wong. http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf

