
ISO/IEC JTC 1/SC 22/WG14

June 7, 2019

N 2391

v 1
Synchronization at thread and execution termination
proposal for integration to C2x

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

Whereas its intent is clear, the C standard lacks clarity concerning synchronization guarantees for the

interaction of call backs that may be called during thread termination and during the termination of the
whole program execution.

—
This is the “library synchronization” part of a split up of N2329, that was perceived as overwhelming by

WG14.

1. PROBLEM DESCRIPTION

C17 establishes several call-back mechanisms that are intended as interfaces for cleanup
when either a thread or the whole execution ends:

— destructors for tss_t, thread specific storage
— exit handlers that are instaured with atexit
— quick_exit handlers that are instaured with at_quick_exit

These are not clearly integrated into the synchronization model, because they do not clearly
stipulate sequencing of the different invocations of call-backs among each other, nor their
synchronization when they occur in different threads of execution.
Additionally, there is the thread join mechanism with thrd_join that guarantees synchro-
nization between the termination of a specific thread and the calling thread. But even here,
the synchronization is only clearly specified for the joining thread, not for the terminating
thread where it remains unclear how the destructor call-backs are sequenced with respect
to thread termination.
We think that what should be done is relatively clear and we didn’t hear of misinterpre-
tations which properties should be guaranteed, but we think that some clarification is in
order.

2. POSSIBLE SOLUTIONS

2.1. Application synchronization

In principle, the unspecified synchronization properties could be left so, and the burden
of ensuring synchronization could be placed on the user code. But then, to ensure proper
cleanup of resources that need synchronization, user code would need to add synchronization
manually. This would require the use of

— atomic_thread_fence, which is only available if the implementation also supports atomics,
or

— protection of all handlers by a central mtx_t, which then would be locked and unlocked at
the beginning and end of each of the destructors and handlers.

2.1.1. Application fences.

For the use with atomic_thread_fence:

— User code would have to enforce synchronization of the exit and quick_exit handlers by
establishing explicit synchronization. Since it can’t know which handlers are established
last (and are thus called first) they’d have to add a call

© 2019 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License

N2391:2 Jens Gustedt

atomic_thread_fence(memory_order_acquire);

At the beginning of each such a handler. When supposing that the current text guarantees
that the invocation of the handlers is sequenced, they would not have to add synchroniza-
tion to the end of the handlers.

— Synchronizing the tss_t destructors would necessitate similar acquire fences at the begin-
ning of each destructor, but also release fences at the end. Because the order of destructor
invocations is not fixed users can’t neither know which of the destructors is called first,
nor which is called last.

Besides that these strategies build on the presence of atomic_thread_fence, they are tedious
and error prone. Subtle synchronization errors could render programming of applications
with many threads difficult and insecure.

2.1.2. Application mutex.

For the use with mtx_t the user would have to guarantee that all thread termination and
all execution of handlers is synchronized through the same mutex. This can e.g be achieved
by first establishing a dummy handler and a dummy destructor:

extern mtx_t sync_mtx; // Global synchronization utility.
extern tss_t sync_tss; // Dummy key to enforce call to lock function.
extern once_flag sync_once_flag; // To ensure proper intialization

// Internal functions
extern void sync_last(void);
extern void* sync_dtor(void* p);
extern void sync_once(void);

// API
inline void sync_lock(void) { mtx_lock (& sync_mtx); }
inline void sync_unlock(void) { mtx_unlock (& sync_mtx); }
inline void sync_initializer(void) {

call_once (& sync_once_flag , sync_once);
tss_set(sync_tss , malloc (1));

}

// ***************** implementation ********************************
void sync_last(void) {

sync_lock ();
sync_unlock ();
mtx_destroy (& sync_mtx);
tss_delete(sync_tss);

}
void* sync_dtor(void* p) {

sync_lock ();
free(p);
sync_unlock ();
return 0;

}
void sync_once(void) {

mtx_init (&sync_mtx , mtx_plain);
tss_create (&sync_tss , sync_dtor);
atexit(sync_last);
at_quick_exit(sync_last);

}

Synchronization at thread and execution termination N2391:3

and then to call sync_initializer() at the start of each user thread function and to
protect each user destructor and each user handler by a pair of calls sync_lock() and
sync_unlock().
This approach is at least as tedious as the approach with fences above. In addition it has
the disadvantage of serializing all destructor calls, even when they are issued for concurrent
threads.

2.2. Implementation based solutions

On the other hand, requiring synchronization from the implementation is not much of a
burden. Since they know when they call the handlers it is easy for them to add one fence
or lock-pair before each of the start and after the end of the call-back procedures.
Because we also think that implementations do something along these veins anyhow, we
suggest to go for an implementation based solution.

3. SUGGESTED CHANGES

To make sense for these call-back mechanisms as automatic cleanup procedures, it seems
clear that we should require that all call-back invocations should synchronize among each
other and with thread and execution termination.

— A destructor should synchronize with the termination of the thread function of the thread
for which it is called. Since this concerns only one thread, we just have to insist on proper
sequencing between the invocations. Currently the text only talks about an unspecified
“order” for these destructor invocations. We propose to use the appropriate terminology
and to require that they are “indeterminally sequenced”. See 7.26.5.5 p2.

— Call-back invocations at the end of program execution (exit or quick_exit) should syn-
chronize with all threads that have been properly terminated (thrd_exit or equivalently
return) and should be sequenced with respect to each other. We introduce two new para-
graphs for each of the two functions, 7.22.4.4 p4 and 7.22.4.7 p4.

— The end of the cleanup mechanism for a particular thread should synchronize with the
cleanup mechanism for the whole program execution. See 7.26.5.5 p4 plus footnote.

4. IMPACT

The proposed changes are such that they should have no immediate impact on user code
or change implementations.
In the very unlikely case that an implementation does not guarantee proper synchronization
for the call-backs, yet, they would have to add a modest number of fences surrounding their
call-back loops.

Appendix: diffmarks for the proposed changes

Following are those pages that contain diffmarks for the proposed changed against C2x.
The procedure is not perfect, in particular there may be changes inside code blocks that
are not visible.

N2391 atomics-cleanup..library-synchronizationworking draft — June 7, 2019 ISO/IEC 9899:202x (E)

Synopsis

1 #include <stdlib.h>
int at_quick_exit(void (*func)(void));

Description
2 The at_quick_exit function registers the function pointed to by func, to be called without argu-

ments should quick_exit be called.323) It is unspecified whether a call to the at_quick_exit
function that does not happen before the quick_exit function is called will succeed.

Environmental limits
3 The implementation shall support the registration of at least 32 functions.

Returns
4 The at_quick_exit function returns zero if the registration succeeds, nonzero if it fails.

Forward references: the quick_exit function (7.22.4.7).

7.22.4.4 The exit function
Synopsis

1 #include <stdlib.h>
_Noreturn void exit(int status);

Description
2 The exit function causes normal program termination to occur. No functions registered by the

at_quick_exit function are called. If a program calls the exit function more than once, or calls the
quick_exit function in addition to the exit function, the behavior is undefined.

3 First, all functions registered by the atexit function are called, in the reverse order of their registra-
tion,324) except that a function is called after any previously registered functions that had already
been called at the time it was registered. If, during the call to any such function, a call to the longjmp
function is made that would terminate the call to the registered function, the behavior is undefined.

4
:::
The

::::::::::
beginning

::
of

::::
that

::::::::::
procedure

::
is

:
a
:::::::::

sequence
:::::
point

::::
that

:::::::::::::
synchronizes

::::
with

::::
the

:::::::::::
termination

::
of

:::
all

:::::::
threads

::
as

:::::::::
described

:::
for

:::::::::::
thrd_exit.

:::::::::::
Futhermore,

:::::
there

::
is

::
a

::::::::
sequence

:::::
point

::::::::::::
immediately

::::::
before

::::
and

:::::::::::
immediately

:::::
after

::::
each

:::
of

:::
the

::::::::
function

:::::
calls.

5 Next, all open streams with unwritten buffered data are flushed, all open streams are closed, and all
files created by the tmpfile function are removed.

6 Finally, control is returned to the host environment. If the value of status is zero or EXIT_SUCCESS,
an implementation-defined form of the status successful termination is returned. If the value of
status is EXIT_FAILURE, an implementation-defined form of the status unsuccessful termination is
returned. Otherwise the status returned is implementation-defined.

Returns
7 The exit function cannot return to its caller.

7.22.4.5 The _Exit function
Synopsis

1 #include <stdlib.h>
_Noreturn void _Exit(int status);

323)The at_quick_exit function registrations are distinct from the atexit registrations, so applications might need to call
both registration functions with the same argument.
324)Each function is called as many times as it was registered, and in the correct order with respect to other registered

functions.

§ 7.22.4.5 Library 303

ISO/IEC 9899:202x (E) working draft — June 7, 2019atomics-cleanup..library-synchronization N2391

Description
2 The _Exit function causes normal program termination to occur and control to be returned to the

host environment. No functions registered by the atexit function, the at_quick_exit function,
or signal handlers registered by the signal function are called. The status returned to the host
environment is determined in the same way as for the exit function (7.22.4.4). Whether open
streams with unwritten buffered data are flushed, open streams are closed, or temporary files are
removed is implementation-defined.

Returns
3 The _Exit function cannot return to its caller.

7.22.4.6 The getenv function
Synopsis

1 #include <stdlib.h>
char *getenv(const char *name);

Description
2 The getenv function searches an environment list, provided by the host environment, for a string that

matches the string pointed to by name. The set of environment names and the method for altering
the environment list are implementation-defined. The getenv function need not avoid data races
with other threads of execution that modify the environment list.325)

3 The implementation shall behave as if no library function calls the getenv function.

Returns
4 The getenv function returns a pointer to a string associated with the matched list member. The

string pointed to shall not be modified by the program, but may be overwritten by a subsequent call
to the getenv function. If the specified name cannot be found, a null pointer is returned.

7.22.4.7 The quick_exit function
Synopsis

1 #include <stdlib.h>
_Noreturn void quick_exit(int status);

Description
2 The quick_exit function causes normal program termination to occur. No functions registered by

the atexit function or signal handlers registered by the signal function are called. If a program calls
the quick_exit function more than once, or calls the exit function in addition to the quick_exit
function, the behavior is undefined. If a signal is raised while the quick_exit function is executing,
the behavior is undefined.

3 The quick_exit function first calls all functions registered by the at_quick_exit function, in the
reverse order of their registration,326) except that a function is called after any previously registered
functions that had already been called at the time it was registered. If, during the call to any such
function, a call to the longjmp function is made that would terminate the call to the registered
function, the behavior is undefined.

4
:::
The

::::::::::
beginning

::
of

::::
that

::::::::::
procedure

::
is

:
a
:::::::::

sequence
:::::
point

::::
that

:::::::::::::
synchronizes

::::
with

::::
the

:::::::::::
termination

::
of

:::
all

:::::::
threads

::
as

:::::::::
described

:::
for

:::::::::::
thrd_exit.

:::::::::::
Futhermore,

:::::
there

::
is

::
a

::::::::
sequence

:::::
point

::::::::::::
immediately

::::::
before

::::
and

:::::::::::
immediately

:::::
after

::::
each

:::
of

:::
the

::::::::
function

:::::
calls.

5 Then control is returned to the host environment by means of the function call _Exit(status).

325)Many implementations provide non-standard functions that modify the environment list.
326)Each function is called as many times as it was registered, and in the correct order with respect to other registered

functions.

304 Library § 7.22.4.7

ISO/IEC 9899:202x (E) working draft — June 7, 2019atomics-cleanup..library-synchronization N2391

7.26.5.3 The thrd_detach function
Synopsis

1 #include <threads.h>
int thrd_detach(thrd_t thr);

Description
2 The thrd_detach function tells the operating system to dispose of any resources allocated to the

thread identified by thr when that thread terminates. The thread identified by thr shall not have
been previously detached or joined with another thread.

Returns
3 The thrd_detach function returns thrd_success on success or thrd_error if the request could

not be honored.

7.26.5.4 The thrd_equal function
Synopsis

1 #include <threads.h>
int thrd_equal(thrd_t thr0, thrd_t thr1);

Description
2 The thrd_equal function will determine whether the thread identified by thr0 refers to the thread

identified by thr1.

Returns
3 The thrd_equal function returns zero if the thread thr0 and the thread thr1 refer to different

threads. Otherwise the thrd_equal function returns a nonzero value.

7.26.5.5 The thrd_exit function
Synopsis

1 #include <threads.h>
_Noreturn void thrd_exit(int res);

Description
2 For every thread-specific storage key which was created with a non-null destructor and for which

the value is non-null, thrd_exit sets the value associated with the key to a null pointer value
and then invokes

::::
calls

:
the destructor with its previous value. The order in which destructors are

invoked is unspecified.
:::::
These

::::::::::
destructor

::::
calls

:::
are

:::::::::::::::
indeterminately

::::::::::
sequenced.

:

3 If after this process there remain keys with both non-null destructors and values, the implementation
repeats this process up to TSS_DTOR_ITERATIONS times.

4 Following this, the thrd_exit function terminates execution of the calling thread and sets its result
code to res.

:::
The

:::::::::
sequence

:::::
point

::
at

:::
the

::::
end

::
of

:::
the

:::::::::
execution

:::
of

:::
the thrd_exit function

::::::::::::
synchronizes

::::
with

:::
the

:::::::::::
completion

::
of

:
a
::::::::::
successful

::::
call,

::
if

::::
any,

::
of

:::
the

::::::::::
thrd_join

::::::::
function

:::
for

:::
the

:::::::
calling

::::::
thread

::::
and

::::
with

:::
the

::::::::::
beginning

::
of

:::
all

::::
calls

::
of

:::::::
atexit

:::
or

::::::::::::::
at_quick_exit

:::::::::
handlers

::
at

::::::::
program

:::::::::::
termination.341)

5 The program terminates normally after the last thread has been terminated. The behavior is as if the
program called the exit function with the status EXIT_SUCCESS at thread termination time.

Returns
6 The thrd_exit function returns no value.

7.26.5.6 The thrd_join function
341)

:::
This

:::::
leaves

::
it
:::::::::

unspecified
::

if
::::::

threads
::::

that
:::
are

:::::::::
terminated

::
by

:::::
other

:::::
means

::::
than

::::::::::
thrd_exit,

:::
for

::::::
example

:::
by

:::
an

:::::::::::
implementation

::::::
specific

:::::::::
mechanism

::
or
:::::::

because
:::
they

:::::
have

:::
not

::::
been

::::::::
terminated

:::::::
explicitly

::::::
before

::::::
program

::::::::::
termination,

:::::::::
synchronize

:::
with

::::::
atexit

::
or

:::::::::::
at_quick_exit

:::::::
handlers.

330 Library § 7.26.5.6

	Problem description
	Possible solutions
	Application synchronization
	Application fences
	Application mutex

	Implementation based solutions

	Suggested changes
	Impact

