
Draft	Minutes	for	April	29-May	3,	2019	
MEETING	OF	ISO/IEC	JTC	1/SC	22/WG	14	AND	INCITS	PL22.11	

WG	14/N	2376	

Dates and Times

29 April, 2019 09:00 – 12:00 Lunch 13:30 – 16:30
30 April, 2019 09:00 – 12:00 Lunch 13:30 – 16:30
1 May, 2019 09:00 – 12:00 Lunch 13:30 – 16:30
2 May, 2019 09:00 – 12:00 Lunch 13:30 – 16:30
3 May, 2019 08:30 – 11:00

Meeting Location

BSI Group
Chiswick Tower
389 Chiswick High Road
London, W4 4AL
UK

Meeting information

Venue information: N 2308
 Clive: Gave some information on fire exits, lunch, restrooms, etc.

Local contact information

Clive Pygott <clivepygott@gmail.com>

1. Opening Activities

1.1 Opening Comments (Pygott, Keaton)
 Attendance sheets: 1 for the building, and for the committee.
 Fire drill on Wednesday.

1.2 Introduction of Participants/Roll Call

Name	 Organization	 NB	 Comments	
David	Keaton	 Keaton	Consulting	 USA	 WG14	Convener	
Daniel	Plakosh	 SEI/CERT/CMU	 USA	 WG14	ISO	eCommittee	Secretary	
Blaine	Garst	 Blastwave	 USA	 Phone	
Rajan	Bhakta	 IBM	 CA	 PL22.11	Chair	
Melanie	Blower	 Intel	 USA	 	
Fred	Tydeman	 Tydeman	Consulting	 USA	 PL22.11	Vice	Chair	
Tom	Plum	 Plum	Hall		 USA	 Phone	
Martin	Sebor	 Red	Hat	 USA	 	
Larry	Jones	 Siemens	PLM	Software	 USA	 WG	14	Project	Editor;	Phone	
Aaron	Ballman	 GrammaTech	 USA	 	
Clive	Pygott	 LDRA	 UK	 	
Jens	Gustedt	 INRIA	 France	 WG14	Project	Editor	
Robert	Seacord	 NCC	Group	 USA	 	
Peter	Sewell	 U.	Cambridge	 UK	 Memory	model	study	group	
David	Svoboda	 SEI	 USA	 Phone	
Lars	Bjonnes	 Cisco	 USA	 	
Niall	Douglas	 MayStreet	 Ireland	 Guest	of	WG21	Convener,	Phone	
Paul	McKenney	 IBM	 USA	 Phone	
Maged	Michael	 IBM	 USA	 Phone	
David	Ward	 MISRA	 UK	 MISRA	Liaison;	Phone	
Nick	Stoughton	 USENIX	 USA	 Linux	Liaison;	Phone	
Geoff	Clare	 USENIX	 UK	 POSIX	Liaison;	Phone	
Philipp	Krause	 Albert-Ludwigs-Universität	 Germany	 	
Martin	Uecker	 University	of	Gottingen	 Germany	 	
Roberto	Bagnara	 University	of	Parma	 Italy	 	
Derek	Jones	 Knowledge	Software	 UK	 	
Freek	Wiedijk	 Plum	Hall	 USA	 	
Alex	Gilding	 Perforce	Software	 USA	 	
Victor	Gomes	 U.	Cambridge	 UK	 	
Kayvan	Memarian	 U.	Cambridge	 UK	 	
Charles	Wilson	 Draeger	Medical	Systems	 USA	 Phone	
Andrew	Banks	 LDRA	 UK	 	

1.3 Procedures for this Meeting (Keaton)
The	Meeting	Chair	and	WG14	Convener,	David	Keaton,	announced	that	procedures	would	be	as	
per	normal.		Everyone	was	encouraged	to	participate	in	the	discussion	and	straw	polls.		
	
Straw	polls	are	an	informal	WG14	mechanism	used	to	determine	if	there	is	consensus	to	pursue	
a	technical	approach	or	possibly	drop	a	matter	for	lack	of	consensus.		They	are	voted	on	by	a	
show	of	hands	for	people	that	approve,	reject	or	abstain,	respectively	(denoted	by	
#approved/#reject/#abstain	in	the	minutes)	on	the	poll	question.	Straw	polls	are	not	formal	
votes,	and	do	not	in	any	way	represent	any	National	Body	position.		National	Body	positions	are	
established	in	accordance	with	the	procedures	established	by	each	National	Body.	
	
All	'N'	document	numbers	in	these	minutes	refer	to	JTC1	SC22/WG14	documents	unless	
otherwise	noted.		
	
Participants	need	to	register	on	ISO's	site	for	this	meeting.	
	
David	Keaton	is	the	meeting	Chair.	
Rajan	Bhakta	is	the	Recording	Secretary.	

1.4 Approval of Previous Minutes [N 2307] (PL22.11 motion, WG 14 motion)
 Amended by Fred’s typo’s corrections.
 Motion (WG14, PL22.11): Bhakta/Tydeman
 Passes by unanimous consent.

1.5 Review of Action Items and Resolutions

David:	Request	that	ISO	cancel	the	CPLEX	project.	–	Done.	
David:	Appointing	Aaron	as	chair	of	C	Safety	and	Security	Rules	Study	Group.	Get	ISO	to	give	him	
an	account	for	telecon	purposes.	–	Done.	
Aaron:	The	Safety	and	Security	Study	Group	should	propose	by	the	next	WG14	meeting	whether	
it	wants	to	drop	safety	or	it	has	the	legal	issues	handled.	–	Done.	
Aaron:	Need	a	permanent	chair	or	a	temporary	chair	for	the	Safety	and	Security	Study	Group	by	
the	next	WG14	meeting.	–	Done.	
David:	Ask	Martin	U.	If	he	wants	to	champion	N1923.	–	Done.	
David:	Ask	Thomas	if	he	will	champion	trailing	commas	in	macros	(N2160).	–	Done.	
Aaron:	Add	in	a	requirement	to	have	underscore	versions	of	the	attributes	to	N2269.	–	Done.	
Aaron:	Update	N2269	to	make	it	normative	that	attributes	have	no	semantic	impact.	–	Done.	
Aaron:	Add	in	an	example	to	show	the	string	parameter	in	use	for	the	deprecated	attribute.	–	
Done.	
David:	Tell	Andrew	what	we	need	to	do	to	move	paper	N2258	further.	–	Done.	
David:	Let	Jacob	know	what	the	sentiment	for	N2285	is.	–	Done.	
Rajan:	Put	in	meeting	minutes	any	items	that	will	go	into	C2X	from	this	meeting.	–	Done.	
Rajan:	Write	up	a	proposal	for	precision	control	for	NaN's.	–	Done	(see	Fred’s	paper).	

1.6 Approval of Agenda [N 2370] (PL22.11 motion, WG 14 motion)
 Request to add 8.1, Special Math Functions discussion to the agenda.
 Motion (WG14, PL22.11): Approval of agenda as amended above.
(Ballman/Tydeman)
 Passes by unanimous consent.

1.7 Identify National Bodies Sending Experts
 Canada, Germany, France, Italy, UK, USA

1.8 INCITS Antitrust Guidelines and Patent Policy
1.9 INCITS official designated member/alternate information
 Can ask Rajan Bhakta to check if they are a member if needed by anyone.

2. Reports on Liaison Activities

2.1 SC 22
 We have been overusing DR’s and TC’s from ISO’s point of view. ISO considers a
defect being something so severe it needs to be fixed in 6 weeks. We have been using
it for a wider scope.
 Now the standing document for procedures is only for standards, not for TC’s as it
was before.
 What we used to handle as DR’s before will now be handled as CR’s (Clarification
Requests)

2.2 PL22.11/WG 14

2.2.1 Document system
 The document system has a lot of N documents from ISO’s point of view. They
normally only need it for procedural documents like ballot documents and minutes.
We will be going to C<number> documents after this meeting.
 For pre-Ithica, we’ll have beta-testers for the C<number> documents. Post-Ithica we
plan to have C<number> documents for all.
 Martin Sebor has volunteered to update the web site.

2.3 PL22.16/WG 21
 Continuing to move along with C++2A, continuing discussion on the mailing list.
 Herb wants to say (paraphrased) the Direction Group is opposed to the direction for
deterministic exceptions. He is working on a paper showing actual practice. Likely to
be showed in the July meeting.

2.4 PL22
 No responses for Chair yet.

2.5 WG 23
 Three documents out for vote: main document (language independent), C, Ada: All
passed and are in the process of being published. Starting relations with WG21 though
SG12.

2.6 MISRA C
 Defer to combine with MISRA discussions later.

2.7 Other Liaison Activities

3. Reports from Study Groups

3.1 C Floating Point activity report
 - Working closely with 754 (strong liaison, one member is chair and one is the
editor)
 - Working on creating updated TS's for the ones voted in (parts 2 and 3) for inclusion
into the working C2X draft
 - Planning on making part 2 _Decimal* types optional like _Complex
 - Will continue binding IEEE-754 2019 to the TS's that remain after C2X
 Other comments: Mike from the C FP group: The preferred quantum exponents table
in part 2 was really nice.

3.2 C Safety and Security Rules Study Group
 Permanent chair is Charles Wilson.
 We will work out the licensing issue.
 We will discuss some of this on Tuesday as we’re going through the MISRA C rules
(slow progress).

3.3 C Memory Object Model Study Group
 Quite active in the last 6 months. For provenance, we have reasonable detail.
 Discussion with C++ and others too.

4. Teleconference Meeting Reports

4.1 Report on any teleconference meetings held
 None.

5. Future Meetings

5.1 Future Meeting Schedule

• 21-25 October, 2019 – Ithaca, New York, US [N 2327]
• Spring, 2020 – Freiburg, Germany (tentative)

§ Philip: A 550-year-old university, warmest part of Germany. Easy
to get to via train. Closest airport is Frankfurt.

• Fall, 2020 – TBD (North America)
§ Peter: Some issues with meetings inside USA due to border

issues.
§ David: Yes, some people can’t get in USA others can’t leave so

we try to distribute the “pain”.
• Spring, 2021 – Strasbourg, France (tentative)

§ Jens: Similar to Freiburg. Host of the European parliament and
court of human rights. Train/bus/flight connections to the Paris,
Frankfurt and Amsterdam airports. All major airline alliances
have a bus/train as an integral part of the ticket.

5.2 Future Mailings

• Post-London – 3 June 2019
• Pre-Ithaca – 23 September 2019
• Post-Ithaca – 18 November 2019

6. Document Review

6.1 Ballman, Attributes in C (updating N2269) [N 2335]
 Result: Consensus to add to C2x.

6.2 Ballman, Propose adopting additional previously-discussed attribute papers
[N 2267] [N 2268] [N 2270]
 N2267: nodiscard
 Result: Consensus to add to C2x.
 N2268: fallthrough
 Result: No consensus to add to C2x.
 N2270: (maybe_unused):
 Result: Consensus to add to C2x.

6.3 Ballman, Querying attribute support [N 2333]
 Result: Aaron to continue with this approach.
 Slightly in favor of having __has_c_attribute be a function-like macro.

6.4 Ballman, The deprecated attribute (updating N2266) [N 2334]
 Result: Consensus to add to C2x.

6.5 Editors' discussions
 Gustedt, ISO/IEC 9899 editor report March 2019 [N 2348]
 Gustedt, ISO/IEC 9899 working draft March 2019, diffmarks [N 2347]
 Gustedt, ISO/IEC 9899 working draft March 2019 [N 2346]
 Part 2 of the floating-point TS’s should be in the post meeting mailing.
 Gustedt, Remove conditional "WANT" macros from numbered clauses [N 2359]
 Result: Feature test macros for each of the library clause sections as described in
N2359.

6.6 Bhakta, The overloading of semi-colons in the C standard specification [N
2345]
 OK with the change.
 Leaving it to the editor to clearly change this in a way that make it clear.

6.7 Svoboda, Defining Undefined Behavior [N 2365]
 General discussion. No consensus on any movement on this.

6.8 Seacord, Bounds-checking Interfaces: Field Experience and Future
Directions [N 2336]
 General disagreement on how to proceed. Strong even split on keeping Annex K and
on removing it.

6.9 Douglas, Enhanced C/C++ memory and object model [N 2367]
 General discussion and consensus on the need to rework this.

6.10 C Memory Object Model Study Group discussions
 Sewell, Exploring C Semantics and Pointer Provenance [N 2311]
 Sewell, Moving to a provenance-aware memory model for C: proposal for C2x [N
2362]
 Sewell, C provenance semantics: examples [N 2363]:
 Sewell, C provenance semantics: detailed semantics [N 2364]:
 Long and spirited discussion.
 Result: General consensus on agreement on the direction of the provenance
proposal.

6.11 Gustedt, Introduce the term storage instance [N 2328]
 Result: General consensus on agreement on the direction of this proposal.

6.12 MISRA Discussions
 Result: Action items:
 Charles to ask the C Safety and Security study group what they want to do under the
assumption of not being able to use MISRA.
 David K to look into mechanisms for publishing the MISRA documents under ISO
and discuss with Andrew Banks.

 Banks, Follow-up on enumerating & cross referencing Annex J (formerly [N
2112])
 Result: Consensus to uniquely label the bullet points in Annex J.

 Banks, Follow-up on "defensive" attribute (formerly [N 2258])
 Result: No consensus to move along these lines.

6.13 Stoughton, Proposal To Add Extended Month Name Formats to strftime()
[N 2337]
 Result: Incorporate N2337 into C2X switching the cases for the b/B’s.

6.14 Stoughton, Error Indicator For Encoding Errors In fgetwc [N 2338]
 Result: Incorporate N2338 into C2X.

6.15 Stoughton, Change Request for fopen exclusive access [N 2357]
 Result: No consensus (but no significant opposition) to the second change.
 No objections to making a change to 7.21.5.3 p5.

6.16 Integrating floating-point TS updates into C2x
 Thomas, TS 18661-1 plus CR/DRs for C2X [N 2314]
 Thomas, TS 18661-1 plus CR/DRs for C2X with change marks [N 2315]
 Thomas, TS 18661-2 plus CR/DRs for C2X [N 2341]
 Thomas, TS 18661-3 as annex [N 2342]
 N2374 (slide deck)

 Thomas, C2X proposal - TS 18661-4a [N 2355]
 N2373 (slide deck)
 Result: Adopt 18661 part 4a (no reduction functions) into C2X.

 Thomas, update for C2X payload functions [N 2356]
 Result: Adopt N2356 into C2X.

6.17 Tydeman, FE_TONEARESTFROMZERO w.r.t. FLT_ROUNDS [N 2319]
 Result: N2319 to be put into C2X.

6.18 Tydeman, Precision and NAN/NAN(...) and INF/INFINITY [N 2320]
 Result: Want something along the lines of the macro addition part of N2320 to be
put into C2X. Requesting a new paper for better wording for this.

6.19 Tydeman, Nextafter/nexttoward/nextup/nextdown [N 2321]
 The chairman for IEEE has a use case for the existing words for this so withdrawing
this change request.

6.20 Tydeman, SD3 9: PreProcessor unspecified line numbers [N 2322]
 Result: N2322 to be put into C2X.

6.21 Tydeman, SD3 1: DR 440: Test macros for FP being 754 types [N 2323]
 Result: Want something like N2323 option 1 to be put into C2X.

6.22 Tydeman, SD3 13: DR 482: Macro span files: undefined [N 2324]
 Result: Fred to follow up on this. New document N2379.

6.23 Tydeman, SD3 11: Maximum normalized FP number [N 2325]
 Result: N2325 be put into C2X.

6.24 Tydeman, Merge DR 432+467 [N 2326]
 Result: N2326 be put into C2X with editorial changes on the footnote expected.

6.25 Gustedt, intmax_t, a way out [N 2303]
 Result: Clear direction to have extended integer types that are wider than
[u]intmax_t.

6.26 Gustedt, Clean up atomics [N 2329]
 Result: Happy with the proposed non-normative changes (section 2.1) in N2329.
 No consensus on adding into C2X the proposed additions for the synchronization of
the library functions proposed in section 2.2.1 of N2329.
 No full consensus on using the atomic_fetch_OP_explicit functions as a model
definition for all the other compound assignment operations as proposed.
 No consensus to introduce the new atomic_OP_fetch[_explicit] operations as
complement for all OP= operators and adding ordering as specified in section 2.2.3 of
N2329 into C2X.
 No consensus to add in the selection rules for atomic generic functions as given in
section 2.2.5 of N2329 into C2X.

6.27 Gustedt, Moving to two's complement sign representation [N 2330]
 Result: Direction to fix the minimum value of signed integer types to the negated
power of 2 of the width – 1.
 No consensus on the proposed changes for bit-fields.
 Agree to the general direction proposed for specifying the bounds of integer types
based on widths as specified in N2330.

6.28 Gustedt, Unify string representation functions [N 2360]
 Result: Prefer a type generic interface to print all basic types into a character buffer
as specified in N2360.
 No consensus to restrict the format of the tostr functions to string literals?
 Consensus to allow a default argument for the format method of overloading for the
tostr functions.

6.29 Gustedt, Out-of-band bit for exceptional return and errno replacement [N
2361]
 No time to discuss.

6.30 Gustedt, Align spelling of keywords with C++ and make them feature tests
[N 2368]
 Result: Want to go in the general direction proposed by N2368.
 The following list of keyword and macros should be subject to N2368:
 alignas, alignof, bool, static_assert, thread_local, false, true

6.31 Sebor, Toward more efficient string copying and concatenation [N 2349]
 Result: Put N2349 into C2X.

6.32 Sebor, Defining new types in offsetof [N 2350]
 Result: Put N2350 into C2X.

6.33 Sebor, Add strnlen to C2X [N 2351]
 Result: No consensus on putting N2351 into C2X.

6.34 Sebor, Add stpcpy, and stpncpy to C2X [N 2352]
 Result: No consensus to put N2352 into C2X.

6.35 Sebor, Add strdup and strndup to C2X [N 2353]
 Result: N2353 be put into C2X.
 The committee wants a proposal for the wide character versions of any POSIX
functions voted in this meeting.

6.36 Sebor, Constraints on parameters to main [N 2354]
 Result: No consensus to put N2354 into C2X.
 No consensus to ban calling main recursively for hosted implementations.
 It is intended that the constraints in 5.1.2.1.1#2 apply only on the initial call to
main.

6.37 McKenney, Pointer lifetime-end zap [N 2369]
 Result: Preference for possible resolutions among the ones proposed in N2369:
 1: 13
 2: 11
 3: 13
 4: 8
 5: 0

6.38 Krause, No internal state for mblen [N 2358]
 Result: Put N2358 in C2X.

6.39 Uecker, Improved Rules for Tag Compatibility [N 2366]
 Revision of N2105.
 Result: Want to see more papers like N2366.

7. Clarification Requests

7.1 Discussion on the Clarification Request Process
 Long discussion on what to do.
 General consensus to continue handling clarification requests.

7.2 IS 9899:2011/9899:2018 Clarification Requests [N 2316]
 Action Item: Blaine: Ensure all DR’s marked C2X are in the latest working draft
(N2346).
 DR501: Making DECIMAL_DIG obsolescent
 Result: Move DR501 to C2X.
 DR496: offsetof questions
 Result: Move DR496 to C2X.

7.3 TS 18661 Clarification Requests [N 2317]
 Result:
 DR13: Move to C2X (C FP action item).
 DR16: Move to C2X (C FP action item).
 DR20-25: Move to C2X (C FP action item).

Thomas, P4 CR for rootn case differs from IEEE 754 [N 2309]
 Result: Assigned to DR26.
 Put into TS 18661-4 and C2X (C FP action item).

8. Other Business

8.1 Special math functions (ISO/IEC 24747)
 Result: The __STDC_MATH_SPEC_FUNCS__ macro is useful as is. Consensus to
keep it as is.

9. Resolutions and Decisions reached

9.1 Review of Decisions Reached
 Straw poll: Should N2335 be put into C2x Working Draft? Yes.
 Straw poll: Should N2267 be put into the C2x Working Draft? Yes.
 Straw poll: Should N2268 be put into the C2x Working Draft? No consensus.
 Straw poll: Should N2270 be put into the C2x Working Draft? Yes.
 Straw poll: Is the committee in favor of something along the lines of
__has_c_attribute as given in N2333? Weak agreement.
 Straw poll: Is the committee in favor of having __has_c_attribute be a function-like
macro? Yes.
 Straw poll: Should N2334 be put into the C2x Working Draft? Yes.
 Straw poll: Should we remove the WANT macros from the numbered clauses of the
standard (keep it in Annex F)? Yes.
 Straw poll: Does the committee want feature test macros for each of the library
clause sections as described in N2359? Yes.
 Straw poll: Does the committee want to remove or deprecate Annex K in C2X? No
consensus.
 Straw poll: Is the committee OK with the general direction of the provenance
proposal? Yes.
 Straw poll: Does the working group agree to uniquely label the bullet points in
Annex J? Yes.
 Straw poll: Do we want to see something along the lines of N2258? No consensus.
 Straw poll: Do we want to incorporate N2337 into C2X switching the cases for the
b/B’s? Yes.
 Straw poll: Do we want to incorporate N2338 into C2X? Yes
 Straw poll: Do we want to incorporate N2357’s second proposed change into C2X?
No consensus.
 Straw poll: Do we want any changes to 7.21.5.3 p5 regarding the “exclusive” in
exclusive file access? No objections to making changes.
 Straw poll: Should we adopt 18661 part 4a (not reduction functions) into C2X (not
consider naming issue)? Yes.
 Straw poll: Should we adopt N2356 into C2X? Yes.
 Straw poll: Do we want N2319 to be put into C2X? Yes.
 Straw poll: Do we want something along the lines of the macro addition part of
N2320 to be put into C2X? Yes, we want a new paper with better wording for this.
 Straw poll: Do we want N2322 to be put into C2X? Yes.
 Straw poll: Do we want something like N2323 to be put into C2X? Yes.
 Straw poll: Do we want something like to option 1 or option 2 in N2323 to be put
into C2X? We want something like option 1.
 Straw poll: Should N2325 be put into C2X? Yes.

 Straw poll: Should N2326 be put into C2X with editorial changes on the footnote
expected? Yes.
 Straw poll: Does WG14 agree to have extended integer types that are wider than
[u]intmax_t? Yes.
 Straw poll: Is WG14 happy with the proposed non-normative changes (section 2.1)
in N2329? Yes.
 Straw poll: Is WG14 happy adding into C2X the proposed additions for the
synchronization of the library functions proposed in section 2.2.1 of N2329? No
consensus.
 Straw poll: Shall we use the atomic_fetch_OP_explicit functions as a model
definition for all the other compound assignment operations as proposed in N2329?
Slight preference, Jens to come back with this.
 Straw poll: Should we introduce the new atomic_OP_fetch[_explicit] operations as
complement for all OP= operators and adding ordering as specified in section 2.2.3 of
N2329 into C2X? No consensus.
 Straw poll: Do we want to add in the selection rules for atomic generic functions as
given in section 2.2.5 of N2329 into C2X? No consensus.
 Straw poll: Does WG14 agree to fix the minimum value of signed integer types to
the negated power of 2 of the width - 1? Yes.
 Straw poll: Does WG14 agree to proposed changes for bit-fields as specified in
N2330? No consensus.
 Straw poll: Does WG14 agree to the general direction proposed for specifying the
bounds of integer types based on widths as specified in N2330? Yes.
 Straw poll: Does the committee want to go in the general direction proposed by
N2368? Yes.
 Straw poll: Does WG14 agree to the following list of keyword and macros as being
subject to N2368:
 alignas, alignof, bool, static_assert, thread_local, false, true
 Yes.
 Straw poll: Do we want to put N2349 into C2X? Yes.
 Straw poll: Should N2351 be put into C2X? No consensus.
 Straw poll: Should N2352 be put into C2X? No consensus.
 Straw poll: Should N2353 be put into C2X? Yes.
 Straw poll: Does the committee want a proposal for the wide character versions of
any POSIX functions voted in this meeting? Yes.
 Straw poll: Do we want to put N2354 into C2X? No consensus.
 Straw poll: Does the committee want to ban calling main recursively for hosted
implementations? No consensus.
 Straw poll: Is it intended that the constraints in 5.1.2.1.1#2 apply only on the initial
call to main? Yes.

 Straw poll: Which possible resolution does the committee want among the ones
proposed in N2369?
 1: 13
 2: 11
 3: 13
 4: 8
 5: 0
 No clear consensus on one resolution.
 Straw poll: Does the committee want to see a future paper along the lines of N2366?
Yes.
 Straw poll: Should N2309 be put into TS 18661-4 and C2X? Yes.
 Straw poll: Do we want N2358 in C2X? Yes.
 Straw poll: Should N2350 be put into C2X? Yes.
 Straw poll: __STDC_MATH_SPEC_FUNCS__ macro is useful as is. Does the
committee want to keep it as is? Yes.  Straw poll: Does WG14 like a type generic
interface to print all basic types into a character buffer as specified in N2360? Yes.
 Straw poll: Does WG14 want to restrict the format of the tostr functions to string
literals? No consensus.
 Straw poll: Does WG14 like the default argument format method of overloading for
the tostr functions? Yes.
 Straw poll: Is WG14 good with the general direction of N2328? Yes.

9.2 Review of Action Items
 Carry over:
 None.

 New:
 Charles: Ask the C Safety and Security study group what they want to do under the
assumption of not being able to use MISRA.
 David K: Look into mechanisms for publishing the MISRA documents under ISO
and discuss with Andrew Banks.
 Blaine: Ensure all DR’s marked C2X are in the latest working draft (N2346).
 Editor: Move DR501 to C2X.
 Editor: Move DR496 to C2X.
 Editor: Put N2335 into C2X.
 Editor: Put N2267 into the C2X.
 Editor: Put N2270 into the C2X.
 Editor: Put N2334 into the C2X.
 Editor: Uniquely label the bullet points in Annex J.
 Editor: Put N2337 into C2X switching the cases for the b/B’s.
 Editor: Put N2338 into C2X.
 C FP: Give 18661 part 4a (not reduction functions) for inclusion into C2X.
 Editor: Put N2356 into C2X.
 Editor: Put N2319 into C2X.
 Editor: Put N2322 into C2X.
 Editor: Put N2325 into C2X.
 Editor: Put N2326 into C2X with editorial changes on the footnote expected.
 Editor: Put N2349 into C2X.
 Editor: Put N2353 into C2X.
 C FP: Put N2309 into TS 18661-4 and C2X.
 Editor: Put N2358 into C2X.
 Editor: Put N2350 into C2X.

9.3 Identification of PL22.11 Voting Members
 Cisco: Lars Bjonnes
 GrammaTech: Aaron Ballman
 IBM: Rajan Bhakta (Primary)
 IBM: Paul McKenney
 IBM: Maged Michael
 Intel: Melanie Blower
 Keaton Consulting: David Keaton
 LDRA: Clive Pygott
 Plum Hall: Tom Plum (Primary)
 Plum Hall: Freek Wiedijk
 Red Hat: Martin Sebor
 SEI/CERT/CMU: Daniel Plakosh
 SEI/CERT/CMU: David Svoboda
 Tydeman Consulting: Fred Tydeman

9.3.1 Members Attaining initial Voting Rights at this Meeting
 None

9.3.2 Members who regained voting rights
 None

9.4 PL22.11 Voting Members in Jeopardy
9.4.1 Members in jeopardy due to failure to vote on Letter Ballots
 None

9.4.2 Members in jeopardy due to failure to attend Meetings
 None

9.4.2.1 Members (in jeopardy) who retained voting rights by attending this
meeting
 None

9.4.2.2 Members (in jeopardy) who lost voting rights for failure to attend this
meeting
 None

9.5 PL22.11 Non-voting Members
9.5.1 Prospective PL22.11 Members Attending their First Meeting
 Blastwave: Blaine Garst
 Perforce Software/Programming Research Ltd: Alex Gilding

9.5.2 Advisory members who are attending this meeting
 Draeger Medical Systems: Charles Wilson

10. Thanks to Host

11. Adjournment (PL22.11 motion)
 (Ballman/Tydeman)
 No objections.
 Adjourned at 10:34 am, Friday May 3rd, 2019

	 	

Appendix	A:	Details	on	Discussion	

2. Reports on Liaison Activities

2.1 SC 22
 David: We have been overusing DR’s and TC’s from ISO’s point of view. ISO
considers a defect being something so severe it needs to be fixed in 6 weeks. We have
been using it for a wider scope.
 Now the standing document for procedures is only for standards, not for TC’s as it
was before.
 Derek: Are we backing off on DR’s?
 David: No, we’re doing it under CR’s now (Clarification Requests)
2.2 PL22.11/WG 14
2.2.1 Document system
 David: The document system has a lot of N documents from ISO’s point of view.
They normally only need it for procedural documents like ballot documents and
minutes. We will be going to C# documents after this meeting.
 Niall: Can we use what WG21 is doing (Howell’s automated system for P
documents).
 David: If we can we will.
 For pre-Ithica, we’ll have beta-testers for the C# documents. Post-Ithica we plan to
have C# documents for all.
 Aaron: Is there anything that prevents us from publishing C# documents even if it is
the same as an N# document other than the document name/number?
 David: No, we can’t have it publically available.
 Aaron: Do we need to do anything special for the GIT repo?
 Jens: It is password protected so it is not public.
 David: Had to go to Geneva to object to their removal of their Oxford comma from
our work. They allowed us to do whatever we do as long as it is done consistently.
 Jens: We are in need of a good webpage.
 David: Martin Sebor has volunteered to update it. I have asked Keld to give him
access to change things.
 Martin S: OK with others to funnel through me.
2.3 PL22.16/WG 21
 Aaron: Continuing to move along with C++2A, continuing discussion on the mailing
list.
 Niall: Herb wants to say (paraphrased) the Direction Group is opposed to the
direction for deterministic exceptions. He is working on a paper showing actual
practice. Likely to be showed in the July meeting.
2.4 PL22

 No responses for Chair yet.
2.5 WG 23
 Clive: 3 documents out for vote: main document (language independent), C, Ada:
All passed and are in the process of being published. Starting relations with WG21
though SG12.
2.6 MISRA C (defer to combine with MISRA discussions later)
2.7 Other Liaison Activities

3. Reports from Study Groups

3.1 C Floating Point activity report
 - Working closely with 754 (strong liaison, one member is chair and one is the
editor)
 - Working on creating updated TS's for the ones voted in (parts 2 and 3) for inclusion
into the working C2X draft
 - Planning on making part 2 _Decimal* types optional like _Complex
 - Will continue binding IEEE-754 2019 to the TS's that remain after C2X
 Comments: Mike: The preferred quantum exponents table in part 2 was really nice.
3.2 C Safety and Security Rules Study Group
 Clive: We are a SC22 study group, not a WG14 study group according our chair so
problems with getting a Zoom account.
 David: No, wrong contact at ISO.
 Clive: Permanent chair is Charles Wilson.
 We will work out the licensing issue.
 We will discuss some of this on Tuesday as we’re going through the MISRA C
rules (slow progress).
 We either get all safety or a few security, not both. Not many calling in to the
meetings.
 David: Hopefully we can resolve this tomorrow.
 Roberto: There is also the problem with the fact that MISRA rules have been
considered one at a time, and behind each rule there are years of work. The
discussions really depend on who is on the call and we should make decisions based
on technical merits and we should not depend on the members that ended up calling
in.
 David: The charter of the study group is to add safety into the document (security is
already there). It doesn’t necessarily need MISRA since it can be from any source so
they need to be there to avoid removing any.
 Roberto: The process is a key part of the rules; they cannot be taken in isolation.
 David: The goal is not to add in MISRA, it is to add in safety.
 Clive: Two different views of safety. One is technical, like type safety and analysis
of code. The other view is bringing in the softer aspects like experience and mistakes

programmers bring in. One view is what can we bring into the compiler to warn/catch
these. The other issue is the code reviewable, etc. which are not things the compiler
would be warning about. The differences between these two are likely a cause of a lot
of disagreement.
 Martin S: Those softer aspects were explicitly not part of the document.
 Clive: That brings up issues of a hostile reading of the document. I have issues with
that.
 Derek: The original MISRA had a mailing list which I may have archived. A lot of
issues are the group has an ignorance of C.
3.3 C Memory Object Model Study Group
 Peter: Quite active in the last 6 months. For provenance, we have reasonable detail.
Discussion with C++ and others too. There are slides which will be passed around
during the discussion time for this.

4. Teleconference Meeting Reports

4.1 Report on any teleconference meetings held
 None.

5. Future Meetings

5.1 Future Meeting Schedule

• 21-25 October, 2019 – Ithaca, New York, US [N 2327]
• Spring, 2020 – Freiburg, Germany (tentative)

§ Philip: A 550-year-old university, warmest part of Germany. Easy
to get to via train. Closest airport is Frankfurt.

• Fall, 2020 – TBD (North America)
§ Peter: Some issues with meetings inside USA due to border

issues.
§ David: Yes, some people can’t get in USA others can’t leave so

we try to distribute the “pain”.
• Spring, 2021 – Strasbourg, France (tentative)

§ Jens: Similar to Frieburg. Host of the European parliament and
court of human rights. Connected to the Paris airport. Luftansa has
a bus/train as an integral part of the ticket.

5.2 Future Mailings

• Post-London – 3 June 2019
• Pre-Ithaca – 23 September 2019
• Post-Ithaca – 18 November 2019

6. Document Review

Monday morning

6.1 Ballman, Attributes in C (updating N2269) [N 2335]
 Rajan: Minor: Paragraph numbers in changelog are wrong (p4 doesn’t talk about
semantic impact and p5 should be p4)
 Aaron: Only two normative changes. (__ spelling and ‘no semantic impact’)
 No semantic impact is 6.7.11p2
 Philipp: Why have __ version if not required?
 Aaron: For library implementers to allow working with user macros.
 Jens: GCC does this for their attributes.
 Melanie: Is it required to add the vendor prefix?
 Aaron: Only for vendor attributes.
 Martin S: Does the __ prefix apply to the namespaces?
 Aaron: It is up to the vendors for their attributes. Not specified.
 *Straw poll: Should N2335 be put into C2x Working Draft?
 20/0/1 (In favor, Opposed, Abstain)
 Result: Consensus to add to C2x.
6.2 Ballman, Propose adopting additional previously-discussed attribute papers [N
2267] [N 2268] [N 2270]
 N2267: nodiscard
 Freek: Why is this a programming mistake (malloc)?
 Aaron: That’s why ‘malloc’ was an example, like for empty in C++.
 Martin S: Is anyone planning on applying this to the C Standard library?
 Aaron: I am interested, but not sure I can.
 *Straw poll: Should N2267 be put into the C2x Working Draft?
 21/0/1 (In favor, Opposed, Abstain)
 Result: Consensus to add to C2x.
 N2268: fallthrough
 Philip: Don’t like the idea of having something that will add warnings to existing
code (code without the attribute will now have a diagnostic).
 Aaron: The compilers that implement support for this do not do it by default, it is
an opt in.
 Philipp: Once it is in the standard it will be on by default.
 Aaron: Everyone seems to find a lot of false positives, but they all seem to find one
valid problem.
 Clive: If the language doesn’t have this we or MISRA would likely add something
like this, but probably the opposite (add in nofallthrough).
 Freek: What about cases where you intend to fallthrough obviously (stacked cases)?
 Aaron: Yes, it is in the example in the paper.

 Jens: If there was an empty statement (;)?
 Aaron: I would expect a diagnostic.
 Martin S: The one use case that got a lot of bug reports was for finite state
machines. Users asked for an attribute for the entire switch statement. Do you know if
that’s implemented?
 Aaron: No, not that I’m aware of.
 Derek: The constraint violation is macro unfriendly (see example in the paper).
 Aaron: Can a macro expand to a case label?
 Derek/Jens: Yes.
 Aaron: This is matching C++.
 Derek: But C++ is anti-macro.
 Aaron: So am I!
 Martin S: Why is it a constraint violation?
 Aaron: Because there is nothing following. You can’t fallthrough to nothing.
 Jens: Why is that bad?
 Aaron: This is to show programmer intent.
 Robert S: Can this be anywhere?
 Aaron: No, it has to be before a case label in the same switch statement.
 Niall: In C++ for macro expansions that could be null, the idea was to add empty
semi-colons after the macro invocation.
 Derek: Generally compilers warn on empty statements.
 Niall: A common extension was to have a fallthrough comment that had the same
semantics as this.
 Martin S: Yes, GCC has a regex for this.
 Jens: If we vote this in, there is no implementation that is conforming.
 Aaron: Yes, with recommended practice, both Clang and GCC don’t diagnose the
last case in the example.
 Roberto: Is it a constraint violation to apply no-discard on a void function?
 Aaron: I think it should. Actually, no, we don’t have it under any recommended
practice.
 Aaron: In this case, I am different from C++ commonality since it is unlikely to be
common code between C and C++.
 Derek: What happens for macro expanding to something like an ‘if’ statement?
 case 1:
 ..
 ..
 H()
 case 2: x = 3;
 Aaron: Not sure, but not an interesting case for my purposes.
 Freek: Constraint violation means stop compiling?
 Jens: No. Just has to diagnose.

 Derek: Generally means stop compile.
 Lars: C++ would stop compilation.
 Aaron: Yes, C doesn’t have an equivalent form.
 Robert S: The fact that this is new means this should not affect existing code.
 Aaron: Yes.
 Martin S: I expect existing implementations would hide this under a macro.
 Roberto: If you have a constraint violation, we don’t have a precise definition about
it.
 Aaron: I believe we do.
 Freek: Is a fallthrough before the first case label allowed?
 Aaron: Yes.
 Jens: We should put it on the case label. I understand your constraints were to
match C++.
 Aaron: This was based on GNU in C++ which didn’t do it on the case label I
think.
 Martin S: I think the C++ attribute predates GNU.
 Philipp/Jens: There is fallthrough that doesn’t have syntax with this attribute.
 Aaron: Do not take a straw poll and let me look into the constraint violation.
 Does anyone want to diverge from C++ and have this apply to the case statement.
 Philipp/Jens: I don’t want the attribute at all.
 David: This committee has rightly had a bias to match C++. If we add a feature that
C++ has, we should match them.
 Clive: Can someone go back to C++ to bring up what we said and see if they are
willing to change?
 Aaron: Unlikely to happen.
 Jens: If we don’t have this in C, it can be an extension for C compilers if they want.
 David: But the compiler gets to choose, not the user.
 *Straw poll: Should N2268 be put into the C2x Working Draft?
 14/3/6 (In favor, Opposed, Abstain)
 David: What do you think your national body will vote for this?
 Canada: Rajan: No opinion at this time.
 Germany: Philipp: Not important enough to be against the whole standard.
 France: Jens: Not important enough to be against the whole standard.
 Italy: Roberto: No problems.
 UK: Derek/Peter/Clive: No problems.
 USA: Looks like majority in favor.
 Based on the country information, it seems there is no consensus.
 David: We did have some new issues this meeting. I would like to see them
addressed. This means we will discuss it at most one more meeting.
 Result: No consensus to add to C2x.
 N2270: (maybe_unused):

 Jens: Does this apply to function parameters?
 Aaron: Yes.
 Freek: This is a C++ compatibility thing?
 Aaron: Yes.
 Robert S: What happens if you have a comma separated list?
 Aaron: Depends on where you put the attribute.
 Roberto: If it was int [[maybe_unused]] i, j, k;?
 Aaron: Ill-formed. As with blocks (Freek).
 Martin S: Since it can only be there once per attribute list doesn’t that cause a
problem?
 Aaron: This is to disallow the list form of attributes. It is a general attribute thing.
 Martin S: GCC attributes don’t have this restriction. What’s our general view on
these constraints violations on attributes?
 Aaron: Clang does diagnose this. They should be constraint violations like other
constraint violations in the standard.
 Roberto: The nodiscard on a void function is not a constraint violation, but this
one is. It’s inconsistent.
 Aaron: They are different levels of constraint violations. The first is a logic error
that I will probably write a paper to make it a violation for C and C++, while this is
for the attribute syntax.
 Martin S: I am uneasy about adding a hard constraint for a feature that is mainly for
diagnostics.
 Aaron: I personally agree, but it is matching what C++ does. C++ shouldn’t
disallow multiple attributes in the same list.
 Martin S: Can we give you an action item to fix their standard?
 Aaron: I don’t think they would do it and I don’t want to go in front of the EWG
to do so.
 Martin S: There are a number of issues with attributes that need to be resolved in
C++.
 Jens: Maybe not make it a constraint violation but make it recommended practice.
 Aaron: Would be different from C++.
 Freek: Can make it an obligatory warning, not a constraint violation even though it
really is the same thing.
 Aaron: That is what this is intended.
 Jens: We define the term diagnostic. We can say we want a diagnostic and not
imply you have to stop translating.
 *Straw poll: Should N2270 be put into the C2x Working Draft?
 21/0/2 (In favor, Opposed, Abstain)
 David: Any objections to making lunch 1h to go over the next two papers?
 None. Break until 1:00 pm.
6.3 Ballman, Querying attribute support [N 2333]

 Aaron: Since vendors can have various attributes, this is a mechanism to allow
programmers to query if it is supported. Very similar to ‘defined’. Current paper is
familiarity to C++.
 Martin: I don’t understand the rational to have different preprocessor keywords for C
and C++. You need 3 tests instead of 1.
 Aaron: In practical terms, we already have __has_attribute so we can’t use that.
Also, C++ has standardized on the __has_cpp_attribute.
 Niall: cpp explicitly stands for C Pre-Processor, not C++ so it can be used.
 Martin: It is a mistake in C++ and it can be fixed (add a new one and keep the
existing one).
 Jens: This is a special case; it is a macro and a preprocessor keyword. Why was it
not a function like macro?
 Niall: It is a result of a long torturous process that no one wants to go through
again. Compilers had already implemented it before it was fully standardized and it
became a defacto standard and so it is the way it is.
 Aaron: I am OK if it was changed so it became a function-like macro.
 Blaine: There is a broader question about finding out what the compiler chose at
runtime or compile time. There is no good way to find that out. I thought C++ had
something for this too.
 Aaron: There was some discussion and they added __has_include, but nothing in
the standard and they backed off of this.
 Aaron: On the reflector, there was pushback on having this at all and instead use
STDC_VERSION. Do we want something like this or something completely
different? Also, how much concern is there for this behaving like ‘defined’
 Jens: I like the idea of having something like this as every compiler will add in
attributes. I would also be in favor of having something more general too. I don’t like
the syntax as defined, I would like it to be a macro.
 Roberto: My experience with the STDC macro is that it is inaccurate.
 Blaine: I would rather see a single header file with all the macro’s. The list of
things to ask about should be in the header file.
 Aaron: An implementation concern is you need multiple header files or macros.
 Blaine: The syntax change is worse.
 Aaron: What about vendor attributes?
 Blaine: They have other options. For C Standard attributes, they should not be
changing.
 Aaron: My point was command line arguments/flags can change whether
__has_attribute returns 0 or something else for example.
 Martin: How this integrates with third party attributes and tools is what I’m worried
about.
 Aaron: There is work to be done either way.
 Jens: I don’t like mixing language and library due to sync issues.

 Philipp: Seems to work for Linux like linux.h
 Aaron: Right now, they only need to know how to spell the attribute, for macros
they need a much higher cognitive load.
 Blaine: I see a difference between C standard attributes and others. Vendor
attributes are free to do whatever they want to do like extending what was used for C
standard attributes.
 Aaron: The typical workflow is vendors add an attribute in their namespace and
then then when it is standardized, each vendor would have to change how they query
their support to fit the newly standardized one.
 Blaine: I disagree, we have different hypothesis for this.
 *Straw poll: Is the committee in favor of something along the lines of
__has_c_attribute as given in N2333?
 16/5/4 (In favor, Opposed, Abstain)
 Slight consensus. Aaron OK with continuing with this approach.
 *Straw poll: Is the committee in favor of having __has_c_attribute be a function-like
macro?
 8/1/lots
 Niall: Ask Richard Smith why it is the way it is.
 Blaine: This bothers me. The C committee should be focusing on standardizing
existing practice not designing by committee.
 Jens: Having a list of what implementations do would be useful.
 Roberto: Do we have other compiler vendors here?
 Rajan: I took the result as a slight preference for function like macros, and most
people (the “lots”) not caring either way.

6.4 Ballman, The deprecated attribute (updating N2266) [N 2334]
 Clive: Other than triggering a diagnostic, is there any link between the standard
deprecated features and this paper.
 Jens: We don’t have any deprecated/obsolescent interfaces in the standard anymore.
 Philipp: ATOMIC_VAR_INIT is a macro otherwise it would be one.
 Aaron: So far no attributes has a meaning for duplicated but someday maybe we
will.
 *Straw poll: Should N2334 be put into the C2x Working Draft?
 22/0/1 (In favor, Opposed, Abstain)

Monday afternoon

6.5 Editors' discussions
Gustedt, ISO/IEC 9899 editor report March 2019 [N 2348]
 Section 2.2: Seems OK.

 Section 3.1: Blaine: Can you put “must” “shall” and things like that in
some special form like italics.
 Undefined behavior: David: This is a much larger issue than editorial.
We can’t do this for the existing standard since there is a lot of implicit
undefined behavior.
 Aaron: This is more for future changes.
 Roberto: Ex. Shifting something too much is not high verification
complexity but should stay undefined behavior.
 Derek: If you are looking for a list of implicit undefined behavior I
have submitted a list in the past.
 Section 3.2: Blaine: I had trouble seeing my LaTeX changes shown in
the C standard.
 Jens: For small changes, non-LaTeX changes is fine, for large things
LaTeX is appreciated. Ex. Attributes in LaTeX vs the individual
attributes.
 Derek: The ISO rules for ‘shall’ are different to how C uses it.
Gustedt, ISO/IEC 9899 working draft March 2019, diffmarks [N 2347]
Gustedt, ISO/IEC 9899 working draft March 2019 [N 2346]
 Jens: Part 2 of the floating-point TS’s should be in the post meeting
mailing.
Gustedt, Remove conditional "WANT" macros from numbered clauses
[N 2359]
 Rajan:
 1) Remove WANT macros: OK
 2) Header version: Seems fine.
 3) Renaming functions: Against, since already implemented as is,
names fit with pre-part 1 C, consistent with existing C standard, names
fit function
 For the 'from' functions, we didn't do 'to' for consistency. Ex.
strftime
 Fromfp takes three arguments, it is not a simple conversion. It
can't be generalized due to the number of arguments (3 for fromfp due to
rounding mode and width arguments).
 4) Reserving prefixes: Seems fine.
 Section 2: The C committee asked for the WANT macros. Now it
makes no sense.
 *Straw poll: Should we remove the WANT macros from the numbered
clauses of the standard (keep it in Annex F)?
 No objections.
 Philipp: Prefer having a separate header for a large number of new
arguably special purpose functions.

Section 3: Philipp: Prefer having _H in the macro to indicate it is a
header.
 Aaron: Is a header sufficient resolution for this? WG21 does this
through classes of functionality.
 Rajan: Assuming the no #undef properties holds too.
 Aaron: Is per header the right granularity or should it be
stdc_library_version?
 Jens: I think the current proposal is the right level of granularity.
 Martin: I am not too excited to add in these macros just as an interim
measure until everyone supports the standard the functionality was
added into.
 Jens: We will have C3X and future standards so it is useful there too.
 Philipp: It is not just a short transition period necessarily. Some
compilers like for embedded systems may not have full support until
much later but have partial support earlier. For free standing
implementations, they can do parts as well.
 Aaron: Clang doesn’t ship a standard library so this would allow us to
define STDC_VERSION and leave the library to these macros.
 Rajan: No, we’d have to change the wording for STDC_VERSION
to allow that since right now it covers compiler + library/headers.
 Martin: We are adding a way to not conform. I think it is a problem,
but we as a standard should not do this. Ex. __has_include. I support this
in some non-normative way.
 Lars: C++ added feature test macros for this already (library and
language), and added a separate header for versions and predefined by
the compiler.
 Derek: Compilers have added flags to pass standards conformance test
suites/validation.
 Aaron: Would having this as an informative annex be sufficient?
 Jens: Do you want this to be recommended practice?
 Martin: What do implementations do now?
 Jens: There are implementations of these TS functions already. Others
will have to add in a number of things which is real work. This is a new
thing.
 Rajan: Wasn’t Complex in C99 the same?

 Jens: I want a straw poll for does the committee want feature test
macros for each of the library clause sections?
 Blaine: I want to see a sample of what this would look like.
 Clive: Is it a test for each of the functions?

 Jens: No, it is for the version of the header file. The changes are in
the annex in the paper.
 Philipp: Objections to having this normative. It is still useful for
freestanding implementations.
 Roberto: We are doing this due to the integration of TS18661. I know
of compilers that define STDC_VERSION but never integrated
Complex. How much time do we expect this to take for implementations
to implement this?
 Philipp: This is not necessary for freestanding implementations.
 *Straw poll: Does the committee want feature test macros for each of
the library clause sections as described in N2359?
 18/1/5 (In favor, Opposed, Abstain)
 Consensus for this.
If we have time later in the meeting, we will discuss the last two points.

6.6 Bhakta, The overloading of semi-colons in the C standard specification [N 2345]
 OK with the change.
 Leaving it to the editor to clearly change this in a way that make it clear.
6.7 Svoboda, Defining Undefined Behavior [N 2365]
 Rajan: Perhaps do not do push/pop for this proposal?
 Robert S: I don’t think this is an accurate statement for –f{trap/wrap}v.
 David S: Will look into it later.
 Aaron: Any implementation experience with this? I think there will be
implementation issues with this, especially any position ones (not once per translation
unit at the start).
 David S: I’ve listed switches on the command line but I’m sure there are pragmas.
If a compiler doesn’t support changing this in the middle of a translation unit, that is a
programmer problem. Ideally this would be on a function level.
 Derek: The cure is worse than the disease. People discover this when porting code,
so they don’t add them when writing the code. Pushing/popping will create a lot of
problems.
 David S.: It is a way for helping maintainers too.
 Peter: I am in favor of the principle of the proposal, giving both the programmer and
the compiler a way to say what they want or do. Specifically turning off strict aliasing
doesn’t turn off provenance based aliasing.
 Lars: This seems to be introducing some kind of language dialects.
 Peter: They exist now, but we don’t have a way of talking about it now.
 Lars: Now I can get it through third party code.
 Niall: Most programmers write for their particular architecture and toolchain. They
don’t write to the standard. This is written the wrong way around. It should be a
feature check. Ex. I write a static_assert for little endian, and so people trying in big
endian would not have it compile.

 Peter: Need something that asserts that it is guaranteed to trap.
 David S: This proposal does make it more clear what the compiler will do for
undefined behavior.
 Freek: The Linux kernel is compiled with the optimizations off for problems like
this. Would this proposal allow them to turn on optimization? I wonder about the
usefulness of this feature.
 Clive: This brings back C Safety and Security. Ex. No undefined behavior. Then
someone objected saying “I know on my platform signed integer overflow will work”.
This will allow stating that explicitly so it is a good thing.
 Derek: Platform profiles is the way to go. There is a history to do this.
 Martin: The pragma mechanism doesn’t really work. Cross function boundaries, link
time optimization, etc.
 Aaron: Need implementation experience. Ex. Here is a GCC fork with this
implemented.
 Peter: There is a list of flags for the Linux kernel that is used. Should we have these?
 Martin: I would not be in favor of specifying dialects.
 Peter: I want to nail it down.
 Aaron: It is a lot of maintenance. Might be worth it, but it is a significant effort.
 David S: Summarizing: Profiles per platform is not good since it doesn’t work for
undefined behavior, but does for implementation defined behavior. I have been trying
compile the Linux kernel with Clang. I’m sure the kernel could benefit from this if
they could move command line flags into a header file.
6.8 Seacord, Bounds-checking Interfaces: Field Experience and Future Directions [N
2336]
 Rajan: 2.7: strerror does not take a programmer specified buffer. Function only takes
one parameter.
 Melanie: Does MISRA say anything?
 Clive: It points to Martin’s paper to say use Annex K with guidance.
 Philipp: I like that the C standard is small and readable. This Annex K adds 10% to
it.
 Robert S: There is no evidence that these functions are bad. Regarding the size of
the standard, I would actually get rid of the non _s functions.
 Martin: It is valid I didn’t have data. Cisco didn’t go into the project with the
expectation I would write a paper for it. The overall impression I got was that the
experience was detrimental rather than positive. The constraint handlers code was all
dead code since if it was wrong it would have been fixed (the original code). If the
constraint handler was designed to abort, that would work.
 Robert S: I would be OK with having it abort. Any runtime constraint violation is a
programming error. Would that be enough?
 Martin: There are important use cases for security functions. You can’t have it abort
in a transaction that could not be rolled back.

 Robert S: An example where it makes sense is instead of testing inputs you could
just use the constraint handling function. This paper tries to fix the problem to allow
the constraint handler to be used in multiple threads.
 Martin: This does not solve the general problem. It lends themselves to problems
and incorrect use.
 Aaron: Were you hearing about the problems only because you were the interface.
No one talks about the benefits, just feed you the complaints.
 Martin: I don’t think so.
 Robert S: The project you are talking about was where you had guidance to replace
everything right?
 Martin: No, there was no such guidance. There was no hard and fast rule, just
guidance on development.
 Robert S: Microsoft actually forces it. They have added it to government documents
as well.
 Martin: The other view is that no mainstream implementations have implemented
this. Even Windows is not conforming showing that this is not something that is
wanted or valid. Third party implementations don’t use compiler intrinsics which is
needed for performance.
 Aaron: The library side: I know of at least two people who wanted to add this to
glibc, but were told no.
 Blaine: They may not know what they are asking for (the people that are asking
implementations). I would like to see a paper for removing it.
 Robert S: I think even Martin would want to see a solution before removing this.
 Martin: No, I don’t. There are better solutions out there already.
 Philipp: Annex K has plenty of functions. It would be nice to know which ones are
used.
 Jens: If they were actually implemented.
 Robert S: Some implementations have done the string functions and not the I/O
functions.
 Philipp: The wide character functions seem to only check that the pointer is not null
which is not a lot of value add.
 Robert S: One of the things I discussed with Richard Livingston is that they treat
every error as a hard fail and log it. I hope to be able to study the information later.
 Martin U: Is there any long term plans to do anything with strings like adding
bounded strings?
 Martin S: No plan, but anyone is free to write a paper for this.
 Martin S: I would not want a straw poll for anything today.
 Robert S: I would like to see if the needle is moving.
 David S: I would like to see some changes to address Martin S’s comments.
 Robert S: There is some of that in this paper.

 David S: N2225 is there to correct the threading issues with the set constraint
handler.
 Aaron: If the vote is no, is anyone willing to do the work?
 Martin/Jens: Yes, we would.
 *Straw poll: Does the committee want to remove or deprecate Annex K in C2X?
 8/8/7 (In favor, Opposed, Abstain)
 Blaine: Unless we see a concrete alternative, we’ll stay this way. Martin, I take this
as something to bring forward.
6.9 Douglas, Enhanced C/C++ memory and object model [N 2367]
 Moved to Tuesday morning.
 Niall: Updated and rewritten.
 Jens: If you read some object the byte values will have the last stored values.
 Derek: No, it is just the value that will be the same.
 Robert S: For C, can’t you access any object with unsigned char?
 Jens: Yes, but the effective type does not change.
 Robert S: Effective type is only for malloc right?
 Jens: Yes.
 Peter: All of the copying seems to be to work around reinterpret_cast. Shouldn’t
reinterpret_cast be fixed instead?
 Niall: It wouldn’t fly in C++.
 Robert S: Does C++ have trap representations?
 Niall: I’m not the right person to ask about this.
 Niall: For C++, trivial copyable means the padding gets copied too.
 Martin S: Why does this reattach function use the object directly but the detach uses
a reference?
 Niall: I’m not the best person to ask for this.
 Niall: I want to get a sense from WG14 (even though this is not a problem for you
due to type punning being allowed) whether or not this approach seems good for
shared memory.
 Jens: I think having undefined behavior is good since it gives latitude to do
something like POSIX memmap to give defined behavior on top of the C standard.
 Niall: This is more of a unidirectional cast. Input becomes invalid, output becomes
valid. It can help give compilers and optimizers more tools for performance and also
can be used by solvers to prove the program is correct.
 Aaron: memmap is a solved problem. This is a way to reduce undefined behavior to
reduce problems in user code.
 Peter: If this was single program shared memory, all you’d need a release acquire
fence, and no need for everything else.
 Niall: Shared memory doesn’t have cache coherency. Ex. Network memory. C++
gives magical powers to memmap.

 Peter: The interesting case is pointer values read in. It doesn’t have to happen
during the memmap, it can happen on pointer read.
 Robert S: What are you asking from us? Are you asking for us to change the
language someway?
 Niall: I’m getting the sense the room sees there is no problem for C. I was assuming
a unidirectional cast was something that C would want, but I think I’m wrong.
 Andrew: For my MISRA hat, I don’t see what this is addressing or what problem it
is solving within C.
 Martin S: I would echo the last comment, but even for C++ I can’t see what this
would accomplish. Where is the instance of undefined behavior this solves that
memory copy doesn’t?
 Niall: Non-trivial copy is what I expect C++ have changes to allow this.
 Aaron: I like this in terms of helping with aliasing. Would it be better if WG14 said
we don’t have a problem with the code here?
 Robert S: If it is a declared type, you can convert to unsigned char and change it. For
allocated, it keeps the effective type.
 Derek: For C, can’t we have a pointer to a volatile of the appropriate type?
 Jens: volatile doesn’t help. The equivalent for C is to get rid of the effective type.
 Martin S: The wording says character types are explicitly excluded from changing
the effective type.
 Jens: The first phrase says if it has a declared type it takes precedence. You can
only change the effective type if it doesn’t have a declared type.

Tuesday morning

6.10 C Memory Object Model Study Group discussions
Sewell, Exploring C Semantics and Pointer Provenance [N 2311]
Sewell, Moving to a provenance-aware memory model for C: proposal
for C2x [N 2362]

 Sewell, C provenance semantics: examples [N 2363]:
 Peter: How does the committee want to work with this?
 Derek: Where would you like to end up?
 Peter: This paper doesn’t talk about sub-objects, uninitialized variables, etc. but has
something we want provisionally approve the text difference in N2362.
 Derek: Do you plan on addressing the remaining bits?
 Peter: Yes. You’re going to get a better C standard.
 Kayvan: We want to give a way to talk formally about the standard.
 Derek: Some are interested in this, some are not. I expected something to help
increase optimization.

 Robert: I think there is something like an uprising in the marketplace by C
programmers since what they see clear code giving different output from what they
expect.
 Derek: I am trying to balance the value of what is put into the standard with the
benefit from those changes.
 Jens: At some point it is a rewrite.
 Aaron: Personally I see this is as a clarity aspect to the C language.
 Derek: There is a higher chance of breaking things with more changes.
 Clive: I want to reject this since I don’t see a motivating case for this. The cases
shown are really bad code.
 Jens: There is a whole paper of examples.
 Derek: But they are all edge cases.
 Robert: Jens is taking an opportunity to improve the language of the standard. The
result is more changes textually than intended maybe. Perhaps limit it to the minimum
required for the new thing.
 Derek: What is “improve?”
 Martin U: There is no “new” thing.
 Robert: If the same thing could have been done with smaller changes which would
help.
 Jens: There is not much that could have been taken out.
 Philipp: There is small changes like the “storage instance” which could have been a
way forward.
 Peter: We had a clear vote for the way forward. For those who have issues, they can
engage with the details and we are happy to do so between meetings. People need to
pay attention in between the meetings because there is too much to do every 6 months.
 Philipp: Having more advance notice before meetings would be useful for me to be
able to attend. A week and a half is not enough.
 Peter: A number of us are going to the C++ meeting in July. Being able to take info
from here to there would be good for us.
 Martin S: The benchmark for WG21 and WG14 has traditionally been
implementation experience. In particular, GCC said this will invalidate existing
experience and having to do this would be infeasible or very difficult in the current
GCC framework.
 Jens: I read that differently.
 Paul: Was this discussion for new functionality or something different?
 Peter: The idea was to have something consistent for everything but we can’t since
they are wildly different.
 Martin S: I would be more comfortable with implementation experience.
 Martin U: It can be changed based on the discussion here.
 Peter: The fact that GCC has acknowledged bugs is not a reason to cast in it in stone.
 Martin S: Joseph Myers has read it differently so not a bug.

 Jens: For pointer equality the standard is clear.
 Martin U: That’s why I want more clarity. This way we can talk about it. We need to
start with clarification then we can talk about changing it.
 Philipp: But we are unclear on what the clarification will be different from what
some think should be the way it is or what it currently says. It is implicitly making a
change.
 Derek: What is the interface between these models and the standard?
 Peter: They would go in explicitly to the standard. The choices between the models
is more how aggressive alias analysis can be.
 David K: The basic idea is to track where the pointer was intended to point to. If you
know that then you know when that pointer is out of bounds. That covers 80% of the
problem. Then the corner cases come in. Ex. int -> pointer. The models handle that
different ways.
 Derek: There is a balancing act between the cost and benefit. It needs to be sold
better.
 Peter: We’ve already had a clear vote on the general direction. The study group will
continue building on the models here, particularly the last one.
 Robert: We took a vote on direction. Now we’ve come to the text, but reading the
text I can’t tell the difference between an object, storage location, and pointers. It
seems some changes are done some places and not everywhere. I can’t comprehend
this as is.
 Peter: The end notes have a lot of text describing it.
 Martin S: I think WG14 expressed a preference for stricter rules. I would like to give
direction to restrict code or implementations whenever there is a design choice.
 Peter: We cannot have a design choice this way since you have to look for a wider
thing.
 Martin S: Constraining the optimizer has a cost.
 Peter: Constraining code does too.
 Robert: We have a value system that puts code first.
 Martin S: Empowering optimizers also empowers analyzers and so it is better.
 Roberto: You said Joseph Myers is against this.
 Peter: No, he said this is good, but he has some interpretations of the standard that is
strange.
 Roberto: Can implementations be changed/extended to support these proposals?
 Peter: I doubt they would do it speculatively.
 Roberto: What are the GCC people implementing? What is Clang implementing?
 Peter: They are implementing a confusing hybrid of different things.

 Sewell, C provenance semantics: detailed semantics [N 2364]:
 The goal is still to keep existing behavior and practice and make it valid. No new
features or change to the language syntax.

 Roberto: Pointer provenance is preserved even if it goes past the object.
 Robert S: Does provenance affect memcmp?
 Peter: No, it is in the abstract machine, not in the concrete representation.
 Andrew B: The info in the abstract machine, having this information would be good
for debugging in actual runtime too.
 Robert S: You don’t need to keep the size.
 Peter: You need it to determine whether you have UB.
 Martin U: You don’t want arbitrary points to point to local objects.
 Philipp: If the compiler can prove using the pointer directly again does not expose it
would be useful.
 Freek: I would like a straw poll where Derek said this is all nonsense and academic,
to see if there is a problem here that the group sees.
 Peter: I don’t think we need a straw poll since we’ve had near full consensus in
Brno.
 Re pointer bit manipulations:
 Derek: The standard currently doesn’t allow the arithmetic operations on integer
types and convert back to a pointer. It is UB.
 Peter: Yes.
 David K: You can’t be sure this would work on all architectures.
 Peter: Yes, this is just saying that if this worked on your architecture before, it will
continue to work with this provenance model.
 Martin S: My concern is the cost to implementations. They either give up or have to
track all this.
 Peter: Saying anything regarding provenance adds burden. The heaviness is up to
debate. It is not clear this is a heavy burden.
 Martin S: It is for implementations to keep its current degree of optimization and
analysis or it has to give up.
 Derek: What are the benefits?
 Peter: Currently the problem is it is not clear whether compiler optimizers are valid.
It makes what compilers are doing valid which was previous vague (not sure if it was
allowed or not). It allows validation of compiler aliasing optimizations now since we
have a model to test against.
 Derek: Why not have a bunch of CR’s for the problems?
 Peter: This is an integrated solution. You can think of it as solving DR260.
 Martin S: The proposal makes the inter-object integer arithmetic defined when GCC
currently defines it doesn’t. This will constrain implementations.
 Aaron: The only thing you can do with ux is round trip. Any addition, even + 0
makes it now invalid and we’re in UB land.
 Peter: As far as we understand it, there is no proposal to make all compilers sound.
 Jens: There is a big gain for application programmers to know what compilers will
do.

 Robert S: Reading a byte of a pointer doesn’t make it exposed until you read all
bytes.
 Peter: No, we make any byte read expose the pointer.
 Implications for optimization:
 For p == q can hold in cases where p and q are not interchangeable.
 Martin S: This is only possible with one past case. Making this undefined would
make this better. C++ has specified this already without problems.
 Jens: The standard already disallows the optimizations.
 Martin S: But implementations do not follow the standard for this.
 Freek: Why do you prefer UB over unspecified?
 Martin S: Allows more optimizations.
 Clive: This is like defining undefined behavior. If you could query your
environment then you can say if X holds, then the rest of this follows.
 Philipp: It would be confusing if one past pointers act different from regular pointers.
 Peter: The explanation is that it is ambiguous.
 Martin S: The examples are valuable but constructed in a way that is misleading. The
data is not meaningful due to the compiler bugs they run into. We would need to
generate more representative examples that don’t suffer from the bugs.
 Derek: How much code uses the features in the results table?
 Peter: Making the compiler to be sound with this model would be a little work to
make them more compliant with integer to pointer conversions.
 N2362:
 Freek: Does realloc create a new storage instance?
 Jens: Yes. It was always the case in the standard even if the same address is
returned.
 Jens: Abstract address is the same as the uintptr_t if the implementation has it. It
brings it from the conversion part of the standard to an earlier part. It helps with
ordering and leaves room for segmented address spaces.
 Philipp: Whether we need exposure depends on what model we use with
provenance.
 Jens: The proposal we have here is the most conservative we could do relating to
the text of the current standard.
 Do we want provenance, and if so, do we want exposure? Are we satisfied with
the model? After that can discuss the one past pointer and round trip and other issues.
 Roberto: We already have provenance; we are really asking if we want them in terms
of this model.
 Philipp: Storage locations seems useful independent of everything else. Perhaps just
ask for that.
 Martin S: I have parts I am strongly critical of, but overall I like the approach. I am
not clear that we won’t lose some normative text from these changes.
 Jens: The group had a chance to look into that before this meeting.

 Martin U: A way forward would be to split this up into things like storage instance.
 Martin S: As an overall strategy, my biggest concern is rather than imposing stricter
rules to constrain code out there which would cause problems for optimization and
detecting bugs in programs. I would like to see the group more open to this type of
feedback.
 Jens: For me, I can’t open up something I don’t know. I want to find out what the
state of the standard is. What you are saying is the next step. Once we know what is
there we can talk about changing it.
 Peter: Nothing we are talking about today is to make defined what is undefined.
 Philipp: You are taking away some wiggle room.
 Aaron: We are trying to fix a DR. I find implementation experience to be
compelling, but since we don’t all agree, the question about what we are affecting is
not as interesting.
 Derek: This seems to be a lot of wording to fix a single DR. It should be broken
down into smaller chunks and list the problems as they are hit.
 Martin S: We don’t know what we are changing reflect what is there now or are
becoming more strict.
 Peter: DR260’s resolution affects wide swaths of stuff.
 Jens: One of the things where I broke it down is things like storage instance in the
document.

 *Straw poll: Is the committee OK with the general direction of the provenance
proposal?
 18/1/4 (In favor, Opposed, Abstain)

6.11 Gustedt, Introduce the term storage instance [N 2328]
 Melanie: You said the object is the same as a sub-object but that is not true.
 Jens: I want to have these changes in first to make it a two stage process, 1) get the
space, 2) wrap the object into the space.
 Philipp: The sub-object does not have a storage instance itself.
 Fred: Did Larry object?
 Jens: No.
 Rajan: Did you talk to Larry?
 Jens: No, but he sees all my proposed changes.
 Martin S: I think it is a good change, but have nits on the wording.
 Lars: I see sometimes replace space with storage instance, other places you replace it
with storage. It needs to be looked at again.
 Jens: I am happy to discuss nits.
 *Straw poll: Is WG14 good with the general direction of N2328?
 (15/0/0)
 Clear consensus.

 Jens: Bring issues forward to me.

Tuesday afternoon

6.12 MISRA Discussions
 Banks & Ward, MISRA Liaison report and relationship with C Safety and Security
Rules Study Group
 Andrew: I am the MISRA C study group lead and official liaison to MISRA C. We
quote the undefined and unspecified behavior annexes and have to pay a license fee to
BSI. The MISRA 2012 first revision was published in February, and the next revision
updated to C18/C2X will be sometime this year. We thank the C safety and security
group for their very good review of MISRA.
 Andrew (not speaking for MISRA): We may even end up publishing MISRA C as an
ISO document even.
 Clive: We’ve spent 2 years going over the MISRA document and need to see what
we need to put into our C Safety and Security document. We don’t want to hit a wall
if we incorporate something from MISRA due to copyright.
 Andrew: I’m not sure what the C Safety group is really doing other than giving a
good ISO review of MISRA. If the scope was to unify multiple other documents, that
would be fine.
 David K: The scope is wider than that, it is to add in Safety and Security.
 Andrew: That may have been the goal, but it is not what is happening. It is being
critical of MISRA. The direction right now is wrong.
 Robert S: The initial goal was to update the document to the later C standards.
 Andrew: But how much of that has been done?
 Robert S: None, we got bogged down. We ended up saying this is what we want to
be the direction of MISRA. We didn’t want to create a competing standard. We never
got a settlement on how to work together. That was a drag on the study group. The
two years have been truly study. In the early days of the group we had MISRA with
the safety focus and the other people as the security focus and they were rarely
aligned. Due to the conflicts there, the security guys dropped off, leaving it with
MISRA.
 Andrew: The resources MISRA put into this pulled away from MISRA C/C++ work.
This made this a drain.
 Robert S: My thought is this is now up to MISRA. My sense is the current effort
should be dropped or go back to the security focus. If MISRA really wants to go all in
and pool with ISO, then that would be the best thing.
 Andrew: We categorically fully support the activity. But I question where it is going
to end up. Unless we can refocus and define the objective beyond just taking
MISRA’s IP, then I agree we should close the study group. Note that MISRA is not a
closed shop, so anyone can join. It really seems to be a duplication of our effort with

questionable benefit to the industry. Right now the study group is interfering with how
MISRA is working.
 Robert S: It really is your decision. If you want MISRA to maintain control of the
standard, then you can say no, and the study group can refocus.
 Andrew: I think the question is really whether WG14 wants the study group to
continue.
 Aaron: MISRA is for users, the study group is more for industry and analyzers.
 Robert S: Does MISRA want to continue keep control through MIRA, or do they
want to funnel through ISO?
 David W: MIRA is just there since someone needs to own it. There are things for
and against it. We have many stakeholders that we need to consult to see if this is
something we want to do (go through ISO). Note that we are open to all for people
who want to make significant technical contributions.
 Derek: MISRA is a good document with a set of guidelines. Why does WG14 need
to be involved with yet another document or guidelines?
 Aaron: Because it targets static analysis vendors. MISRA is hard to work with. It is
good for developers, but not for a tool.
 Andrew: I am quite happy to discuss with you for areas to improve.
 Robert S: I brought forward this update. This happened because I was asked by some
auto manufacturers to merge the CERT guidelines and MISRA C guidelines. We
agreed in principle to do it, but never got the details. I think we’re at the stage we got
to do something.
 Charles: My take is neutral. I appreciate what MISRA has done in the past. My
current industry is medical and we need both safety and security. I have seen unless it
is in the standard itself, MISRA is seen as only automotive.
 Andrew: That is not the case, not for a while.
 Charles: It may not be the case, but it is the perception.
 David W: The first implementation was in the medical space.
 Charles: I agree, it fits there but it is not the perception. Having it in the C Standard
is valuable where we can have people point to it giving it perceived legitimacy.
Applying this to implementation is what really makes it work. Being able to put this
into analysis tools is going to make this work.
 Andrew: Redeclaring my interest working for LDRA. The ISO standard for medical
references MISRA. The NASA guidelines are based on MISRA.
 Philipp: Shouldn’t it then be brought out of a private corporation and bring it to ISO?
 Andrew: I don’t care who or how it is done just that it is published. The original
MISRA guidelines we published in 1994 and then republished as an ISO document
that fed into becoming ISO 26262. Can it be fed into ISO?
 David K: 2 mechanisms, fast track where it is owned by ISO or kept at MISRA and
updates done by them.
 Derek: ECMAScript did this outside the ISO route.

 Clive: Whatever way to go forward, MISRA as ISO or the study group goes on. If
the study group continues, perhaps one of the focus areas is where the conflicts are
between safety and security.
 Andrew: Addendum 2 and 3 are freely available on our website. There is a matrix
showing MISRA C vs CERT. We found a case where MISRA conflicts with CERT
(size of an array edge case). We have produced that delta. The claim that MISRA is
just a safety standard is unfair.
 Peter: What do you (Aaron) see the result of the document to be that would work for
you?
 Aaron: MISRA had a rule where you can’t have two identifiers with names that are
too similar to each other. This works for small projects but not for a large project with
billions of lines of code.
 Peter: For that sort of thing you’d want something that is decidable.
 Aaron: Yes.
 Clive: No, the MISRA rule was decidable. The MISRA rules are for developers
starting with a blank sheet of paper.
 Andrew: The rule is advisory and you can forget about it. A lot of us do.
 Aaron: I think a different view from a tool vendor would be useful.
 Andrew: I see your point but don’t necessarily agree. We have rules that there
because other standards require it like having a single return. Keep in mind more than
half the group is tool vendors.
 David K: Is MISRA going to make an IP claim against the study group?
 Andrew: I think the question really is should the study group be disbanded.
 David K: The study group can update to bring it in line with C17.
 Andrew: We can update MISRA to C17 and forget about the study group document.
 Robert S: We can continue dealing with safety and security but without MISRA,
leaving it open to competing; Focus on security; Disband. It is more up to Charles.
 David W: In terms of IP, we’d need a request and an agreement. We’re more than
happy to help. MISRA exists to help with that.
 Robert S: My opinion is ISO couldn’t care less whether we produce a standard. If
they don’t pay anything, would that end your deliberation?
 David W: It is too binary; we are expected to pay ISO but I’m not saying either way.
It needs to go through the appropriate channels.
 David K: Since I don’t hear a solution of the copyright issue, I suggest we keep the
focus on updating to C17.
 Aaron: Since most people are safety related now, do we have a study group?
 David K: That is a question for the next study group meeting. i.e. Assuming no
access to MISRA, what do we want to do?
 Blaine: We have a couple of resolved DR’s but it is not worth a new publication.
 *AI: Charles to ask the C Safety and Security study group what they want to do
under the assumption of not being able to use MISRA.

 *AI: David K: Look into mechanisms for publishing the MISRA documents under
ISO and discuss with Andrew Banks.

 Banks, Follow-up on enumerating & cross referencing Annex J (formerly [N 2112])
 Jens: Why don’t you cite the place in the standard that has the behavior?
 Andrew: Because it is not 1-1.
 Robert S: We did create a numbered mapping in our TS.
 Andrew: Previously commented: Having cross references helps having a sanity
check on the counts (don’t miss any). Another suggestion made up previously was
having fixed numbers for the lifetime of an item, but that was not taken well.
 Larry: The order is in the standard clause order. Echoing Jens. An informative annex
is not a good thing to be referencing in another document.
 Andrew: Even in MISRA we get asked where the numbers we added came from.
 Larry: Adding things to the middle of the list cause issues.
 Andrew: I am fine with whatever numbering scheme, you can change it, whatever. I
am OK with changing numbers.
 Blaine: The problem to me is that this is like a bibliography reference. Having a
forward reference to the list would be useful.
 Aaron: I know of at least 3 standards that tried to change this list to numbered lists.
This to me says we need to number them.
 Jens: I looked through it and the problem is artificial, and if there are places with
multiple references, that’s what it is.
 Andrew: At least three groups have numbered it so they think it is useful.
 Freek: You don’t need to label with numbers it can be anything.
 Andrew: Anything can be used. I am not tied to numbers.
 Robert S: We can number them based on the section they appear. It can be appended
by a letter if there are multiple reference in the same section.
 Roberto: I presented a paper to remove one from the list. There are many that refer to
7.7.3.
 Blaine: We can add in a special thing like notes that has a thing that labels undefined
behavior with something like UB# which can then become the index of all undefined
behavior.
 Freek: I am good with doing the change.
 Martin S: What is the purpose of the Annex? If we should be referring to the actual
section, why have this?
 Jens: For others.
 Martin: Others have given feedback they want it numbered. What is the problem?
 Freek: Is there any cross-referencing in the document already?
 Jens: It is there already.
 Aaron: WG21 has converted all bullets to numbered lists with a macro. Do we want
to do the same?

 David K: Do the editors have any significant opposition to this?
 Jens: No.
 Larry: No, I think it is misguided, but sure.
 *Straw poll: Does the working group agree to uniquely label the bullet points in
Annex J?
 20/1/2 (In favor, Opposed, Abstain)

Banks, Follow-up on "defensive" attribute (formerly [N 2258])

 N2258: Rajan: Minor typos (ex. Default in switch needs a “:”).
 Andrew: The real world has things like cosmic rays, memory corrupted by buggy
code elsewhere, etc. This comes from a real-world situation.
 Philipp: You can make your condition variable volatile and you have it.
 Andrew: Doing that would break more optimization than this would.
 Jens: The proposition doesn’t give wording in the standard. How could I word it?
 Aaron: N2365 talking about defining undefined behavior touches on similar issues
that makes it hard to talk about it.
 Andrew: I am only look into the principle of the thing, not specific wording yet.
 Aaron: All attributes need to be able to ignore attributes. Since this cannot be
ignorable, this should be a keyword or something else.
 Blaine: I support using attributes here.
 Martin S: What can an implementation infer about the two blocks of a boolean if
statement? I don’t see what the compiler can do in case that are impossible. The
implementation needs to be able to reason about it. It cannot be that anything is
possible.
 Freek: You can have this done with a new volatile variable you can add just for this.
 Blaine: The paper has this as a defensive mechanism for real world code.
 Alex: Telling the compiler that code is reachable that is analyzed as being
unreachable is nonsense. It does boil down to the equivalent of volatile where you can
take the C++ volatile concept added in to do this.
 Andrew: I put the attribute where it is to highlight where the problem is.
 Niall: For a compiler, seeing any one of these would cause each branch point in the
program to not be able to be folded.
 Andrew: As soon as you take this away from the lowest level of optimization this
becomes a problem in Clang and GCC from what we tried.
 Blaine: I think it is doable from front end code.
 Niall: Basically just turn off optimization to various degrees. That is what this is.
 Peter: Optimization is not localized to a particular syntax location, so I don’t know
how to do this.
 Andrew: I understand, but some level of optimization needs to be turned off.
 Peter: But then you need to word this in standardese.
 *Straw poll: Do we want to see something along the lines of N2258?

 6/9/10 (In favor, Opposed, Abstain)
 No consensus to move along these lines.

6.13 Stoughton, Proposal To Add Extended Month Name Formats to strftime() [N
2337]
 Andrew: It is an interpretation request that has been widely reviewed and is going
into the next POSIX revision.
 Lars: Why was h was not used/added?
 Philipp: Why is Ob/B switched from abbreviated and full name compared to regular
b/B?
 Lars: Changing O->E would break existing glibc implementations. Even though the
man page says the opposite.
 Larry: I don’t see any problem with it being under O as well.
 Nick: E is for a different calendar.
 Geoff: We didn’t add in h.
 *Straw poll: Do we want to incorporate N2337 into C2X switching the cases for the
b/B’s?
 22/0/4 (In favor, Opposed, Abstain)
 Consensus. Goes into C2X.

6.14 Stoughton, Error Indicator For Encoding Errors In fgetwc [N 2338]
 Aaron: Does this have the possibility of breaking code?
 Rajan: This is like a DR. Can always break code, but this is obvious to me that this is
a bug fix. Since this is an error case I expect if anyone does break it would be minor.
 *Straw poll: Do we want to incorporate N2338 into C2X?
 18/0/6 (In favor, Opposed, Abstain)
 Consensus. Goes into C2X.

6.15 Stoughton, Change Request for fopen exclusive access [N 2357]
 Rajan: Second change is better.
 Jens: I have problems with the wording of file permissions showing up in the first
change. We don’t mention that in the C standard.
 Geoff: That wording is already used in Annex K.
 Niall: I am in the C++ low level file I/O subgroup so I can talk about this with
authority. I would not have it say what it should not be and instead talk about what it
should be. You should be able to atomically create a new file and the standard should
be changed to say this.
 Rajan: Any objections to the second change? There are other file systems beyond
what was said before for other systems.
 Blaine: Love the second change, hate the first one.

 Robert: This wording appears thought annex K so we should change it everywhere
and not in isolation. I would like to see Niall’s C++ proposal here.
 Niall: I expect it is not very relevant here. I expect to bring it to C in about 5 years’
time.
 Niall: The second form allows doing nothing. What is the chance of existing code
breaking since you don’t have to have a lock file where now you can get corrupted
data?
 Geoff: The exclusive use is separate from the creating a file and was always like that.
 Niall: I was talking about a lock file not locking the file on creation.
 Nick: Implementation defined was deliberate to allow specifying what POSIX does.
 *Straw poll: Do we want to incorporate N2357’s second proposed change into C2X?
 11/1/11 (In favor, Opposed, Abstain)
 No consensus.
 Blaine: I object to that; abstentions should not be counted.
 Aaron: I thought consensus was up to the convener but ISO had guidelines.
 *Straw poll: Do we want any changes to 7.21.5.3 p5 regarding the “exclusive” in
exclusive file access?
 11/1/12 (In favor, Opposed, Abstain)
 David K: Does anyone object if there is some kind of change from the people who
abstained?
 - No response
 Niall: I can propose alternative wording. I intend to write exactly what POSIX does.
 Geoff: What you are saying is striking the second sentence in paragraph 5 is enough.
 Rajan: Removing that is not good since it makes existing implementations not
conformant if they don’t support exclusive mode.

Wednesday morning

6.16 Integrating floating-point TS updates into C2x
Thomas, TS 18661-1 plus CR/DRs for C2X [N 2314]
Thomas, TS 18661-1 plus CR/DRs for C2X with change marks [N 2315]
Thomas, TS 18661-2 plus CR/DRs for C2X [N 2341]

Thomas, TS 18661-3 as annex [N 2342]
 N2374 (slide deck)

 Martin: Annex vs in body of std.
 Jens: Likes as Annex.
 Dislikes N in types.
 Rajan: Similar to existing PRTN
 Jens: Too many functions; might clash with existing code; wants
renames with reserved prefixes.

 Rajan: Will consider renames for parts 1, 2, and 3 as WG14 directs.
 Aaron: TS experience not be that important when we roll into std.
 Martin: Link errors with name clash?
 Rajan: If user has own function with same name as std name, there may
be name clash at link time.
 Martin: Need a general solution for so many new names from all parts.
 Jens: Not just a math issue.
 Rajan: Already voted in; this is just a heads up.
Thomas, C2X proposal - TS 18661-4a [N 2355]
 N2373 (slide deck)
 Philipp: Why need these?
 Rajan: Performance and accuracy.
 Alex: Functions express intent of user (compilers may not do
transformations, e.g., pow() to pown()).
 Aaron: Did study group look at name clash with user code?
 Rajan: No.
 Keaton: If we subset, users will ask why we did not do all of
IEEE-754 functions.
 Jens: Need to solve name space; use prefixes.
 Philipp: Use a new header to new functions.
 Martin: Too many names.
 Rajan: IEEE did not add in very specialized functions; just added
general functions.
 Keaton: Name space issue is more than just math.
 *Straw poll: Should we adopt 18661 part 4a (not reduction functions)
into C2X (not consider naming issue)?
 (10/1/7)
 Result: Goes in.
 Jens: I want to resolve the naming issues before voting this into C2X.
 Philipp: There are a lot of floating point programs that are OK with the set

they are using but could have problems if they get new ones. It may make sense to
have a separate header.

 Thomas, update for C2X payload functions [N 2356]
 Fixes issue of 'unsigned' raised by WG14 at previous meeting. Changes
return value for errors.
 *Straw poll: Should we adopt N2356 into C2X?
 (13/0/5)
 Result: This goes in.
6.17 Tydeman, FE_TONEARESTFROMZERO w.r.t. FLT_ROUNDS [N 2319]
 Derek: You’ve changed 1 in FLT_ROUNDS to be ties to even. Is this a problem?

 Fred: I don’t know anyone who does otherwise.
 Fred: You need this new rounding mode for nextafter for double double.
 *Straw poll: Do we want N2319 to be put into C2X?
 (12/0/6)
 N2319 goes into C2X.
6.18 Tydeman, Precision and NAN/NAN(...) and INF/INFINITY [N 2320]
 Fred: This will break every implementation. I am not proposing this anymore.
 Rajan: Like the alternative.
 Martin S: I don’t see how this fixes anything. Existing programs will not be safe with
this change.
 Roberto: This allows a way for a program to set a limit for new programs.
 Jens: I would object for the naming choice.
 Fred: Not tied to the name.
 Martin S: New code can use snprintf.
 Rajan: Having a limit does solve the issue from a programmer perspective and
analyzer even for existing code.
 Philipp: I prefer making an explicit macro, not just say we have a limit.
 Martin S: The precision idea was not viable. I think the problem is still there and a
solution needs to be found like what was there in the original proposal, even though
the committee decided to do precision.
 Fred: Has anyone asked for a control on the output.
 Rajan: No. No requests.
 Philipp: If we do provide the maximum macro, we should have a sentence that the
value could be zero in case the implementation does not support it.
 *Straw poll: Do we want something along the lines of the macro addition part of
N2320 to be put into C2X?
 (9/2/7)
 Consensus. Result in asking for a new paper for better wording for this.

Wednesday afternoon

6.19 Tydeman, Nextafter/nexttoward/nextup/nextdown [N 2321]
 Fred: The chairman for IEEE has a use case for the existing words for this so I am
withdrawing this change.
6.20 Tydeman, SD3 9: PreProcessor unspecified line numbers [N 2322]
 Derek: There is only explicit unspecified behavior, no implicit.
 Fred: I do not know.
 Fred: I am explicitly making it unspecified.
 Derek: It is probably in the original c89 mailing list somewhere for the original DR.
 Fred: No implementation does it all. They do parts.
 Derek: You need to enumerate the choices.

 David K: It is there. It says “which of those lines”
 *Straw poll: Do we want N2322 to be put into C2X?
 (13/1/3)
 Consensus. N2322 goes into C2X.
6.21 Tydeman, SD3 1: DR 440: Test macros for FP being 754 types [N 2323]
 Fred: Jim said the extended types don’t have limits.
 Philipp: Why is there no LDBL versions?
 Fred: The original text only has macros for FLT and DBL, not LDBL.
 Roberto: Are there implementations that could define this as 1?
 Fred: Jim also said we should not have operations and values.
 Roberto: Flushing to zero is programmatically set for sub-normals.
 Fred: No, not always. Some hardware has switches others do not and always flush.
 Fred: I can write a new paper removing the extra verbiage about operations.
 *Straw poll: Do we want something like N2323 to be put into C2X?
 (8/1/8)
 Consensus. We want something like this in C2X.
 *Straw poll: Do we want something like to option 1 or option 2 in N2323 to be put
into C2X?
 (9/0/9)
 Consensus. We want something like option 1.
 Fred sent an updated paper with the operations part separated out as per Philipp’s
request (resolution for DR440).
 Martin S: Process issue about forgetting or leaving something for defects in the
existing standard.
 David K: We’ve always had the requirement that someone champion the paper all
the way through.
 Martin S: If there is a serious issue and then someone who worked on it drops out,
what happens?
 David K: Then it must not have been serious enough if no one wants to pick it up.
 Martin S: The process is not good enough. We should have a list of these things.
 David K: You (Blaine) could add this to the end of DR440.
 Blaine: Perhaps we need something with DR status’s.
 Robert S: We’re trying to solve a problem that’s been solved for 30 years: Defect
tracking systems.
 Philipp: Don’t we have an issue tracker in our git for the standard?
 Jens: No, we don’t have one. Can we do what the Austin group uses?
 Martin S: I volunteer to maintain that list that lists documents and what we did with
it.
 Leave this update until we get an N# or tomorrow.

6.22 Tydeman, SD3 13: DR 482: Macro span files: undefined [N 2324]

 Derek: Why not make it implementation defined instead of undefined?
 Aaron: What does it mean to have undefined behavior in the preprocessor?
 Jens: Some have undefined, some don’t, some have ‘shall’ in the paper.
 Fred: Yes that was intentional.
 Aaron: If we change this I would prefer making it not allowed rather than undefined.
 Aaron: What does C++ do?
 Fred: I don’t know.
 Roberto: This is similar to the final line in the file not needing to be ending in a
newline.
 Aaron: C++ makes this an error. Not allowed to have a non-terminated comment, …
 Fred: This is neither. This is a macro invocation.
 Niall: There are 2 Boost libraries that use meta-programming with preprocessors. I
would suggest we ask him what we should do and do what he says for C and C++.
 Philipp: If undefined behavior is not liked, we could make it implementation defined.
 Derek: So we’re going to break conforming code to make non-conforming compilers
conforming.
 Aaron: C++ still does disallow this.
 Fred: No, it does since that disallowable is in a preprocessor directive.
 Fred to follow up on this. New document N2379.

6.23 Tydeman, SD3 11: Maximum normalized FP number [N 2325]
 *Straw poll: Should N2325 be put into C2X?
 (13/1/7)
 Consensus to put N2325 into C2X.

6.24 Tydeman, Merge DR 432+467 [N 2326]
 Derek: Is -0 really another kind of floating point number?
 Fred: Yes, this is not required in the model.
 Philipp: I am not comfortable with adding 0. Are there implementations that do not
have 0? What is the cost for that?
 Rajan: The paper was in the mailing, implementations could have spoken up if we
have broken them, or talked about that as well. In this case we do have it in the
standard that zero is talked about in other places so if they didn’t have 0 they would
have been non-conformant anyways.
 Fred: This has been available since 2013 (the original paper).
 Derek: What is the definition of 0.0 in bits?
 Jens: ‘if’ statements select on zero so they would have to have a way of
distinguishing between zero and near zero.
 Larry: That is not true that the model does not have zero, if the fraction bits are all
zero then we have a non-normalized zero.
 Derek: What would happen if we didn’t do this?

 Aaron: The two DR’s would not be resolved.
 Philipp: Is that zero a mathematical zero or not?
 David K: If it was a value, it would have been in code font so it is the mathematical
zero.
 *Straw poll: Should N2326 be put into C2X with editorial changes on the footnote
expected?
 (14/1/6)
 Consensus to put N2326 into C2X.

Thursday morning

6.25 Gustedt, intmax_t, a way out [N 2303]
 Derek: If I am a compiler vendor and you are a system vendor, and you decide you
have a 128-bit type I don’t need to support it.
 Jens: GCC does this, they have a type that is __int128 for example, but it is not
portable beyond that.
 Derek: But this is a case of who controls intmax_t.
 Jens: No this is about people fighting about ABI’s.
 Derek: But as time goes on, larger and larger new integers can make intmax_t the
smallest type.
 Fred: Is long double _Complex a semantic type?
 Jens: This is about integer types.
 Niall: When we talked about this before, we wanted to keep intmax_t the same, but
decided on passing the extended integers as a pointer so not by value.
 Blaine: Why not fundamental types?
 Jens: My proposal is beyond that. Not just fundamental types. If you make it as that,
it loses its usefulness.
 Derek: Your change make it lose all meaning too.
 Blaine: A RISC architecture has 128-bit integers as a fundamental type.
 Niall: What about 8000+ bit types? No one will pass these by value, they will pass it
by pointer. The committee should be aware of that and make a solution that handles
larger types that should not be passed by value.
 Philipp: There are implementations that have a 24-bit integer type. What if 128-bit
proves to be so useful that we want to make it a basic type? That would break the ABI
still.
 Jens: If we change that we have many other problems since a new C standard could
not claim ABI conformance.
 Martin U: There is no fundamental type in C.
 Martin S: Yes, that is a C++ term. For C it is basic type.
 Derek: Why not have version numbers of intmax_t like intmax_t2 to keep the ABI
the same.

 Martin S: This standardizes existing practice, right?
 Jens: No, this go beyond that.
 Martin S: This doesn’t break existing implementations though, right?
 Jens: Yes. Correct.
 Philipp: Do we know if C standard library functions are used with intmax or not?
 Jens: printf is the one I know is used.
 Alex: I think it is overly proscriptive to force by reference passing of larger integer
types as Niall suggested. Perhaps not guarantee single copy semantics.
 Robert: This is a problem. Could we eliminate the type? How painful would it be?
 Jens: If you are good with that, just ‘long long’ for any new architecture. Then the
preprocessor description text would have to change.
 David K: There is a historical reason for intmax_t. You could always cast to long
then ‘long long’ but we knew that may not be big enough so we added intmax_t. Why
does GCC need this?
 Robert: The problem with intmax_t is that it is the largest of the smaller integers.
 Jens: Having this would allow GCC to use these with PRI* macros, etc.
 Derek: Why not create a new type like intmax_compiler_t? Aren’t you solving the
wrong problem?
 Jens: If you want to write a proposal for this, you can.
 Blaine: intmax_t represents the largest integer fundamental type that is the fastest for
the architecture.
 Niall: va_max_t would be for the max to pass through vargs, and then eintmax_t for
the largest extended integer types.
 *Straw poll: Does WG14 agree to have extended integer types that are wider than
[u]intmax_t?
 (16/1/4)
 Clear direction.
 Martin S: I find the proposal difficult to read. There are typo’s in the proposed
changes. I see this as a first step, but need it to handle the problems like what David K
brought up like how to print int128, int256 or whatever is the largest one?
 Martin U: I see two problems: How can you find the largest extended type? For
printf, need to be able to pass in a reference to larger integers.
 Aaron: Do a compare and contrast of these solutions would be useful. Why you
would choose one over another is useful to me.
 Blaine: Bignums have been around forever so having the pointer to it as a general
solution would be a general thing.

6.26 Gustedt, Clean up atomics [N 2329]
 Blaine: The _Atomic had problems and when we introduced it and we knew it so this
is a good thing.
 Blaine: The real problem for this is extending this to floating point.

 Jens: Yes, there are examples for this in the standard already and this is designed to
work for integers, floating point types and pointers.
 Blaine: I would prefer this atomics clean up first to handle the thread clean up later.
 Blaine: Is there a binary compat issue with the selection rules for generic functions?
 Jens: No, I don’t think so.
 Philipp: Compound operators based on the atomic fetch op’s, why do we have the
ones without the explicit?
 Jens: Shorthand and since they are different (return the value first). I think with these
we can be more particular for floating point things without saying generally “nothing
bad happens”.
 Martin S: I have the same observation as the previous paper. It is better if it was
broken down.
 Jens: The alternative would have been to have 20 papers.
 Blaine: The committee said they wanted it as a single omnibus solution for this. It is
needed since the issues are interleaved.
 Martin S: I am not opposed to making changes along these lines but I prefer separate
papers.
 Robert: We had a conversation before that the English text does not match
mathematical model. I’m not confident the text we’re modifying should be the starting
point.
 Peter: I don’t think Jens changes here deal with the core concurrency model.
 *Straw poll: Is WG14 happy with the proposed non-normative changes (section 2.1)
in N2329?
 (14/2/5)
 Result: Good with the changes.
 Martin S: We never lump in a number of separate changes lumped together for a
software project and yet we are taking that approach here. I am not saying these are
bad changes but I don’t understand what we are actually voting on.
 Blaine: You had the paper before with everything there.
 Robert: But we didn’t have the polls in sections.
 Blaine: This is what you asked for.
 *Straw poll: Is WG14 happy adding into C2X the proposed additions for the
synchronization of the library functions proposed in section 2.2.1 of N2329?
 (10/5/5)
 Not clear direction.
 Jens: I will make a separate paper.
 *Straw poll: Shall we use the atomic_fetch_OP_explicit functions as a model
definition for all the other compound assignment operations as proposed in N2329?
 (10/1/9)
 Jens: More clear, but some more convincing to do.

 *Straw poll: Should we introduce the new atomic_OP_fetch[_explicit] operations as
complement for all OP= operators and adding ordering as specified in section 2.2.3 of
N2329 into C2X? (This would give the value after the operation)
 (7/8/6)
 Result: No consensus.
 Martin S: Does this fix anything or just for a complete set?
 Jens: For a complete set.
 Niall: All code I read does the operator then fix up afterwards. You can already write
operator += right now, so why do we need a new function to get the same thing.
 Jens: This is to complete the model in both directions.
 Niall: I get that but I don’t know why atomics need to be the same as arithmetic.
They can special.
 Jens: This is different between C and C++.
 Niall: C++ always had OP=, so that is not the case. Since you could already do it I
don’t see adding this a being valuable.
 Philipp: This is adding more to the standard to read for relatively little gain.
 Jens: We do this in other things in the standard already.
 Philipp: Some of these functions are exactly the same as existing functionality so
there is no need for them.
 Jens: For pointer types and consistency.
 Martin S: We should not take this a definitive no.
 Jens: Yes, I take it as I need to write another paper.
 *Straw poll: Do we want to add in the selection rules for atomic generic functions as
given in section 2.2.5 of N2329 into C2X?
 (9/4/8)
 Result: Not clear.
 Robert: Note that 2.2.5 lists the general idea, but the changes are in other places
throughout the document.
 Jens: I will write another paper.
 Niall: For out of band error bit since it breaks ABI, can I get a yea-nay since that
would change what I need to write.
 Jens: It does not break ABI, so we need to talk.

6.27 Gustedt, Moving to two's complement sign representation [N 2330]
 Robert: Width macros are brought in by the TS. Does this mean I need to add the
floating-point header?
 Jens: No, it is integrated in the right place (Fred: limits.h).
 Rajan: Making extra bits into padding bits can break existing implementations (ex. If
they truncate or anything else other than pad). It can change structure layouts thereby.
 Derek: The other operation common in graphics is saturation. It can be done here
too. We don’t want to be too slavish following C++.

 Jens: We will likely need to change the shift behavior in the proposal (for right at
least) due to comments from embedded (Philipp and Derek).
 Robert: For left shift we already voted to not make left shift undefined so it is OK to
be ahead of C++.
 Blaine: I am uneasy with the adding padding bits part.
 Jens: I am not happy with that either but I want to keep header compatibility.
 Philipp: Some places for right shift take 7x as long as logical so it is not good. Is the
possibility of having padding bits used? If so it may be OK to be different from C++.
 Derek: Apart for wrap, saturate and signal, what else can chips do for arithmetic
overflow?
 Jens: I hear that we are uncomfortable with these changes so I see that.
 David K: -INT_MAX -1 may be a trap representation in certain implementations.
 Fred: I know of one old complier that does it even though the hardware supports it.
 *Straw poll: Does WG14 agree to fix the minimum value of signed integer types to
the negated power of 2 of the width - 1?
 (16/0/4)
 Clear direction to fix the minimum value.
 Martin S: In general I prefer smaller proposals rather than big omnibus ones.
 Jens: If I did that, it would take more time and effort and they build on each other.
 Aaron: In WG21 we had the same concern but without a holistic view we hit corner
cases.
 David K: What Martin is saying is a really important principle to break proposals
down into separable concepts. It works a lot better if it is broken down and in the long
run it gets it done faster.
 Jens: That is no problem at all. I can throw 20-30 papers at you. I can automatically
generate papers for each patch even but we’d spend all week on the papers.
 Roberto: You insist that the bit-field changes is a single package with the padding
bits?
 Jens: Yes.
 *Straw poll: Does WG14 agree to proposed changes for bit-fields as specified in
N2330?
 (7/7/6)
 No consensus.
 Derek: I think the conversion changes are close.
 Jens: I will take enumerations as a separate paper.
 Philipp: BOOL widths seems weird.
 Jens: For consistency and for token pasting reasons.
 Philipp: I want either bool width out or bool max in.
 Martin S: There seem to be mistakes in the diffs here too. In one case you have value
of a macro being 0 instead of the expansion of a macro being 0. This is a normative
change.

 *Straw poll: Does WG14 agree to the general direction proposed for specifying the
bounds of integer types based on widths as specified in N2330?
 (20/0/1)
 Clear direction.

6.28 Gustedt, Unify string representation functions [N 2360]
 Philipp: Why do we need these functions at all? We already have printf.
 Jens: I agree, these came in from the FP TS’s. I also think we need to give constraint
violations for things that are bad like the format string in my proposal if it is not a
string literal. GCC already warns on this.
 Aaron: I like this. Type generic is consistent. The string literal format string is good
in that it removes one security issue, but it doesn’t work with internationalization.
 Jens: This does not cut off locale. It is only an effect for the decimal point. My idea
is they are the C locale.
 Clive: I generate format strings on the fly. It is also a lot more names.
 Jens: We can throw out the functions entirely and only have the type generic
interface (so implementations can call the functions internally if they want). For your
use case, is it important to be type generic?
 Clive: I wouldn’t be able to use these functions. I’d have to fall back to printf.
 Lars: I prefer to not have the string literal to be there. C++ added functions like this
called tochars, intended for speed and low level.
 Jens: If you provide the format in the string literal, you get that, otherwise you get a
default. It is not intended to be slower since it can be done at compile time.
 Lars: I want a harder look at this to be closer to C++ tochars.
 Jens: The advantage here is for C library implementers this is easy.
 Lars: I am afraid of that since it is slow.
 Philipp: You can optimize this.
 Martin S: You can’t due to locales for floating point.
 Jens: Beside that issue everything can be done at compile time.
 Martin S: GCC has the optimization and it does not have to be a string literal.
 Jens: I don’t know how to formulate or implement it easily.
 Aaron: There is a security benefit for tainted input.
 Martin U: That is more of a user problem.
 *Straw poll: Does WG14 like a type generic interface to print all basic types into a
character buffer as specified in N2360?
 (12/1/2)
 Clear direction to do it.
 Martin S: You can just pass integers for width, precision, etc. so don’t need string
literals.
 Jens: My personal preference is to allow the user to select between %A and %G.
 Aaron: C++ uses an enum to select.

 *Straw poll: Does WG14 want to restrict the format of the tostr functions to string
literals?
 (3/5/6)
 No consensus.
 Rajan: This is something new in the C Standard with overloading with a different
number of parameters.
 Martin U: Do we want macros that expand into something to be discussed first?
 *Straw poll: Does WG14 like the default argument format method of overloading for
the tostr functions?
 (9/2/4)
 Consensus to allow default arguments.
 Jens: I want to know about getting rid of the FP functions.
 Martin S: But you couldn’t now take the address of the functions.
 Martin U: This changes how people think about C. Perhaps have these stand out
visually or something.

6.29 Gustedt, Out-of-band bit for exceptional return and errno replacement [N 2361]
6.30 Gustedt, Align spelling of keywords with C++ and make them feature tests [N
2368]
 Rajan: It does affect user code.
 Philipp: I am concerned with nullptr in particular.
 Aaron: I don’t like having nullptr being a macro. I want it to be a full class object. I
don’t want it to be always a void pointer.
 Jens: To be clear, I want it as a keyword, but also a macro.
 Aaron: For noreturn, C++ defines it as an attribute so we can consider that which
may interact with this paper.
 Jens: Doing macro expansion on all of this is not fixed.
 Martin S: Aestically I like it, but I am concerned about breakage. Note that _Atomic
is still there so we don’t really get rid of the “ugliness”. What do you see going
forward for new keywords?
 Jens: I see this for the _DecimalN types being added into C2X. My idea would be to
do something the same way for that.
 Blaine: You can talk about different approaches for implementers in a new paper
explicitly.
 Martin S: I see nullptr as a separate thing and should be proposed separately.
 Alex: I don’t like how C added _Noreturn, and the addition of _Complex. I like
making this more C++ like.
 Jens: Hans B. has been talking in the reflector for _Atomic. For _Complex I would
like a sharable mechanism between C and C++.
 Niall: I think for static_assert we should have a 2 arg form.
 Jens: We already have that.

 Roberto: There is a bug in nullptr since it removes the possibility of having 0 casted
to a null pointer. We can talk about this later. Also in the changes list on page 7 you
see static and static that are the same.
 Alex: You left _Generic off the list. Was there an intent to do this? Not doing it all it
may imply something to the user on how they are used.
 Jens: There was never a macro to replace it. If you think it is a good idea, we can get
a new paper for it.
 *Straw poll: Does the committee want to go in the general direction proposed by
N2368?
 (17/2/2)
 Clear direction to move forward with this.
 Philipp: We can have a first proposal for the non-controversial items.
 *Straw poll: Does WG14 agree to the following list of keyword and macros as being
subject to N2368:
 alignas, alignof, bool, static_assert, thread_local, false, true
 (19/0/1)
 Result: Clear direction for these items.

Thursday afternoon

6.31 Sebor, Toward more efficient string copying and concatenation [N 2349]
 Philipp: The last character may not be a character or have a one past the end pointer.
 Martin S: The wording comes directly from POSIX. I wouldn’t want to change it but
we can tweak it after if we agree with the idea.
 Fred: Is there a reason there is no wide character version?
 Martin S: I am focusing on the narrow functions now and testing the waters now
with this for incorporating POSIX functions.
 Jens: There are a lot of things in POSIX that are in use and are efficient so we should
look into it.
 Derek: Are we going to require hosted and non-hosted systems to support it.
 Martin S: No, right now just for hosted.
 Philipp: Jens asked for the size argument first.
 Jens: If it was a new interface then it should be, but since this is existing in
implementations, I am fine with it.
 Aaron: Do we know how many CV’s are out against this function?
 Martin S: It is a pretty obscure function, but I haven’t seen any. It is still useful.
 Aaron: If there were security issues, I would like to deviate, but if not, it’s fine.
 Fred: Do we want to put in Recommended Practice to have people use this over
memcpy/strcpy.
 David K: It is better than strcpy since it is more secure with the addition of the
length.

 *Straw poll: Do we want to put N2349 into C2X?
 lots/0/1 (In favor, Opposed, Abstain)
 Result: Goes into C2X.

6.32 Sebor, Defining new types in offsetof [N 2350]
 Martin S: I would have preferred an optional diagnostic but C has no way of doing
that right now, hence this proposal. The precedent would be C++.
 Aaron: Conditionally supported with implementation defined semantics is how C++
supports it.
 Martin S: I saw this as ill-formed but no diagnostic required.
 Martin U: It would be better if we could solve these problems in the preprocessor or
something else.
 Martin S: I think that is fine, but no proposal for that.
 Jens: I am in favor of doing something here. This is implicit undefined to explicit
undefined is good. Another way would be to have offsetof being a real construct other
than a macro,.
 Alex: If the struct came after the member name would have eliminated this problem.
 *Straw poll: Should N2350 be put into C2X?
 (14/0/1)
 Consensus to put into C2X.

6.33 Sebor, Add strnlen to C2X [N 2351]
 Robert: One possibility is (since we have too many string functions according to
some) to promote some functions from Annex K into the non-optional parts of the
standard?
 Martin S: I don’t have a problem with promoting some functions in some form.
Overall as an idea, reviewing a subset of Annex K and bring it in would be doable.
 Jens: FYI, the _s function doesn’t use a constraint handler so that is good.
 Robert: Perhaps redefine the original function instead to return 0?
 Aaron: Are you expecting to later add the wide char version since I don’t want to
forget and have an inconsistent state.
 Martin S: As before I specifically chose to focus on the narrow character set. It is
worth considering. I want to know if we want more functions along these lines like the
wide character ones.
 Aaron: I would vote for it if we had both wide and narrow. Otherwise no.
 Philipp: There are some operating systems (Windows) that have the wide character
definition to something useless. I wouldn’t want to just throw in the wide char
functions in by default.
 Aaron: The wide char functions are used widely on Windows since the narrow
functions have different code pages.

 Clive: The description of the return doesn’t make it clear the function will return
maxlen if s is NULL.
 Martin S: The wording is from POSIX and doesn’t explicitly say anything about
NULL.
 Philipp: This is the way the whole section is.
 Fred: Is the word bytes supposed to be changed to characters?
 Martin S: Yes.
 Clive: Each function in Annex K starts with the statement that the parameter is not
NULL.
 Martin S: I would strongly not want to have one string function with something
about NULL as a parameter but not others.
 *Straw poll: Should N2351 be put into C2X?
 (11/6/6)
 Not clear consensus.
 Martin S: What else would people want to see be introduced into C2X in the future
from POSIX?
 Robert: Things from TR24731-2.
 Aaron: You probably have access to a large body of code so why not look to see
which ones are used often?

6.34 Sebor, Add stpcpy, and stpncpy to C2X [N 2352]
 Philipp: I don’t know if the zero filling is that useful. Also the memccpy is more
better/general. Also these functions are not in the reserved namespace.
 Martin S: There is little risk regarding the name. I don’t want to break the expected
symmetry.
 David K: I like the idea but they are almost but quite a good fit since stpcpy doesn’t
allow a length and stpncpy negates the length benefit by the performance hit of
zeroing.
 Martin S: I agree, I want to add these to aid in porting code to non-POSIX systems.
GCC looks at usage patterns and can transform code to more efficient stpcpy calls
from user code using strcpy.
 Philipp: Wouldn’t memccpy be sufficient?
 Martin S: It could happen, but it is not as nice to use.
 Robert: Perhaps come back with this again addressing David K’s comments and the
namespace issue.
 Martin S: I am not in favor of that. I don’t want to invent.
 David K: For compiler transformations, the functions don’t need to be in the user
namespace.
 Martin S: We can have a compiler runtime library, we don’t yet.
 Clive: I take it removing the undefined behavior if you pass NULL argument still
applies?

 Martin S: Yes.
 Aaron: Name reservation is not compelling to me since users don’t know that.
 Robert: Do compilers check this?
 Aaron: Not for these names but do for _X to avoid getting a ton of bug reports.
 Larry: strn* functions are useless in general use. I don’t want those. I would like the
wide character versions though.
 Jens: I would like stpcpy but not the n version.
 Martin S: I agree with Larry, strn* causes no end of problems for misuse. But I
would not be in favor of splitting these up.
 *Straw poll: Should N2352 be put into C2X?
 (2/9/11)
 No consensus.

6.35 Sebor, Add strdup and strndup to C2X [N 2353]
 Philipp: Could we take out the sentence that sneaks in strnlen?
 Martin S: Typo.
 Aaron: Is it possible to get a non-null string from this function?
 Martin S: It says it.
 David K: I will note that strdup is the most useful POSIX function I have used.
 Martin U: The issue with the size of the buffer in strndup was removed?
 Martin S: No, it was elsewhere. We can add it in as a footnote if we wanted.
 *Straw poll: Should N2353 be put into C2X?
 (15/1/5)
 Consensus to add it into C2X.
 *Straw poll: Does the committee want a proposal for the wide character versions of
any POSIX functions voted in this meeting?
 (12/2/7)
 Consensus.
 Fred: The POSIX standard says it copies in n + 1 characters.
 Clive: We do say we add in a null.

6.36 Sebor, Constraints on parameters to main [N 2354]
 Derek: There is nothing preventing compilers from emitting messages for anything.
 Martin S: Is it valid to call main with argc being -1. The standard is not clear. When
are these intended to apply?
 Larry: I think since they are in the program startup section it answers the question.
 Philipp: I agree the current wording is not clear, but the constraints should be only on
the program startup.
 Robert: If we don’t make the decision that here we can restrict the diagnostics that
can be emitted.

 Martin S: Yes, it is certainly possible a program can handle this or have an error. It
would be helpful to diagnose this.
 Aaron: Do we have a constraint that said argv can’t alias anything else?
 Martin S: No.
 Peter: The argument that diagnostics are useful is true if and only if the code that
calls main itself does it in a way that violates these constraints.
 Jens: How much code uses main this way?
 Martin S: A good question, I am not sure. An optimization was made for this.
 Peter: Among the large number of things that are not clear in the standard, this is
minor and should not be high on our agenda.
 Martin S: You are questioning my priority?
 Niall: We all have had the thought as a younger programmers to have main fix the
arguments and then call main again with the right arguments. Older programmers
realize they can call another function so we should just ban this.
 Robert: That could break more code.
 Martin S: That would be a loud breakage instead of silent breakage.
 Melanie: The defect report said we don’t want to see anything more on this so why
are we?
 Martin S: This is different, it’s about the constraints.
 *Straw poll: Do we want to put N2354 into C2X?
 (5/11/6)
 No consensus.
 *Straw poll: Does the committee want to ban calling main recursively for hosted
implementations?
 (12/8/1)
 No consensus.
 *Straw poll: Is it intended that the constraints in 5.1.2.1.1#2 apply only on the initial
call to main?
 (14/2/6)
 Consensus that the constrains only apply the first time.

Friday morning

6.37 McKenney, Pointer lifetime-end zap [N 2369]
 Derek: On storage limited systems you may want to reuse the storage used by the
pointer.
 Melanie: On slide 5 you said load, did you mean the pointed to object?
 Peter: No, loading the pointer.
 Martin S: It is not just this, could be diagnosing things like members in compound
literals that are used when it’s lifetime ends. These opportunities are useful and would
not work if the pointer could keep its value.

 Martin S: Why is option 4 impractical to find all the end of lifetime code? It could be
done with better static analysis or compilers.
 Paul: Progress in this area is slow. It is a hard problem.
 Derek: The issue is what to do after you find them.
 Derek: Currently for the example in Paul’s slide just works?
 Paul: Yes, right now it just works since compilers don’t stop it from happening.
 Martin S: What would be the code change needed to make this code not rely on
undefined behavior?
 Paul: You could have locks.
 Martin S: If you operated on types other than pointers then it would be performant.
 Paul: Yes, but then you lose type checking.
 Martin U: Jens solution (changing the code example to have two compare and
exchange weak’s) has the issue that it requires the representation bytes to stay the
same.
 Martin S: Using integers would work too.
 Niall: intptr_t could not always be considered to be round trip valid.
 Philipp: No, the C standard requires the round trip.
 Roberto: The pointer could be invalid so what happens with the round trip?
 Martin S: For specialized algorithms like this, they could be better done in a library.
 Roberto: Is it possible to say there are people in this group that could rewrite this
example in a standards compliant manner with the same performance?
 Paul: Both Jens (don’t agree with the performance equivalence) and Martin S’s (loss
of diagnostics, but performant) would be problems.
 Derek: This is asking for changes that could break optimizations for benefits to a
niche market. Not worth it.
 David K: There are lock free programming algorithms that have a clear expression
but it would unfortunate to have to clutter the code with things like casts to pointer.
 Peter: There were many people who worked hard to get this (atomics) in the
standards for exactly this reason.
 Martin S: The drawback is the inability to detect many cases of end of lifetime of
pointers. Going the other way is preventing optimizers from doing optimizations.
Perhaps look at one of the other options. Ex. Annotating the code before the free call.
 Peter: For option 2 I totally agree with you.
 Niall: I am in favor option 2. Any time a compiler can see end of lifetime, it should
do anything other than zap the end of lifetime. It would be a good thing if this
algorithm would not compile and would really strongly advocate this for any
ambiguity.
 David K: I would be opposed to that since we are trying to modernize C for multi-
core systems. Even if it means giving up diagnostics.

 Martin U: Ambiguity is very hard to detect since the problem could happen much
later. Ex. Setting a pointer to NULL at the end of the lifetime then much later at a
point the compiler could not see it has the failure.
 Paul: The advantage of static analyzers is that they have more resource and time to
do things than compilers can.
 Aaron: It is hard to express what is allocated since it could be hidden to the compiler.
Ex. Hidden malloc/free like the Linux sbreak.
 Jens: I still agree with option 1 (Derek: Ditto). I also disagree with atomic compare
and exchange vs the atomic load being much worse. There is more areas of throttling
and other things.
 Roberto: I think the idea in the standard that a pointer only makes sense in reference
to a storage instance is deeply rooted in the standard. This is why pointer end of
lifetime zap make sense. Going via integers makes it explicit that you are looking for
the pointer address not the object.
 Paul: I disagree this is a good thing for changing existing code.
 Aaron: There are cases where malloc(0) returns a non-null pointer and has no
allocated storage and it is considered useful.
 *Straw poll: Which possible resolution does the committee want among the ones
proposed in N2369?
 1: 13
 2: 11
 3: 13
 4: 8
 5: 0
 Paul: I need to come back to prove 2 or 3 is better than the other options.

6.38 Krause, No internal state for mblen [N 2358]
 Martin U: If it resets the internal state and it is shared, it would break anyone that did
share the state.
 Jens: Current standard wording does each function has its own state. Not that it is
shared.
 Clive: Is the intention to be more like C++?
 Philipp: My intention is to make mblen more usable for multithreaded functions.
 Aaron: Has anyone talked to C++?
 No one in the room has said this.
 Philipp: I have been in discussion with the Unicode study group and they like it.
 Aaron: I am good with it.
 *Straw poll: Do we want N2358 in C2X?
 (14/0/0)
 Consensus.

6.39 Uecker, Improved Rules for Tag Compatibility [N 2366]
 Revision of N2105.
 Jens: For the first change to make similar declarations of tagged structures in
different scopes compatible would still be different types, even if compatible.
 Second part: Allow redefinition in the same scope.
 Derek: Did you ever go further as per the reflector discussion with this as
templates?
 Martin U: No. If someone wants to, I am good with that.
 Martin S: Are there any cases where previous valid cases would become invalid?
 Martin U: Yes, some edge cases like _Generic would break if they relied on two
different structs being incompatible.
 Philipp: It could be used to prevent people from accidentally using the wrong struct.
 Martin U: No, they’d need to have the same tag.
 Philipp: It could still happen if they intended it to be a different type.
 Martin U: I consider that unlikely. For non-tagged ones I would like them to stay
incompatible.
 Derek: The requirement right now is to not require link time checking. Will we need
to have linkers to change now?
 Martin U: Don’t need to. This only adds potential for link time optimizations.
 Martin S: I would like to see an example of any problems being discussed.
 Martin U: All I’m looking for is do we want to do something like this or not.
 Jens: We have the same problem with enumeration types.
 Martin U: At least you would solve it for structs.
 Example on whiteboard:
 TU1: struct s;
 TU2: struct s { int x; }
 TU3: struct s {double x; }
 Derek: If they had a pointer in each declaration then that is interesting.
 Martin U: It has a problem since TU3 and TU2 would have different types and
referencing either member would be a problem.
 Rajan: Any change to tagless structs?
 Martin U: No, not yet.
 Niall: This is incompatible with C++ right now, but in the future you could add in a
concepts line later to make it compatible for cut’n’paste code. It also violates the one
definition rule. Half is feasible but half is not. It would make writing C easier.
 Aaron: The type compatibility makes sense, but the fact that you can’t copy and
paste in the same TU vs different TU’s is a different mental model.
 Niall: Is there room for them to not be completely identical? How do people feel
about that?

 Martin U: We have non-identical in things like arrays with a size and ones without to
generate compatible types. It may happen inside structs too I suppose.
 Niall: I just want to have a=b work.
 Martin U: Thinks I got from this: Is the incomplete types part necessary or not?
Questions about C++ compatibility.
 Niall: What this is is defaulted trivial copy constructors.
 Martin S: Any thoughts about prototyping this in GCC or another compiler?
 Martin U: If the committee wants to go forward I would try. I thought in the mailing
list someone said they would be willing to implement this in Clang.
 *Straw poll: Does the committee want to see a future paper along the lines of
N2366?
 (10/0/9)
 Consensus: We want to see more papers like N2366.

7. Clarification Requests

One half hour out of each afternoon (to allow for homework)

7.1 Discussion on the Clarification Request Process
 Blaine: I don’t think given where we are in the process to have a formalized
clarification request document given the corrigenda rules. We have a process so
people can write a paper. We also now have editor guidelines and can write in LaTeX
directly. We don’t need or want CR’s. The CFP docs likely have no extra value other
than a consolidated list.
 Martin: I feel we have a process we are familiar with and works for smaller things.
For corrections, this process works pretty well.
 Blaine: My view is we have a process: Propose it for C2X.
 David: We have drained the pipeline enough that the ones left have people writing
papers anyways. After C2X goes out we can do this process again.
 Martin: I don’t think this is the case. Mistakes creep in, and this works for smaller
things.
 Jens: For the editors, it was not meant to replace the defect report. It was meant for
things like the C FP TS integration. I see three things: Things needing tight linking
with the editors for new features for example; questions about clarification; editorial
problems with the standard. We do need the defect reports for the second bucket.
 Blaine: The function of the existing process is to keep track of nits. We kept track of
small things. We also had things where we changed our minds. The people who came
up with the defect need to push it through the regular process.
 Robert S: If we have a radical change to the process, we should manage this as a
software development process to track things.
 Jens: The Austin group does that.

 Aaron: DR is helpful since it says the standard always meant to say this vs a new
feature where it is a new language standard mode. It is also useful for our users.
 Blaine: The compendium is a place where we could record why we did something or
didn’t do something.
 Rajan: The process we normally use does seem to work for what used to be DR’s.
 Aaron: Does the author or originator have to be present?
 Blaine: No, we have done it in the past where someone else read it. Having a
template for Clarification Requests could be flowing through the process normally
and not get lost or need champions.
 Blaine: I don’t really want to have to deal with getting every comma and thing right
in the technical corrigenda.
 Aaron: Is there some automated way to find out if something is a clarification
request?
 Blaine: I want to change the process so the defect log will now be clarification
requests that come in normally as N papers, but don’t need champions. It may come to
be a change is needed to the standard, but that will need a new paper with proposed
changes to the standard.
 Blaine: David used to maintain various standing documents. These clarification
requests are basically standing documents that only get appended to.
 David: Since C# documents don’t change and have version numbers we can use this.
 Aaron: Since we reserved C0 as the working draft, can we reserve C1 as the
clarification reports.
7.2 IS 9899:2011/9899:2018 Clarification Requests [N 2316]
 Blaine: We intend to continue this a document for tracking clarification requests.
Fred’s format (has the most DR’s) is perfect for Clarification requests too. State there
may be a problem, give an example, propose a fix. I don’t like the general tweaks to
words and 6 months to review and then future tweaks, etc. We should just take what’s
there from the author.
 Blaine: This document could track the draft document # of the C standard. Ex.
DR476.
 Jens: This was probably integrated into the post Pittsburgh draft. All DR’s are
integrated now.
 *AI: Blaine: Ensure all DR’s marked C2X are in the latest working draft (N2346).

 DR501: Making DECIMAL_DIG obsolescent
 *Move DR501 to C2X.
 DR496: offsetof questions
 N2350 is the proposal with the wording that expresses the intent.
 Martin S: C doesn’t have conditional diagnostics so I am not happy with this but I
will accept it.

 Blaine: I don’t like that this loses the structure member->subobject which deals
with recursion that is lost here in the new paper.
 Fred: We need both.
 Martin S: Yes, this adds to the N2316 text.
 Blaine: I say keep N2316 and deal with N2350 separately.
 David K: We should accept the wording in DR496, but if the editors find a better
way of saying it they can.
 *Move DR496 to C2X.

7.3 TS 18661 Clarification Requests [N 2317]
In addition to normal CR processing, the following items have new material to
consider.
 The C FP group will now maintain the CR tracking document for this TS after this
meeting.
 DR13: Move to C2X
 DR16: Move to C2X
 DR20-25: Move to C2X
 Jens: I would like the C FP group to give the changes to me.
 Blaine: I would like to see which draft has them folded in like the C2X CR log.
 Blaine: I will publish one more version of this and the C2X CR log at the end of this
meeting and then end them.

Thomas, P4 CR for rootn case differs from IEEE 754 [N 2309]
 Assigned to DR26.
 Clive: What happens to the n=0 case?
 Fred: It is already there in the other bullets in the document.
 *Straw poll: Should N2309 be put into TS 18661-4 and C2X?
 (10/0/9)
 Consensus to do this. C FP to give the words along with the Part 4a integration
words to the editors.
 Martin S: Why count abstentions?
 David K: It matters when determining consensus.

8. Other Business

8.1 Special math functions (ISO/IEC 24747)

 David K: This is the second 5-year review for this document. Typically we stabilize
standards at this point. One defect has come up. Similar to the C defect with the date
in the version macro. This document has 200808 without the suffix, with the footnote
saying it is supposed to be a long int. Originally the committee decided to leave it

since it is still usable.
 Martin S: It is nitpicky, this is not saying what it expands to, it is just the value of the
macro.
 David K: The normative text is fine, it is only the footnote that makes it wrong. I
prefer to leave it alone as the editor for this document.
 Fred: Do we need to change the reference to C99?
 *Straw poll: __STDC_MATH_SPEC_FUNCS__ macro is useful as is. Does the
committee want to keep it as is?
 (15/0/0)
 Consensus to keep it as is.

	

