Proposal for C2x WG14 N2355

Title:TS 18661-4 mathematical functionsAuthor, affiliation:C FP groupDate:2019-03-06Proposal category:New featuresTarget audience:Science, engineering, finance, mathematics

Abstract: This proposal incorporates the ISO/IEC TS 18661-4 mathematical functions for <math.h> and <tgmath.h> into C2x. These functions complete the C support for the mathematical operations recommended in the IEC 60559:2008 floating-point standard, updated in IEEE 754-2019. This proposal does not include the reduction functions in TS 18661-4.

In IEC 60559 mathematical operations are recommended, rather than required, because the floating-point standard allows for small specialized implementations that don't necessarily implement a language standard. See the IEEE 754 committee's background document

http://754r.ucbtest.org/background/conformance-and-options.txt

IEC 60559 specifies the mathematical operations to be correctly rounded. TS 18661-4 does not require correct rounding, but does reserve names (with cr prefix) for correctly rounded versions.

As shown in the table below, C already supports 22 of the 39 IEC 60559 mathematical operations. The remaining ones are proposed here.

These complete the set of exponential and logarithmic functions already in C, for bases e, 2, and 10:

exp2m1	exp10	exp10m1
logp1 (= log1p)	log2p1	log10p1

These are variations on the C pow function, that allow for better performance in common applications (see the 754 committee's background document http://754r.ucbtest.org/background/power.txt):

rsqrt	an alternative to 1/sqrt, allowing better performance and a single
	rounding error -– a common primitive in graphics
compound	basic function for finance and growth/decay applications, more
	accurate than (1+x)^n
rootn	primitive n'th root
pown	power function for integer exponents
powr	models continuous power function

These are pi (half revolution) trig functions, which avoid roundoff error at multiples of pi and which allow faster argument reduction:

-		•	
sinpi	cospi	tanpi	
asinpi	acospi	atanpi	atan2pi

IEC 60559 math operation	Current C function	Proposed C function
exp	exp	•
expm1	expm1	
exp2	exp2	
exp2m1		exp2m1
exp10		exp10
exp10m1		exp10m1
log	log	
log2	log2	
log10	log10	
logp1	log1p	logp1
log2p1		log2p1
log10p1		log10p1
hypot	hypot	
rSqrt		rsqrt
compound		compoundn
rootn		rootn
pown		pown
pow	pow	
powr		powr
sin	sin	
cos	cos	
tan	tan	
sinPi		sinpi
cosPi		cospi
tanPi		tanpi
asinPi		asinpi
acosPi		acospi
atanPi		atanpi
atan2Pi		atan2pi
asin	asin	
acos	acos	
atan	atan	
atan2	atan2	
sinh	sinh	
cosh	cosh	
tanh	tanh	
asinh	asinh	
acosh	acosh	
atanh	atanh	

Prior art: Implementations include:

HP: exp10, rsqrt, compound

GCC, Microsoft: exp10

Intel: exp10, expm1, log1p, powr, pow, acospi, asinpi, acospi, cospi, sinpi, tanpi, atan2pi, compound

Microsoft, Khronos: trig functions based on units of pi

Microsoft: rsqrt

Sun Solaris: all the *pi and {log,exp}*{2,10}* functions