
WG 14, N2365

Defining Undefined Behavior

David Svoboda
svoboda@cert.org
Date: 2019-03-22

The Problem

C17 defines many categories of undefined behavior (203 in this count). Many examples of

undefined behavior (UB) are assumed to be well-defined by programmers, typically because

their platform specifies the behavior. For example, signed integer overflow is undefined

behavior. However, on x86 platforms, and, in fact, most platforms that use twos-complement

arithmetic, signed integer overflow wraps; that is INT_MIN == INT_MAX + 1 == -INT_MIN.

Consequently, many programs rely on undefined behavior, and their developers only learn that

the behavior is undefined when porting their code to a new platform. This leaves developers in a

nasty position: a large body of code that works properly only on platforms that make the same

assumptions about certain undefined behaviors as the developers’ platform.

This is not a new problem, it was popularized in the eighties as vaxocentrism. Today one can

argue that Intel has replaced the VAX as a platform ubiquitous enough to fool many developers

into incorrect assumptions of undefined behavior.

Furthermore, compilers and their optimizers can change how programs with UB actually behave.

One of the first such instances, reported in 2008, was CERT Vul# 162289, where a compiler’s

optimizer silently removed bounds checks because they exhibited UB, even though without

optimization the bounds checks performed as expected.

Related Work

In document N2278, Yodaiken proposes that the definition of undefined behavior (in C17,

Section 3.4.3) be constrained to prevent optimizers from changing working code. While this

would plug many security holes, it would disable too many useful optimizations; a more fine-

grained solution is required. Yodaiken makes a similar proposal focusing on aliasing in

document N2279. This is a valid solution, but it addresses only one type of undefined

behavior…many others remain un-addressed.

Several technologies exist to provide implementations for specific undefined behaviors. For

example, GCC provides switches to guide the behavior of signed integer overflow.

The -ftrapv switch causes any signed overflow in the translation unit to trap, while

the -fwrapv switch causes signed overflow in the translation unit to wrap, assuming a twos-

complement implementation of integers.

https://wiki.sei.cmu.edu/confluence/display/c/CC.+Undefined+Behavior
http://catb.org/jargon/html/V/vaxocentrism.html
https://www.kb.cert.org/vuls/id/162289/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2278.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2279.pdf
http://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html

WG 14, N2365

Approach

We propose that ISO C should provide a standard framework for specifying common

implementations of specific UBs. We will provide three examples of UB below and then suggest

the general pattern and wording. Once this proposal is passed, we can add many more categories

of undefined behavior.

The purpose of the framework is twofold. For each UB it addresses, it should allow the

developer to explicitly state the expected behavior for one or more declarations. This informs

subsequent developers of the assumptions, and it forces compilers to respect the expected

behavior and not modify it during optimization. If the compiler cannot enforce the expected

behavior, it can issue an error and exit.

Each UB implementation will have a mechanism to turn it on and off. While on, the compiler

(assuming it supports the implementation) must not allow the optimizer to change the expected

behavior, and so the compiler will produce safe, though inefficient, object code. The compiler is

free to produce a fatal error diagnostic if it cannot support the expected behavior. When turned

off, the compiler is free to modify undefined behavior as it pleases. Turning off a specific UB

implementation might be done within a single translation unit to prevent optimization of one

function while enabling it for others. Compilers that do not support per-function tweaking of

such optimizations may issue a fatal diagnostic if the program tries to turn off a UB

implementation in a translation unit.

We have debated whether to use macros, pragmas, or attributes to support our framework.

Macros are easy to use, and developers can use the macros to ascertain the platform’s

capabilities. However, they are typically not visible to compilers. Pragmas are intended to be fed

directly to compilers. There are a few standard pragmas, and we could define more. However,

pragmas that are not recognized by a compiler are silently ignored (C17 s6.10.6p1). This means

that a noncompliant compiler will fail to inform a developer if it does not support some particular

implementation of a UB, and we would prefer such a platform to fail to compile code unless it is

aware that it supports the required implementation. Attributes are not in C17, but are being

proposed by N2269. They are used to apply to variables, functions, and declarations, whereas our

framework is intended to apply to translation units, and, when supported, individual declarations.

We will therefore provide an API using macros, but the macros will use pragmas to

communicate with the compiler.

For most undefined behaviors, we will provide one or more implementations that constrain the

compiler to verify that that implementation is supported, and furthermore the compiler will

respect that implementation. For each undefined behavior, we can also provide a default

implementation that imposes no restrictions (e.g., the compiler need acknowledge no support and

is free to optimize the UB as it pleases). For each UB, only one implementation (or the default)

can be in effect at any time; setting one macro causes the others to be overridden. The ‘default’

behavior will be indicated by macros and pragmas that end with the word STRICT.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2269.pdf

WG 14, N2365

Example 1: Signed Integer Overflow

The most common behaviors for handling signed integer overflow are wrapping and trapping, as

supported by many modern platforms, including x86, and as enforced by GCC’s -fwrap and -

ftrap options. We will support both of these, first by the macros

 #define __STDC_UB_SIGNED_OVERFLOW_WRAP \

 #pragma STDC UB SIGNED_OVERFLOW WRAP

A platform that does not support signed integer wrapping can define it thusly:

 #define __STDC_UB_SIGNED_OVERFLOW_WRAP \

 #error "Signed Integer Wrapping not supported"

Likewise, platforms that do not support wrapping on individual functions (as opposed to the

entire translation unit) can signal an error if the STDC UB SIGNED_OVERFLOW WRAP

pragma appears after any function definitions.

Trapping can be supported by the following macro which supports a similar pragma:

 #define __STDC_UB_SIGNED_OVERFLOW_TRAP \

 #pragma STDC UB SIGNED_OVERFLOW TRAP

The optimizer could be constrained to not optimize code using the following macro:

 #define __STDC_UB_SIGNED_OVERFLOW_PERMISSIVE \

 #pragma STDC UB SIGNED_OVERFLOW PERMISSIVE

Finally, the optimizer may be granted full license to optimize signed integer overflow with the

following macro and similar pragma:

 #define __STDC_UB_SIGNED_OVERFLOW_STRICT \

 #pragma STDC UB SIGNED_OVERFLOW STRICT

GCC currently supports wrapping and trapping for translation units only, so their pragmas would

have to precede all function definitions, and the pragmas which implement the -ftrapv, -fwrapv,

and -fstrict-overflow functionality. They can choose to implement per-declaration wrapping and

trapping.

Example 2: Strict Aliasing

Strict aliasing is mandated by ISO C, and can trip up many unwary programmers. Several

compilers allow programmers to relax strict aliasing, permitting programs to violate it without

https://www.google.com/search?q=ios+clear+browser+cache&oq=ios+clear+brow&aqs=chrome.0.0j69i57j0l4.2351j0j7&sourceid=chrome&ie=UTF

WG 14, N2365

having their behavior changed by the optimizer. For example, GCC provides the -fno-strict-

aliasing switch. The following macro and pragma can disable strict aliasing:

 #define __STDC_UB_ALIASING_PERMISSIVE \

 #pragma STDC UB ALIASING PERMISSIVE

To enable strict aliasing, and therefore have faster code, use:

 #define __STDC_UB_ALIASING_STRICT \

 #pragma STDC UB ALIASING STRICT

Example 3: Dereferencing Null

In ISO C, dereferencing a null pointer is undefined behavior. A common convention among

platforms is that memory location 0 is unreadable, and so dereferencing null will immediately

trap. However this is not universal, and under some special circumstances a null dereference has

been optimized away leading to a vulnerability documented by Dan Goodin in 2009.

A program that wishes to enforce that dereferencing null always traps can use the following

macro:

 #define __STDC_UB_NULL_DEREFERENCE_TRAP \

 #pragma STDC UB NULL_DEREFERENCE TRAP

A program that wishes null dereferences to not be optimized away (regardless of what they

actually do), can use the following macro. This is analogous to GCC’s -fno-delete-null-pointer-

checks switch:

 #define __STDC_UB_NULL_DEREFERENCE_PERMISSIVE \

 #pragma STDC UB NULL_DEREFERENCE PERMISSIVE

A program that wishes to allow the compiler to optimize any null dereferences can use the

following macro. This is analogous to GCC’s -fdelete-null-pointer-checks switch:

 #define __STDC_UB_NULL_DEREFERENCE_STRICT \

 #pragma STDC UB NULL_DEREFERENCE STRICT

Some Extra Features

There are some useful extra features to add to our set. In particular, we wish the compiler to

support a stack of changes that we make to undefined behavior implementations. Both MS

Visual C++ and GCC support stacks in some of their platform-specific pragmas. This allows us

to tweak the requirements, but reset them back to known values.

 #pragma STDC UB PUSH

http://www.theregister.co.uk/2009/07/17/linux_kernel_exploit/
https://docs.microsoft.com/en-us/cpp/preprocessor/pack?view=vs-2017
https://docs.microsoft.com/en-us/cpp/preprocessor/pack?view=vs-2017
https://gcc.gnu.org/onlinedocs/gcc/Diagnostic-Pragmas.html

WG 14, N2365

The above pragma pushes any specific UB settings onto the UB stack.

 #pragma STDC UB POP

This pops any specific UB settings from the UB stack. If any UB settings were changed since the

last PUSH, they are reset to previous values. If the stack is empty, then the UB settings are reset

to whatever values were provided by default from the compiler. (The compiler may provide

command-line options to tweak the settings.)

Proposed Wording Changes

Add behavior.h to the list of standard headers in p7.1.2p2.

Create a new section 7.31, to precede the current section 7.31 “Future library Directions”. The

text of the new section would be as follows:

7.31 Implementations of Undefined Behavior

1. The header <behavior.h> defines several macros that suggest platform-specific

definitions of behavior that are explicitly undefined in this standard. When supported,

each macro expands to a pragma, which indicates a precise behavior that the program

assumes is supported by the platform and translator. If a macro’s corresponding pragma

is not supported on a platform, the macro instead expands to an #error directive.

2. The translator also supports the following two pragmas.

 #pragma STDC UB PUSH

This causes any current UB pragmas to be saved, so that they may be later restored.

 #pragma STDC UB POP

This restores any specific UB settings that were previously saved by a UB PUSH pragma. If any

UB settings were changed since the last PUSH, they are reset to previous values. If the stack is

empty, then the UB settings are reset to whatever values were provided by default from the

translator.

7.31.1 Signed Integer Overflow

1. These pragmas can be used to enforce specific behaviors when a computation involving

signed integers results in overflow (that is, the mathematical result could not be

represented in the appropriate signed integer type).

2. The pragma:

 #pragma STDC UB SIGNED_OVERFLOW WRAP

WG 14, N2365

constrains the translator to assume that signed integer overflow always produces wrapping. That

is, if a mathematical result is not representable in the appropriate signed integer type, then it can

be converted by repeatedly adding or subtracting 2 raised to one plus the number of precision

bits until the result is representable in the given type.

3. The macro

 __STDC_UB_SIGNED_OVERFLOW_WRAP

either expands to the corresponding pragma or expands to an #error directive.

4. The pragma:

 #pragma STDC UB SIGNED_OVERFLOW TRAP

constrains the translator to assume that signed integer overflow always traps.

5. The macro

 __STDC_UB_SIGNED_OVERFLOW_TRAP

either expands to the corresponding pragma or expands to an #error directive.

6. The pragma:

 #pragma STDC UB SIGNED_OVERFLOW PERMISSIVE

constrains the translator to assume the platform has defined the behavior regarding integer

overflow, and, while unspecified, the program depends on this behavior.

7. The macro

 __STDC_UB_SIGNED_OVERFLOW_PERMISSIVE

expands to the corresponding pragma.

8. The pragma:

 #pragma STDC UB SIGNED_OVERFLOW STRICT

relaxes any constraints the translator currently has regarding signed integer overflow. That is, the

program makes no assumptions about what happens if signed integer overflow occurs.

9. The macro

WG 14, N2365

 __STDC_UB_SIGNED_OVERFLOW_STRICT

expands to the corresponding pragma.

7.31.2 Strict Aliasing

1. These pragmas can be used to enforce specific behaviors when data is accessed via a

pointer of an incompatible type, as is explicitly forbidden by Section 6.5, paragraph 7.

2. The pragma:

 #pragma STDC UB ALIASING PERMISSIVE

constrains the translator to assume the platform has defined the behavior regarding accessing

data through incompatible types, and, while unspecified, the program depends on this behavior.

3. The macro

 __STDC_UB_ALIASING_PERMISSIVE

either expands to the corresponding pragma or expands to an #error directive.

4. The pragma:

 #pragma STDC UB ALIASING STRICT

relaxes any constraints the translator currently has regarding access to data from incompatible

pointer types. That is, the program makes no assumptions about what happens if data is read or

written via an incompatible pointer type.

5. The macro

 __STDC_UB_ALIASING_STRICT

expands to the corresponding pragma.

7.31.3 Dereferencing Null

1. These pragmas can be used to enforce specific behaviors when a null pointer is

dereferenced* This is undefined behavior, specified by footnote 106, in Section 6.5.3.2,

paragraph 4.

 *Footnote: This can is done by applying the *, ->, or array subscript operator ([]) to a null

pointer.

WG 14, N2365

2. The pragma:

 #pragma STDC UB NULL_DEREFERENCE TRAP

constrains the translator to assume that the program should trap if a null pointer is dereferenced.

3. The macro

 __STDC_UB_NULL_DEREFERENCE_TRAP

either expands to the corresponding pragma or expands to an #error directive..

4. The pragma:

 #pragma STDC UB NULL_DEREFERENCE PERMISSIVE

constrains the translator to assume the platform has defined the behavior regarding null pointer

dereferencing, and, while unspecified, the program depends on this behavior.

5. The macro

 __STDC_UB_NULL_DEREFERENCE_PERMISSIVE

either expands to the corresponding pragma or expands to an #error directive.

6. The pragma:

 #pragma STDC UB NULL_DEREFERENCE STRICT

relaxes any constraints the translator currently has regarding null pointer dereferences. That is,

the program makes no assumptions about what happens if a null pointer is dereferenced.

7. The macro

 __STDC_UB_ NULL_DEREFERENCE _STRICT

expands to the corresponding pragma.

Acknowledgements

This proposal was suggested by Dr. Will Klieber.

	The Problem
	Related Work
	Approach
	Example 1: Signed Integer Overflow
	Example 2: Strict Aliasing
	Example 3: Dereferencing Null
	Some Extra Features

	Proposed Wording Changes
	Acknowledgements

