
Proposal for C2x

WG14 N2409

Title: What we think we reserve

Author, affiliation: Aaron Ballman, GrammaTech

Date: 2019-08-11

Proposal category: Modifying existing normative requirements

Target audience: Users

Abstract: The C standard normatively reserves identifiers and some of the reservations impose onerous

requirements on programmers. The most severe requirements are generally unknown to programmers,

not checked by tools, and demonstrate a disconnect between the C standards committee and the

language as it is used by programmers.

Reply-to: Aaron Ballman (aaron@aaronballman.com)

Document No: N2409

Date: 2019-08-11

Summary of Changes
N2409

 Original proposal

Introduction and Rationale
C does not have a syntactic feature for reserving identifiers. Instead, the standard makes sweeping

identifier reservations using lexical patterns, such as identifiers starting with an underscore followed by

an uppercase letter, and the C committee expects the entire C community to know and adhere to the

reservations in order to avoid breaking code when adding new language or library features. However,

some of the current reservations result in onerous requirements on the programming community that

are often not reliably checked by implementations and tools, or honored by users. Further, some of

these reservations are generally unknown to the greater user community, in part due to the fact that

the standard is neither free nor easy to read. This results in an untenable situation where the C

committee believes certain identifiers are available to be used by the committee because they’ve been

reserved, while it is still possible to result in breaking significant amounts of user code.

Because of this disconnect between the standard and the community, I am proposing we modify our set

of reserved names to match industry practice even if it means giving up rights to names we believe we

already have rights to. I believe it is to our benefit to have realistic rules for reserving identifiers instead

of a semi-antagonistic approach where we can break user code by making use of an identifier that’s

reserved via an overly-broad mechanism that users are unaware of and isn’t generally caught by

compilers or tools.

What makes a reserved identifier?
Identifier reservations are unfortunately split into two different places within the standard. 7.1.3p1 gives

what looks to be an exhaustive list of reserved identifiers, and 7.1.3p2 goes on to state: No other

identifiers are reserved. However, you need to read p1 carefully to note that 7.31 Future Library

Directions also includes a list of reserved identifiers that are reserved under entirely different

circumstances. For instance, 7.1.3 talks about reserving identifiers only if their associated header is

included, while 7.31p1 reserves identifiers regardless of what headers are included (if any).

7.1.3 Reserved Identifiers

Identifiers with two leading underscores or a leading underscore followed by a capital letter. However,

this only applied in cases where the identifier is not lexically identical to a keyword.

Reserved Unreserved
int __foobar, _Foobar #define _Generic(x)

Identifiers that begin with an underscore at file scope.

Reserved Unreserved
int _foobar; int func(void) { int _foobar; }

Macro names and identifiers with external linkage that are specified in the C standard library clauses.

Reserved Unreserved
#include <locale.h>

int func(void) {

 const char *localeconv;

}

int func(void) {

 const char *localeconv;

}

7.31 Future Library Directions

The individual reservations make claims as to what kinds of identifiers are reserved (macro names,

function names, etc.) and what header file is impacted. However, p1 makes it clear that all identifiers

reserved from this subclause are reserved identifiers regardless of what header files are included,

meaning that these rules apply to all C code. Further, reserving an identifier pattern for a given use has

limited practical effect on the context under which the identifier is reserved. Reserving an identifier for

any use effectively reserves it for all uses in a practical sense. For instance, reserving something for use

as a macro name or enumeration constant practically ensures that the name cannot also be used as the

identifier in a function declaration, and vice versa. In effect, these identifiers are reserved for all uses in

C regardless of what header files (if any) are included, and so the identifier reservations are being listed

below by pattern rather than by header or entity.

 is, to, str, mem, wcs, atomic_, memory_, memory_order_, cnd_, mtx_, thrd_, or tss_ followed by

a lowercase letter

 E, FE_, LC_, SIG, SIG_, ATOMIC_, or TIME_ followed by an uppercase letter

 E followed by a number

 PRN or SCN followed by a lowercase letter or the uppercase letter X

 Identifiers starting with uint or int and ending with _t, or UINT or INT and ending with _MAX,

_MIN, or _C

 cerf, cerfc, cexp2, cexpm1, clog10, clog1p, clog2, clgamma, ctgamma, optionally followed by f or

l

While many of these reservations seem reasonable or even necessary, they have some far-reaching

consequences for introducing undefined behavior in user programs. Consider the following examples:

enum structure { // reserved

 isomorphic, // reserved

 nonisomorphic

};

void memorize_secret(// reserved

 const char *string // reserved

);

struct toxicology { // reserved

 enum condition {

 cnd_clean, // reserved

 cnd_dirty // reserved

 } cnd;

};

#define ENTOMOLOGY 1 // reserved

#define SIGNIFICANT_RESULTS 1 // reserved

#define TIME_TO_EAT 1 // reserved

#define ATOMIC_WEIGHT .000001f // reserved

#define INTERESTING_VALUE_MIN 0 // reserved

While these identifiers may seem contrived, it does not stretch the imagination to believe that

programmers will accidentally use reserved identifiers with relative frequency without realizing it. A

survey of the most egregious prefix patterns demonstrates that there are a considerable number of

English words prohibited from use in C currently: e (33921 words), to (3810 words), is (3267 words), str

(1643 words), sig (470 words), and mem (231 words). A survey of compilers and static analyzers were

unable to identify a single tool warning users about all forms of reserved identifiers, including ones from

the Future Library Directions, though all of the tools surveyed were able to warn about varying subsets

of the reserved identifiers. The tools surveyed were: Clang, Microsoft Visual Studio, GCC, ICC,

CodeSonar, CppCheck, Coverity, QAC, and two unnamed static analysis tools (not all tools can be listed

by name due to Terms of Service requirements).

Code in the Wild
Code in the wild seems to ignore the reservations from 7.31, casting into doubt whether WG14 can rely

on these reservations to prevent breaking user code. It is trivial to find examples of identifiers in popular

C projects that violate the reserved identifiers restrictions from 7.31. A brief survey of a few popular C

projects doing a simple regular expression search over header files finds the following examples:

sqlite (https://sqlite.org/index.html)

int (*strlike)(const char*,const char*,unsigned int);

#define EP_Reduced 0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */

void *token; /* id that may be used to recursive triggers */

Windows 10 SDK (https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk)

#define ERROR_SUCCESS 0L

typedef struct tagRECT

 {

 LONG left;

 LONG top;

 LONG right;

 LONG bottom;

 } RECT;

ReactOS (https://github.com/reactos/reactos)

extern int iso9660_level;

extern int iso9660_namelen;

struct directory_entry {

 …

 unsigned int total_rr_attr_size;

 …

https://sqlite.org/index.html
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://github.com/reactos/reactos

};

struct chmcTopicEntry {

 UInt32 tocidx_offset;

 …

};

#define POW2(stride) (!((stride) & ((stride)-1)))

libuv (https://github.com/libuv/libuv)

#define container_of(ptr, type, member) \

 ((type *) ((char *) (ptr) - offsetof(type, member)))

typedef enum {

 TCP = 0,

 UDP,

 PIPE

} stream_type;

define ENABLE_EXTENDED_FLAGS 0x80

libiconv (https://www.gnu.org/software/libiconv/)

static inline int streq8 (const char *s1, const char *s2, char s28);

#define isxbase64(ch) ((ch) < 128 && ((xbase64_tab[(ch)>>3] >> (ch&7)) & 1))

#define EXPR_SIGNED(e) (_GL_INT_NEGATE_CONVERT (e, 1) < 0)

Proposal
The C standard needs to carve out reserved identifiers, so it is not proposed that the standard remove

all identifier reservations. However, the standard should only reserve identifiers if there is a reasonable

chance that the reservation is sufficiently well-known to users and checked by tools to justify the belief

that code will not be broken when the standard adds a new identifier based on that reservation. Even

should tooling improve to cover all cases of reserved identifiers, the set of identifiers reserved by the C

committee is far too large and intrusive. It is a primary responsibility of the committee not to break

existing code [0]. It does not serve the user community or the standards body to claim to reserve

identifiers that the committee has no intention of using, such as every identifier starting with the letters

is, str, or mem.

For every character added to the identifier pattern reservation, the number of English words that match

will be reduced. The standard should either use exact-match identifiers or utilize patterns with both a

prefix and suffix of sufficient length and complexity to reduce the likelihood of the pattern including

English words or common abbreviations. Additionally, restricting the reservation to only apply when

certain header files are included further reduces the risk of accidentally conflicting with existing user

code. This paper proposes changing the identifier reservations by:

 retaining what is already reserved by 7.1.3,

 modifying 7.31p1 to only apply when the given header file is included,

 retaining the precise reserved identifiers from 7.31.1,

 modifying the pattern-based reserved identifiers from 7.31.10 to be int or uint followed by a

number and ending with _t or INT or UINT followed by a number and ending with _MAX, _MIN,

or _C,

 removing or modifying the pattern-based reserved identifiers from 7.31.2, 7.31.3, 7.31.4, 7.31.5,

7.31.6, 7.31.7, 7.31.8, 7.31.12, 7.31.13, 7.31.14, 7.31.15, 7.31.16, and 7.31.17.

https://github.com/libuv/libuv
https://www.gnu.org/software/libiconv/

Acknowledgements
I would like to recognize the following people for their help in this work: Alex Gilding, Tom Honermann,

Christof Meerwald, Clive Pygott, Robert Seacord, and David Svoboda.

References
[0] http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2021.htm

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2021.htm

