
Proposal for C2x

WG14 N2333

Title: Querying attribute support

Author, affiliation: Aaron Ballman, GrammaTech

Date: 2019-01-22

Proposal category: New features

Target audience: General developers, compiler/tooling developers

Abstract: Users with cross-platform code bases need the ability to interrogate a given implementation

to determine whether an attribute is supported or not. This provides a preprocessor mechanism to

perform that interrogation.

Prior art: C++ standardized this feature in C++2a, spelled __has_cpp_attribute. Clang is shipping this

feature under the proposed spelling.

Querying attribute support
Reply-to: Aaron Ballman (aaron@aaronballman.com)
Document No: N2333
Date: 2019-01-22

Summary of Changes

N2333

• Original proposal.

Introduction
To keep code portable, especially for library code which may be consumed by implementations

unknown or unavailable to the author of the code, users need the ability to interrogate a compiler to

determine whether an attribute [N2269] is supported or not. The proposed __has_c_attribute

function-like macro provides users with a way to query whether an implementation supports a given

attribute.

Rationale
The list of supported attributes changes with each revision of the C Standard and implementations are

allowed to provide their own attributes. Users writing portable code may wish to guard against quality

implementations diagnosing use of unknown or unsupported attributes while still preserving the

functionality provided by the attribute where possible. Additionally, some implementations may provide

a non-attribute fallback for the desired functionality, possibly allowing a user’s code base to degrade

more gracefully in the absence of support for an attribute.

Proposal
C++ uses the __has_cpp_attribute function-like macro to interrogate an implementation’s support

for an attribute [P0941R2], and this document proposes adding the __has_c_attribute function-like

macro for the same purposes. Separate macros are useful to allow independent queries for both C and

C++ code, as an attribute may be supported in only one of the two languages for a given

implementation.

This function-like macro is intended to be used in conjunction with other user-defined macros exposing

the attribute, as in the following example.

/* Fallback for compilers not yet implementing this feature. */

#ifndef __has_c_attribute

#define __has_c_attribute(x) 0

#endif /* __has_c_attribute */

#if __has_c_attribute(fallthrough)

/* Attribute is available, use it. */

#define FALLTHROUGH [[fallthrough]]

#else

/* Fallback implementation. */

#define FALLTHROUGH

#endif

This feature-test macro can be used with either a standards-based attribute or with a vendor-supplied

attribute. The result of the macro expansion will be 0 if the attribute is unknown or unsupported, and

will return nonzero if the attribute is supported for that build configuration. Standards-based attributes

will return the latest date of modification to the standard for that attribute (e.g., 201811L if an attribute

was voted into the standard in Nov 2018) in order to allow more fine-grained feature testing capabilities

should an attribute evolve over time. For example, imagining a hypothetical situation in which the

deprecated attribute was standardized as not taking a string argument until Nov 2018:

#if __has_c_attribute(deprecated) >= 201811L

#define DEPRECATED(MSG) [[deprecated(MSG)]]

#elif __has_c_attribute(deprecated)

#define DEPRECATED(MSG) [[deprecated]]

#else

/* Fallback implementation; perhaps use an alternative impl. */

#define DEPRECATED(MSG)

#endif

C++ lists attribute feature test macro values alongside a list of other, non-attribute feature testing

macros. Given that C does not have a similar list serving the same purpose, this document proposes

adding the feature testing macro value for standards-based attributes as a normative paragraph

attached to each attribute.

C++ based the behavior of __has_cpp_attribute on the defined preprocessor token, where it is

only available for use within a conditional inclusion expression. This proposal is consistent with the C++

treatment and does not propose adding this as a predefined macro available outside of the

preprocessor.

Proposed Wording
The wording proposed is a diff from ISO/IEC 9899-2018. Green text is new text, while red text is deleted

text.

Modify 6.10.1p1, splitting it into two paragraphs:

1 The expression that controls conditional inclusion shall be an integer constant expression except that:

identifiers (including those lexically identical to keywords) are interpreted as described below.;167) and

it

2 The conditional inclusion expression may contain unary operator expressions of the form

defined identifier

or

defined (identifier)

which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is predefined or if it

has been the subject of a #define preprocessing directive without an intervening #undef directive

with the same subject identifier), 0 if it is not.

Add a third paragraph after the new 2nd paragraph from above:

3 The conditional inclusion expression may contain unary operator expressions of the form

__has_c_attribute (pp-tokens)

which are replaced by a nonzero pp-number matching the form of an integer-constant if the

implementation supports an attribute with the name specified by interpreting the pp-tokens as an

attribute-token, and by 0 otherwise. The pp-tokens shall match the form of an attribute-token.

Add new paragraphs after 6.10.1p6:

8 EXAMPLE

/* Fallback for compilers not yet implementing this feature. */

#ifndef __has_c_attribute

#define __has_c_attribute(x) 0

#endif /* __has_c_attribute */

#if __has_c_attribute(fallthrough)

/* Standard attribute is available, use it. */

#define FALLTHROUGH [[fallthrough]]

#elif __has_c_attribute(vendor::fallthrough)

/* Vendor attribute is available, use it. */

#define FALLTHROUGH [[vendor::fallthrough]]

#else

/* Fallback implementation. */

#define FALLTHROUGH

#endif

Add a new paragraph after 6.7.11.1p3, to be applied only if the deprecated attribute is adopted. The

editors are expected to replace the given value with the appropriate date of adoption for the attribute:

4 The __has_c_attribute conditional inclusion expression (6.10.1) shall return the value 201811L

when given deprecated as the pp-tokens operand.

Add a new paragraph after 6.7.11.2p1, to be applied only if the fallthrough attribute is adopted. The

editors are expected to replace the given value with the appropriate date of adoption for the attribute:

2 The __has_c_attribute conditional inclusion expression (6.10.1) shall return the value 201811L

when given fallthrough as the pp-tokens operand.

Add a new paragraph after 6.7.11.3p2, to be applied only if the maybe_unused attribute is adopted.

The editors are expected to replace the given value with the appropriate date of adoption for the

attribute:

3 The __has_c_attribute conditional inclusion expression (6.10.1) shall return the value 201811L

when given maybe_unused as the pp-tokens operand.

Add a new paragraph after 6.7.11.4p1, to be applied only if the nodiscard attribute is adopted. The

editors are expected to replace the given value with the appropriate date of adoption for the attribute:

2 The __has_c_attribute conditional inclusion expression (6.10.1) shall return the value 201811L

when given nodiscard as the pp-tokens operand.

References
[P0941R2]

Integrating feature-test macros into the C++WD (rev. 2). Ville Voutilainen, Jonathan Wakely.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0941r2.html

[N2269]

Attributes in C. Aaron Ballman. http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2269.pdf

