
ISO/IEC JTC 1/SC 22/WG14

December 8, 2018

N 2329

v 1
Clean up atomics
proposal for integration to C2x

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

Whereas its intent is clear, the text in the C standard that concerns atomics has several consistency problems.

There are contradictions and the standard vocabulary is not always applied correctly. This paper attempts
to solve these consistency problems, and to provide a path to a straighter and easier to use and to implement

specification.
Even though individually the identified flaws are simple to repair, all together they form a relatively large

batch of changes (spelled out in an appendix).

—
This is a follow-up of N1955 that resulted from many discussions on the WG14 reflector or elsewhere. In

particular, it integrates suggestions by Robert Seacord, Richard Smith, Aaron Ballman, and probably many

more.

1. PROBLEM DESCRIPTION

C17 has still a lot of problems concerning atomic types and synchronization. In the following
sections, I list all the oddities that each by itself seem simple to repair.
All of this is not meant at all to be substituted for the discussions about atomics that we
had on the reflector, in particular with respect to C++. The changes that would result from
these discussions are orthogonal to what is proposed here.

1.1. Memory order of operators

The following sections on arithmetic operators, all specify that if they are applied to an
atomic object as an operand of any arithmetic base type, the memory order sematic is
memory_order_seq_cst:

— 6.2.6.1 Loads and stores of objects with atomic types are done with memory_order_seq_cst
semantics.

— 6.5.2.4 (postfix ++ and --)
— 6.5.16.2 Compound assignment. No constraints formulated concerning traps for integer

types. In contrast to that, no floating exceptions for floating types are allowed. Also,
this defines atomic operations for all arithmetic operands, including some that don’t have
library calls (*=, /=, %=, <<=, >>=)

No such mention is made for

— 6.5.3.1 (prefix ++ and --), although it explicitly states that these operators are defined to
be equivalent to += 1 and -= 1, respectively.

— 6.5.16.1 Simple assignment, although the paragraph about store says that such a store
should be memory_order_seq_cst.

1.2. Integer representations and erroneous operations

Concerning the generic library calls, they state in 7.17.7.5

For signed integer types, arithmetic is defined to use two’s complement represen-
tation with silent wrap-around on overflow; there are no undefined results.

and

For address types, the result may be an undefined address, but the operations
otherwise have no undefined behavior.

© 2018 Jens Gustedt. Distributed under a Creative Commons Attribution 4.0 International License

N2329:2 Jens Gustedt

— Can the sign representation depend on the operation that we apply to an object?
— Are these operations supposed to be consistent between operator and function notation?
— What is an address type?
— What is ”no undefined behavior”?
— How is the behavior then defined, when we are not told about it?

1.3. Operators versus generic functions

Then a Note (7.17.7.5 p 5) falsely states

The operation of the atomic fetch and modify generic functions are nearly equiv-
alent to the operation of the corresponding op= compound assignment operators.
The only differences are that the compound assignment operators are not guar-
anteed to operate atomically, ...

Although there are obviously also operators that act on atomic objects, 5.1.2.4 p 4 gives the
completely false impression that atomic operations would only be a matter of the C library:

The library defines a number of atomic operations (7.17) ...

1.4. Synchronizations by library calls and events are not properly identified

In addition to the more descriptive text which parts of the standard are implicated in
synchronization, there are also still conceptual errors left to address. In particular, the syn-
chronization properties of cleanup handlers (thread specific storage destructors and atexit
handlers) are not clearly written out. I think that what should be done is relatively clear
and I didn’t hear of misinterpretations which properties should be guaranteed, but I think
that some clarification is in order.

1.5. Pointer types are missing for atomic_fetch_OP

In the general introduction (7.17.1 p4) there is explicitly an extension of the notations to
atomic pointer types:

For atomic pointer types, M is ptrdiff_t.

Whereas the only section where this notation is relevant (7.17.7.5 atomic_fetch_OP) is
restricted to atomic integer types, but then later talks about the result of such operations
on address types.

1.6. Vocabulary

For the vocabulary, there is a mixture of the use of the verb combinations between load/s-
tore, read/write and fetch/assign. What is the difference? Is there any?
What is the “strength” of a memory_order argument?
What are “volatile as device register” semantics?

1.7. Recommended practices

We recommend to use the weak form of compare exchange whenever such an operation
must be done in a loop. But in our examples we use the strong version for that.

1.8. Initialization

The macro ATOMIC_VAR_INIT has already been declared obsolete in C17. But the text con-
cerning it can not be completely removed from C2x because it contains normative text that
is important for initialization of atomics.

Clean up atomics N2329:3

1.9. Integer types

If there are atomics at all, atomic versions are required to exist for integer types that
optional, namely [u]intptr_t.
There seems to be no reason to allow atomic integer types (such as atomic_int) to be differ-
ent from the direct types (such as _Atomic(int)). C17 only claims that their representation
and alignment must be the same, and the intent is that they should be exchangeable for
functions calls. How that would work for border cases (for users) if the types are not exactly
the same is a mystery to me.

1.10. Generic functions

The selection process for the active prototype of generic functions is not clearly specified.
In particular it is undefined (by omission) what happens if such a function is called and
there is no matching prototype. This can in particular happen for atomic_compare_exchange
functions that have two pointer arguments that must match to be a valid call.
Since such a situation is easily detectable at compile time, this should not be left undefined
but present a constraint violation.

1.11. Facility of using acquire-release consistency on all atomic operations

The default memory order for atomic operations is sequential consistency and therefore
the use of atomics with that consistency is straight forward: all arithmetic and bitwise
operations are available as compound assignments, and some of them are available as direct
generic function calls, without separated order argument.
Unfortunately this default consistency has some drawbacks on the user side.

— On many CPU architectures sequential consistency can be orders of magnitude more
expensive than acquire-release consistency.

— Other synchronization tools provided by the C library (e.g. mtx_t) only guarantee acquire-
release consistency, so when mixing atomics with mutex based locking, sequential consis-
tency only adds costs for no gain.

— Properties of parallel executions are mostly argued with acquire-release consistency be-
cause the “happend-before” relation provides a simple thread-local view of causality. The
global sequential event ordering that is provided by the default model is mostly unused
by programmers.

On the other hand using other consistency models is tedious: we have to use the lengthy
generic function forms for operations, if they exist, or we even have to manually synthesize
the other operations by mean of atomic_compare_exchange_weak.

1.12. Atomics and VM types

DR 495 raised the question if there have to be provision to evaluate or not a size expression
that is found as part of the operand of a _Atomic specifier. I found no indication that would
suggest that this should be treated differently from the general case:

— Such a declaration can appear in exactly the same scopes as VM types that don’t use the
_Atomic specifier.

— Unless they are themselves part of _Alignof or sizeof expressions these declarations
declare a type (either for a typedef or an object) for which the array size must be known
at the point of declaration.

On the other hand, I found the formulation after the patching for C17 a bit confusing, since
it is not clear with which priority the rules are applied, nor is it stated clearly that for the
general case such size expressions are indeed evaluated. So below I propose a patch that
clarifies this situation.

N2329:4 Jens Gustedt

1.13. Atomics and function parameters

In C17, it is not clear from the text how an array parameter with _Atomic in the [] is
rewritten. It says that it rewrites to the “unqualified” pointer type, but by the terminology
this does not include atomics. So what happens to _Atomic, here?

1.14. Conclusion

This is

contradictory. (the Note cited above is not normative, but still wrong),
confusing. (= is handled different from op=, operators are not mentioned where they
should),
weird. (the sign representation is described as the result of an operation, not as the value
representation of a data type; what is ”no undefined behavior” of a address operation?)
inconsistent. (operators may result in any sign representation ?, and can trap, generic
functions are safe)
incomplete. (the set of operators and generic functions are distinct)
obsolete. (ATOMIC_VAR_INIT)
tedious.

2. SUGGESTED CHANGES

The suggested changes are appended as diffmarks in the corresponding pages of the latest
working paper. Page numbers are only indications as they change by the simultaneous
prensence of the old and new text.
Changes can be categorized in

— editorial changes,
— non-normative changes and
— normative changes.

We will not discuss the editorial changes, here.
All these changes are not intended to change behavior of existing code or even ABI or C –
C++ compatibility. In the contrary, much work has been invested to keep things as they
are currently.
If there are normative changes these are extensions, such as by adding better synchroniza-
tion features, or extending the available user interfaces. Some effort has been made to make
these user interfaces consistent and thereby to ease programming with C’s atomic interface.

2.1. Non-normative changes

The changes that should not change normative aspects are summarized by the following.
Headlines are those of the log-entries in the git repository:

2.1.1. streamline env concepts w.r.t atomics. Correctly discuss all clauses that are relevant for
synchronization operations in the “data race” clause.

2.1.2. amend lang concepts for atomics

— Summarize the expected properties of implementations that support atomics.
— Summarize the general properties of atomic operations.
— Nail down what “no undefined behavior” probably means for people, that is that these

operations are interrupted (in a broad sense) under no circumstances.

2.1.3. amend lang expr for atomics. Add a general text to which operations are read-modify-
write operations, to env-concepts and remove the then superfluous text from the specific
operator definitions.

Clean up atomics N2329:5

2.1.4. amend <stdatomic.h>

— Extend the text about atomic generic functions to pointer types, and remove the now
redundant text about properties of operations.

— Correct the infamous “Note” to the real differences from the operator versions and add
examples that point out the differences.

2.1.5. remove atomic_int from an example. We should not encourage the use of the typedef
atomic integer types anymore but use the specifier version instead.

2.1.6. avoid the singular use of the terms ”process” and ”communication”. “Process” and “com-
munication” are the wrong terminology. Use “execution” and “synchronization”, instead.

2.1.7. there is no such thing like a ”regular type”. Apply the same terminology in the running
text for the atomic integer types than in the table.

2.1.8. a new note about the interplay between lock-free and signal. The clause for the lock-free
property was almost free of sense.

2.1.9. atomics and volatile qualification. The note explaining why most of the generic func-
tions have volatile qualifications was crude and dubious. Stick to the facts.
NB: The note with the change here is completely removed later by a normative change.

2.1.10. strength of ordering constraints. Explain what the “strength” relation between order-
ing constraints is.

2.1.11. recommend that atomic integer types are the same as the direct type. The whole concept
of atomic integer types is a left over from very early formulations of the concept, before the
introduction of the _Atomic specifier and the application to general data types. Discourage
the use of them and mark them as obsolete.

2.1.12. disambiguate the rules for evaluation of size expressions. Resolve DR 495 by clarifying
the rules when size expressions are evaluated or not.

2.1.13. add an example for the ambiguity between _Atomic specifier and qualifier.

2.2. Normative changes

2.2.1. add synchronization and sequencing of thrd_exit. In C17, the synchronization properties
of thrd_exit are only described indirectly and with some inventive terminology. This patch

— complements the synchronization requirements with respect to thrd_join, which were
only described, there;

— complements with a synchronization requirements towards the execution of atexit and
at_quick_exit handlers;

— uses the correct terminology to describe unordered execution of destructors.

2.2.2. complement the atomic generic functions with the other scalar operations. There are com-
pound assignment operations that have not been covered with atomic generic functions.
Therefore these operations have no easy way to be executed with other than sequential
consistency.

2.2.3. introduce modify and fetch generic functions. Compound assignment operations can only
be expressed with sequential consistency with exactly the same sematics as the operator
(return the result of the operation). Simply add all generic function interfaces that do the
operation first and return the result.

N2329:6 Jens Gustedt

2.2.4. widen the scope of the fetch and modify functions to all arithmetic types. There is no reason
that floating point types are excluded from generic functions. These might not be as efficient
as integer types, but are easy to synthesize (just as other types without hardware atomics).
Just do it.

2.2.5. force the prototype of a atomic generic functions. Write down the rules that lead to the
choice of a particular prototype of a generic function that is used in a call and enforce these
rules.

2.2.6. remove the volatile crap from atomic generic functions. These are generic functions any-
how, so there is no reason to impose volatile-qualified parameters. The way this was for-
mulated forced implementations to go through a volatile access, even though this might
not be necessary. Just relax.
(the diffmarks are not very good on this because these volatile are inside code.)

2.2.7. also remove volatile from the atomic_flag functions. Removal of volatile from these
family of functions is a bit more complicated because they are not yet specified as type
generic functions.
On the other hand, if simple unsigned char or int (or _Atomic versions thereof) have
sufficient properties to be used as atomic_flag it could be more efficient to avoid a volatile
access for the operations.
Therefore I propose to make them also type generic functions and leave it to the implemen-
tation if they want to have separate functions with and without volatile.

2.2.8. lift ambiguity of what has to be happening for _Atomic inside array paramenters. My inter-
pretation of the current state is that the lack of specification of atomic array parameters is
just an overlook. I propose to apply the correct terminology.

3. IMPACT

The proposed changes are such that they should have no immediate impact on user code.

— The set non-normative changes only clarify the specification, by collecting certain proper-
ties to more centralized locations, by adding obvious omissions and by removing erroneous
non-normative text.

— The normative changes are made such that the only changes imposed are to the implemen-
tations, not to users. But even for the implementations, these new interfaces are structured
exactly as the existing ones, and present no additional code complexity.

— The changes that remove volatile qualifications may simply be ignored by implemen-
tations. Implementations would be conforming without them. This is only meant to give
leeway to implementations to avoid volatile accesses where this is possible for them.

— The additions concerning synchronization should only formulate the obvious existing prac-
tice. E.g it should be clear that thread specific storage destructors are sequenced with
respect to the just finished thread code.

— To ease the transition to a new revision, I also propose a feature test macro that reflects
the C standard to which the atomics implementation adheres.

Appendix: diffmarks for the proposed changes

Following are those pages that contain diffmarks for the proposed changed against C2x.
The procedure is not perfect, in particular there may be changes inside code blocks that
are not visible.

ISO/IEC 9899:2017
::
2x (E)

:::
diff

::::::
marks — December 8, 2018 C2x CHANGES N2329

or

a = (a + (b + 32765));

since the values for a and b might have been, respectively, 4 and −8 or −17 and 12. However, on a machine in which
overflow silently generates some value and where positive and negative overflows cancel, the above expression statement
can be rewritten by the implementation in any of the above ways because the same result will occur.

16 EXAMPLE 7 The grouping of an expression does not completely determine its evaluation. In the following fragment

#include <stdio.h>
int sum;
char *p;
/* ... */
sum = sum * 10 - ’0’ + (*p++ = getchar());

the expression statement is grouped as if it were written as

sum = (((sum * 10) - ’0’) + ((*(p++)) = (getchar())));

but the actual increment of p can occur at any time between the previous sequence point and the next sequence point (the ;),
and the call to getchar can occur at any point prior to the need of its returned value.

Forward references: expressions (6.5), type qualifiers (6.7.3), statements (6.8), floating-point envi-
ronment <fenv.h> (7.6), the signal function (7.14), files (7.21.3).

5.1.2.4 Multi-threaded executions and data races
1 Under a hosted implementation, a program can have more than one thread of execution (or thread)

running concurrently. The execution of each thread proceeds as defined by the remainder of this
document. The execution of the entire program consists of an execution of all of its threads.14)

Under a freestanding implementation, it is implementation-defined whether a program can have
more than one thread of execution.

2 The value of an object visible to a thread T at a particular point is the initial value of the object, a
value stored in the object by T , or a value stored in the object by another thread, according to the
rules below.

3 NOTE 1 In some cases, there could instead be undefined behavior. Much of this section is motivated by the desire to support
atomic operations with explicit and detailed visibility constraints. However, it also implicitly supports a simpler view for
more restricted programs.

4 Two expression evaluations conflict if one of them modifies a memory location and the other one
reads or modifies the same memory location.

5 The library defines
:::::
There

:::
are

:
a number of (7.17) and

:::::::::
operations

:::::
that

::::
are

::::::::
specially

::::::::::
identified

::
as

:::::::::::::::
synchronization

:::::::::::
operations:

::
if
::::
the

:::::::::::::::
implementation

::::::::
supports

::::
the

::::::::
atomics

:::::::::
extension

:::::
these

::::
are

::::::::
operators

:::::
and

:::::::
generic

:::::::::
functions

::::
that

:::
act

:::
on

:::::::
atomic

:::::::
objects

::::
(6.5

::::
and

:::::
7.17);

::
if
::::

the
:::::::::::::::
implementation

::::::::
supports

:::
the

:::::::
thread

:::::::::
extension

:::::
these

:::
are

::::
calls

:::
to

::::::::::::
initialization

::::::::
functions

::::::::
(7.26.2), operations on mu-

texes (7.26.4) that are specially identified as synchronization operations.
:::::
7.26.3

::::
and

:::::::
7.26.4),

:::
and

:::::
calls

::
to

::::::
thread

:::::::::
functions

:::::::
(7.26.5).

:
These operations play a special role in making assignments

::::
side

::::::
effects

in one thread visible to another. A synchronization operation on one or more memory locations is either
an acquire operation, a release operation, both an acquire and release operation, or a consume operation.
A synchronization operation without an associated memory location is a fence and can be either an
acquire fence, a release fence, or both an acquire and release fence. In addition, there are relaxed
atomic operations, which are not synchronization operations

:::
but

::::
still

:::
are

::::::::::
indivisible, and atomic

read-modify-write operations, which have special characteristics.
:::
are

:::::
those

::::::::::
operations

:::::::
defined

:::
in

:::
6.5

:::
and

::::
7.17

::::
that

:::
act

:::
on

::
an

:::::::
atomic

:::::
object

:::
by

:::::::
reading

:::
its

::::::
value,

::
by

:::::::::::
performing

::
an

::::::::
optional

:::::::::
operation

:::::
with

:::
that

::::::
value

::::
and

::
by

:::::::
storing

:::::
back

:
a
::::::
value

::::
into

::::
that

::::::
object.

6 NOTE 2 For example, a call that acquires a mutex will perform an acquire operation on the locations composing the mutex.
Correspondingly, a call that releases the same mutex will perform a release operation on those same locations. Informally,
performing a release operation on A forces prior side effects on other memory locations to become visible to other threads

14)The execution can usually be viewed as an interleaving of all of the threads. However, some kinds of atomic operations,
for example, allow executions inconsistent with a simple interleaving as described below.

14 Environment § 5.1.2.4

N2329 C2x CHANGES
:::
diff

::::::
marks — December 8, 2018 ISO/IEC 9899:2017

::
2x (E)

that later perform an acquire or consume operation on A. Relaxed atomic operations are not included as synchronization
operations although, like synchronization operations, they cannot contribute to data races.

7 All modifications to a particular atomic object M occur in some particular total order, called the
modification order of M . If A and B are modifications of an atomic object M , and A happens before B,
then A shall precede B in the modification order of M , which is defined below.

8 NOTE 3 This states that the modification orders are expected to respect the "happens before" relation.

9 NOTE 4 There is a separate order for each atomic object. There is no requirement that these can be combined into a single
total order for all objects. In general this will be impossible since different threads can observe modifications to different
variables in inconsistent orders.

10 A release sequence headed by a release operation A on an atomic object M is a maximal contiguous
sub-sequence of side effects in the modification order of M , where the first operation is A and every
subsequent operation either is performed by the same thread that performed the release or is an
atomic read-modify-write operation.

11 Certain library calls
:::::::::
operations

:
synchronize with other library calls

:::::::::
operations

:
performed by another

thread. In particular, an atomic operation A that performs a release operation on an object M
synchronizes with an atomic operation B that performs an acquire operation on M and reads a
value written by any side effect in the release sequence headed by A.

12 NOTE 5 Except in the specified cases, reading a later value does not necessarily ensure visibility as described below. Such a
requirement would sometimes interfere with efficient implementation.

13 NOTE 6 The specifications of the synchronization operations define when one reads the value written by another. For atomic
variables, the definition is clear. All operations on a given mutex occur in a single total order. Each mutex acquisition "reads
the value written" by the last mutex release.

14 An evaluation A carries a dependency15) to an evaluation B if:

— the value of A is used as an operand of B, unless:

• B is an invocation of the kill_dependency macro,

• A is the left operand of a && or || operator,

• A is the left operand of a ?: operator, or

• A is the left operand of a , operator;

or

— A writes a scalar object or bit-field M , B reads from M the value written by A, and A is
sequenced before B, or

— for some evaluation X , A carries a dependency to X and X carries a dependency to B.

15 An evaluation A is dependency-ordered before16) an evaluation B if:

— A performs a release operation on an atomic object M , and, in another thread, B performs a
consume operation on M and reads a value written by any side effect in the release sequence
headed by A, or

— for some evaluation X , A is dependency-ordered before X and X carries a dependency to B.

16 An evaluation A inter-thread happens before an evaluation B if A synchronizes with B, A is
dependency-ordered before B, or, for some evaluation X :

— A synchronizes with X and X is sequenced before B,

— A is sequenced before X and X inter-thread happens before B, or

15)The "carries a dependency" relation is a subset of the "sequenced before" relation, and is similarly strictly intra-thread.
16)The "dependency-ordered before" relation is analogous to the "synchronizes with" relation, but uses release/consume in

place of release/acquire.

§ 5.1.2.4 Environment 15

N2329 C2x CHANGES
:::
diff

::::::
marks — December 8, 2018 ISO/IEC 9899:2017

::
2x (E)

2 Except for bit-fields, objects are composed of contiguous sequences of one or more bytes, the number,
order, and encoding of which are either explicitly specified or implementation-defined.

3 Values stored in unsigned bit-fields and objects of type unsigned char shall be represented using a
pure binary notation.50)

4 Values stored in non-bit-field objects of any other object type consist of n× CHAR_BIT bits, where
n is the size of an object of that type, in bytes. The value may be copied into an object of type
unsigned char [n] (e.g., by memcpy); the resulting set of bytes is called the object representation of
the value. Values stored in bit-fields consist of m bits, where m is the size specified for the bit-field.
The object representation is the set of m bits the bit-field comprises in the addressable storage unit
holding it. Two values (other than NaNs) with the same object representation compare equal, but
values that compare equal may have different object representations.

5 Certain object representations need not represent a value of the object type. If the stored value of an
object has such a representation and is read by an lvalue expression that does not have character
type, the behavior is undefined. If such a representation is produced by a side effect that modifies
all or any part of the object by an lvalue expression that does not have character type, the behavior
is undefined.51) Such a representation is called a trap representation.

6 When a value is stored in an object of structure or union type, including in a member object, the
bytes of the object representation that correspond to any padding bytes take unspecified values.52)

The value of a structure or union object is never a trap representation, even though the value of a
member of the structure or union object may be a trap representation.

7 When a value is stored in a member of an object of union type, the bytes of the object representation
that do not correspond to that member but do correspond to other members take unspecified values.

8 Where an operator is applied to a value that has more than one object representation, which object
representation is used shall not affect the value of the result.53) Where a value is stored in an object
using a type that has more than one object representation for that value, it is unspecified which
representation is used, but a trap representation shall not be generated.

9 Loads and stores of objects with atomic types
:::
All

::::::::::
operations

:::
on

:::::::
atomic

::::::
objects

:
are done with

memory_order_seq_cst semantics.
:::
that

:::
do

::::
not

:::::::
specify

:::::::::
otherwise

:::::
have

:::::::::::::::::::::::
memory_order_seq_cst

:::::::
memory

::::::::::::
consistency.

::
If

::
an

::::::::::
operation

::::
with

::::::::
identical

:::::::
values

::
on

::::
the

::::::::::
non-atomic

:::::
type

::
is

::::::::::
erroneous,54)

:::
the

:::::::
atomic

:::::::::
operation

:::::::
results

::
in

:::
an

::::::::::
unspecific

::::::
object

::::::::::::::
representation,

::::
that

:::::
may

:::
or

::::
may

::::
not

:::
be

:::
an

::::::
invalid

::::::
value

:::
for

::::
the

:::::
type,

:::::
such

::
as

:::
an

:::::::
invalid

:::::::
address

:::
or

::
a

:::::::
floating

::::::
point

:::::
NaN.

::::::::
Thereby

:::::
such

:::
an

:::::::::
operation

::::
may

:::
by

::::
itself

::::::
never

:::::
raise

:
a
::::::
signal,

::
a

::::
trap,

::
a
:::::::
floating

:::::
point

:::::::::
exception

:::
or

:::::
result

:::::::::
otherwise

:::
in

::
an

:::::::::::
interruption

:::
of

:::
the

:::::::
control

:::::
flow.55)

Forward references: declarations (6.7), expressions (6.5), lvalues, arrays, and function designators
(6.3.2.1), order and consistency (7.17.3).

6.2.6.2 Integer types
1 For unsigned integer types other than unsigned char, the bits of the object representation shall be

divided into two groups: value bits and padding bits (there need not be any of the latter). If there are
N value bits, each bit shall represent a different power of 2 between 1 and 2N−1, so that objects of
that type shall be capable of representing values from 0 to 2N − 1 using a pure binary representation;

50)A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by successive
bits are additive, begin with 1, and are multiplied by successive integral powers of 2, except perhaps the bit with the highest
position. (Adapted from the American National Dictionary for Information Processing Systems.) A byte contains CHAR_BIT bits,
and the values of type unsigned char range from 0 to 2CHAR

_BIT − 1.
51)Thus, an automatic variable can be initialized to a trap representation without causing undefined behavior, but the value

of the variable cannot be used until a proper value is stored in it.
52)Thus, for example, structure assignment need not copy any padding bits.
53)It is possible for objects x and y with the same effective type T to have the same value when they are accessed as objects

of type T, but to have different values in other contexts. In particular, if == is defined for type T, then x == y does not imply
that memcmp(&x, &y, sizeof (T))== 0. Furthermore, x == y does not necessarily imply that x and y have the same value;
other operations on values of type T might distinguish between them.

54)
:::
Such

::::::::
erroneous

::::::::
operations

:::
may

:::
for

::::::
example

::::
incur

::::::::
arithmetic

:::::::
overflow,

::::::
division

::
by

::::
zero

:
or
:::::::

negative
:::::
shifts.

55)
::::::
Whether

::
or

:::
not

::
an

:::::
atomic

:::::::
operation

:::
may

::
be
:::::::::

interrupted
::
by

:
a
:::::
signal

::::::
depends

::
on

:::
the

:::::::
lock-free

::::::
property

::
of

::
the

:::::::::
underlying

::::
type.

§ 6.2.6.2 Language 35

ISO/IEC 9899:2017
::
2x (E)

:::
diff

::::::
marks — December 8, 2018 C2x CHANGES N2329

this shall be known as the value representation. The values of any padding bits are unspecified.56)

2 For signed integer types, the bits of the object representation shall be divided into three groups:
value bits, padding bits, and the sign bit. There need not be any padding bits; signed char shall
not have any padding bits. There shall be exactly one sign bit. Each bit that is a value bit shall have
the same value as the same bit in the object representation of the corresponding unsigned type (if
there are M value bits in the signed type and N in the unsigned type, then M ≤ N). If the sign bit is
zero, it shall not affect the resulting value. If the sign bit is one, the value shall be modified in one of
the following ways:

— the corresponding value with sign bit 0 is negated (sign and magnitude);

— the sign bit has the value −(2M) (two’s complement);

— the sign bit has the value −(2M − 1) (ones’ complement).

Which of these applies is implementation-defined, as is whether the value with sign bit 1 and all
value bits zero (for the first two), or with sign bit and all value bits 1 (for ones’ complement), is a
trap representation or a normal value. In the case of sign and magnitude and ones’ complement, if
this representation is a normal value it is called a negative zero.

3 If the implementation supports negative zeros, they shall be generated only by:

— the &, |, ^,~ ,<< , and >> operators with operands that produce such a value;

— the+ ,- ,* , /, and % operators where one operand is a negative zero and the result is zero;

— compound assignment operators based on the above cases.

It is unspecified whether these cases actually generate a negative zero or a normal zero, and whether
a negative zero becomes a normal zero when stored in an object.

4 If the implementation does not support negative zeros, the behavior of the &, |, ^, ~ , << , and >>
operators with operands that would produce such a value is undefined.

5 The values of any padding bits are unspecified.57) A valid (non-trap) object representation of a
signed integer type where the sign bit is zero is a valid object representation of the corresponding
unsigned type, and shall represent the same value. For any integer type, the object representation
where all the bits are zero shall be a representation of the value zero in that type.

6 The precision of an integer type is the number of bits it uses to represent values, excluding any sign
and padding bits. The width of an integer type is the same but including any sign bit; thus for
unsigned integer types the two values are the same, while for signed integer types the width is one
greater than the precision.

7
:::::::::::::::
Implementations

:::::
that

::::::::
support

:::
the

::::::::
atomics

::::::::::
extension

:::::::::
represent

:::
all

:::::::
signed

::::::::
integers

:::::
with

::::::
two’s

:::::::::::
complement

:::::
such

::::
that

::::
the

::::::
object

::::::::::::::
representation

:::::
with

::::
sign

::::
bit

::
1

::::
and

:::
all

::::::
value

::::
bits

:::::
zero

::
is

::::
the

:::::::::
minimum

:::::
value

::
of

::::
the

:::::
type.

6.2.7 Compatible type and composite type
1 Two types have compatible type if their types are the same. Additional rules for determining whether

two types are compatible are described in 6.7.2 for type specifiers, in 6.7.3 for type qualifiers, and in
6.7.6 for declarators.58) Moreover, two structure, union, or enumerated types declared in separate

56)Some combinations of padding bits might generate trap representations, for example, if one padding bit is a parity bit.
Regardless, no arithmetic operation on valid values can generate a trap representation other than as part of an exceptional
condition such as an overflow, and this cannot occur with unsigned types. All other combinations of padding bits are
alternative object representations of the value specified by the value bits.

57)Some combinations of padding bits might generate trap representations, for example, if one padding bit is a parity bit.
Regardless, no arithmetic operation on valid values can generate a trap representation other than as part of an exceptional
condition such as an overflow. All other combinations of padding bits are alternative object representations of the value
specified by the value bits.

58)Two types need not be identical to be compatible.

36 Language § 6.2.7

N2329 C2x CHANGES
:::
diff

::::::
marks — December 8, 2018 ISO/IEC 9899:2017

::
2x (E)

return p1->m;
}
int g()
{

union {
struct t1 s1;
struct t2 s2;

} u;
/* ... */
return f(&u.s1, &u.s2);

}

Forward references: address and indirection operators (6.5.3.2), structure and union specifiers
(6.7.2.1).

6.5.2.4 Postfix increment and decrement operators
Constraints

1 The operand of the postfix increment or decrement operator shall have atomic, qualified, or unquali-
fied real or pointer type, and shall be a modifiable lvalue.

Semantics
2 The result of the postfix++ operator is the value of the operand. As a side effect, the value of the

operand object is incremented (that is, the value 1 of the appropriate type is added to it). See the
discussions of additive operators and compound assignment for information on constraints, types,
and conversions and the effects of operations on pointers. The value computation of the result is
sequenced before the side effect of updating the stored value of the operand. With respect to an
indeterminately-sequenced function call, the operation of postfix++ is a single evaluation.Postfix
++ on an object with atomic type is a read-modify-write operation with memory_order_seq_cst
memory order semantics.104)

3 The postfix-- operator is analogous to the postfix++ operator, except that the value of the operand
is decremented (that is, the value 1 of the appropriate type is subtracted from it).

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).

6.5.2.5 Compound literals
Constraints

1 The type name shall specify a complete object type or an array of unknown size, but not a variable
length array type.

2 All the constraints for initializer lists in 6.7.9 also apply to compound literals.

Semantics
3 A postfix expression that consists of a parenthesized type name followed by a brace-enclosed list of

initializers is a compound literal. It provides an unnamed object whose value is given by the initializer
list.105)

104)Where a pointer to an atomic object can be formed and E has integer type, E++ is equivalent to the following code
sequence where T is the type of E:

T *addr = &E;
T old = *addr;
T new;
do {

new = old + 1;
} while (!atomic_compare_exchange_weak(addr, &old, new));

with old being the result of the operation.
Special care is necessary if E has floating type; see 6.5.16.2.

105)Note that this differs from a cast expression. For example, a cast specifies a conversion to scalar types or void only, and
the result of a cast expression is not an lvalue.

§ 6.5.2.5 Language 63

ISO/IEC 9899:2017
::
2x (E)

:::
diff

::::::
marks — December 8, 2018 C2x CHANGES N2329

long l;

l = (c = i);

the value of i is converted to the type of the assignment expression c = i, that is, char type. The value of the expression
enclosed in parentheses is then converted to the type of the outer assignment expression, that is, long int type.

6 EXAMPLE 3 Consider the fragment:

const char **cpp;
char *p;
const char c = ’A’;

cpp = &p; // constraint violation

*cpp = &c; // valid

*p = 0; // valid

The first assignment is unsafe because it would allow the following valid code to attempt to change the value of the const
object c.

6.5.16.2 Compound assignment
Constraints

1 For the operators+= and-= only, either the left operand shall be an atomic, qualified, or unqualified
pointer to a complete object type, and the right shall have integer type; or the left operand shall have
atomic, qualified, or unqualified arithmetic type, and the right shall have arithmetic type.

2 For the other operators, the left operand shall have atomic, qualified, or unqualified arithmetic type,
and (considering the type the left operand would have after lvalue conversion) each operand shall
have arithmetic type consistent with those allowed by the corresponding binary operator.

Semantics
3 A compound assignment of the form E1 op= E2 is equivalent to the simple assignment expression

E1 = E1 op (E2), except that the lvalue E1 is evaluated only once, and with respect to an inde-
terminately-sequenced function call, the operation of a compound assignment is a single eval-
uation. If E1 has an atomic type, compound assignment is a read-modify-write operation with
memory_order_seq_cst memory order semantics.

4 NOTE Where a pointer to an atomic object can be formed and E1 and E2 have integer type, this is equivalent to the following
code sequence where T1 is the type of E1 and T2 is the type of E2:

T1 *addr = &E1;
T2 val = (E2);
T1 old = *addr;
T1 new;
do {

new = old op val;
} while (!atomic_compare_exchange_weak(addr, &old, new));

with new being the result of the operation.

If E1 or E2 has floating type, then exceptional conditions or floating-point exceptions encountered during discarded
evaluations of new would also be discarded in order to satisfy the equivalence of E1 op= E2 and E1 = E1 op (E2). For
example, if Annex F is in effect, the floating types involved have IEC 60559 formats, and FLT_EVAL_METHOD is 0, the
equivalent code would be:

76 Language § 6.5.16.2

N2329 C2x CHANGES
:::
diff

::::::
marks — December 8, 2018 ISO/IEC 9899:2017

::
2x (E)

specify a pair of structures that contain pointers to each other. Note, however, that if s2 were already declared as a tag in an
enclosing scope, the declaration D1 would refer to it, not to the tag s2 declared in D2. To eliminate this context sensitivity, the
declaration

struct s2;

can be inserted ahead of D1. This declares a new tag s2 in the inner scope; the declaration D2 then completes the specification
of the new type.

Forward references: declarators (6.7.6), type definitions (6.7.8).

6.7.2.4 Atomic type specifiers
Syntax

1 atomic-type-specifier:
_Atomic (type-name)

Constraints
2 Atomic type specifiers shall not be used if the implementation does not support atomic types (see

6.10.8.3).

3 The type name in an atomic type specifier shall not refer to an array type, a function type, an atomic
type, or a qualified type.

Semantics
4 The properties associated with atomic types are meaningful only for expressions that are lvalues.

If the _Atomic keyword is immediately followed by a left parenthesis, it is interpreted as a type
specifier (with a type name), not as a type qualifier.

5 EXAMPLE 1
:::
This

::::::::::::
disambiguation

:
of
:::

the
:::::::
grammar

::
is

:::::::
necessary,

::::::
because

::
in
:::::::

marginal
::::
cases

::
a
::::::
qualifier

::::
may

::
be

:::::::
followed

::
by

::
an

::::::
opening

:::::::::
parenthesis.

typedef double toto;

void ic(int const tutu); // valid prototype, void g(int tutu)
void hc(int const(tutu)); // valid prototype, void g(int tutu)
void gc(int const(toto)); // valid prototype, void g(int(*)(double))

void ia(int _Atomic tutu); // valid prototype, void g(int tutu)
void ha(int _Atomic(tutu)); // invalid prototype, tutu not a type for _Atomic()
void ga(int _Atomic(toto)); // invalid prototype, two types

6.7.3 Type qualifiers
Syntax

1 type-qualifier:
const
restrict
volatile
_Atomic

Constraints
2 Types other than pointer types whose referenced type is an object type shall not be restrict-qualified.

3 The _Atomic qualifier shall not be used if the implementation does not support atomic types
(see 6.10.8.3).

4 The type modified by the _Atomic qualifier shall not be an array type or a function type.

§ 6.7.3 Language 89

ISO/IEC 9899:2017
::
2x (E)

:::
diff

::::::
marks — December 8, 2018 C2x CHANGES N2329

the keyword static shall appear only in a declaration of a function parameter with an array type,
and then only in the outermost array type derivation.

2 If an identifier is declared as having a variably modified type, it shall be an ordinary identifier (as
defined in 6.2.3), have no linkage, and have either block scope or function prototype scope. If an
identifier is declared to be an object with static or thread storage duration, it shall not have a variable
length array type.

Semantics
3 If, in the declaration "T D1", D1 has one of the forms:

D [type-qualifier-listopt assignment-expressionopt]
D [type-qualifier-listopt assignment-expression]
D [type-qualifier-list static assignment-expression]
D [type-qualifier-listopt *]

and the type specified for ident in the declaration "T D" is "derived-declarator-type-list T", then the
type specified for ident is "derived-declarator-type-list array of T".147) (See 6.7.6.3 for the meaning of
the optional type qualifiers and the keyword static.)

4 If the size is not present, the array type is an incomplete type. If the size is * instead of being an
expression, the array type is a variable length array type of unspecified size, which can only be used in
declarations or type names with function prototype scope;148) such arrays are nonetheless complete
types. If the size is an integer constant expression and the element type has a known constant size,
the array type is not a variable length array type; otherwise, the array type is a variable length array
type. (Variable length arrays are a conditional feature that implementations need not support; see
6.10.8.3.)

5 If the size is an expression that is not an integer constant expression: if it occurs in a declaration at
function prototype scope, it is treated as if it were replaced by* ; otherwise, each time it is evaluated it
shall have a value greater than zero. The size of each instance of a variable length array type does not
change during its lifetime. Where a size expression is part of the operand of

::
an

::::::::::
_Alignof

::::::::
operator,

:::
that

:::::::::::
expression

::
is

:::
not

::::::::::
evaluated.

:::::::::::
Otherwise,

::::::
where

::
a

::::
size

::::::::::
expression

::
is

::::
part

:::
of

:::
the

::::::::
operand

::
of

:
a

sizeof operator and changing the value of the size expression would not affect the result of the
operator, it is unspecified whether or not the size expression is evaluated. Where a size expression is
part of the operand of an _Alignof operator

:::::::::
Otherwise, that expression is not evaluated

::::::::::
evalutated.

6 For two array types to be compatible, both shall have compatible element types, and if both size
specifiers are present, and are integer constant expressions, then both size specifiers shall have
the same constant value. If the two array types are used in a context which requires them to be
compatible, it is undefined behavior if the two size specifiers evaluate to unequal values.

7 EXAMPLE 1

float fa[11], *afp[17];

declares an array of float numbers and an array of pointers to float numbers.

8 EXAMPLE 2 Note the distinction between the declarations

extern int *x;
extern int y[];

The first declares x to be a pointer to int; the second declares y to be an array of int of unspecified size (an incomplete type),
the storage for which is defined elsewhere.

147)When several "array of" specifications are adjacent, a multidimensional array is declared.
148)Thus,* can be used only in function declarations that are not definitions (see 6.7.6.3).

98 Language § 6.7.6.2

ISO/IEC 9899:2017
::
2x (E)

:::
diff

::::::
marks — December 8, 2018 C2x CHANGES N2329

or

D (identifier-listopt)

and the type specified for ident in the declaration "T D" is "derived-declarator-type-list T", then the
type specified for ident is "derived-declarator-type-list function returning the unqualified version of T".

6 A parameter type list specifies the types of, and may declare identifiers for, the parameters of the
function.

7 A declaration of a parameter as "array of type" shall be adjusted to "qualified
::::::
atomic

::
or

:::::::::::
non-atomic,

::::::::
qualified

::
or

:::::::::::
unqualified pointer to type", where the type qualifiers (if any) are those specified within

the [and] of the array type derivation. If the keyword static also appears within the [and] of
the array type derivation, then for each call to the function, the value of the corresponding actual
argument shall provide access to the first element of an array with at least as many elements as
specified by the size expression.

8 A declaration of a parameter as "function returning type" shall be adjusted to "pointer to function
returning type", as in 6.3.2.1.

9 If the list terminates with an ellipsis (, ...), no information about the number or types of the
parameters after the comma is supplied.149)

10 The special case of an unnamed parameter of type void as the only item in the list specifies that the
function has no parameters.

11 If, in a parameter declaration, an identifier can be treated either as a typedef name or as a parameter
name, it shall be taken as a typedef name.

12 If the function declarator is not part of a definition of that function, parameters may have incomplete
type and may use the [*] notation in their sequences of declarator specifiers to specify variable
length array types.

13 The storage-class specifier in the declaration specifiers for a parameter declaration, if present, is
ignored unless the declared parameter is one of the members of the parameter type list for a function
definition.

14 An identifier list declares only the identifiers of the parameters of the function. An empty list in
a function declarator that is part of a definition of that function specifies that the function has no
parameters. The empty list in a function declarator that is not part of a definition of that function
specifies that no information about the number or types of the parameters is supplied.150)

15 For two function types to be compatible, both shall specify compatible return types.151) Moreover,
the parameter type lists, if both are present, shall agree in the number of parameters and in use
of the ellipsis terminator; corresponding parameters shall have compatible types. If one type has
a parameter type list and the other type is specified by a function declarator that is not part of a
function definition and that contains an empty identifier list, the parameter list shall not have an
ellipsis terminator and the type of each parameter shall be compatible with the type that results
from the application of the default argument promotions. If one type has a parameter type list and
the other type is specified by a function definition that contains a (possibly empty) identifier list,
both shall agree in the number of parameters, and the type of each prototype parameter shall be
compatible with the type that results from the application of the default argument promotions to the
type of the corresponding identifier. (In the determination of type compatibility and of a composite
type, each parameter declared with function or array type is taken as having the adjusted type
and each parameter declared with qualified type is taken as having the unqualified version of its
declared type.)

149)The macros defined in the <stdarg.h> header (7.16) can be used to access arguments that correspond to the ellipsis.
150)See "future language directions" (6.11.6).
151)If both function types are "old style", parameter types are not compared.

100 Language § 6.7.6.3

ISO/IEC 9899:2017
::
2x (E)

:::
diff

::::::
marks — December 8, 2018 C2x CHANGES N2329

3 When a signal occurs and func points to a function, it is implementation-defined whether the
equivalent of signal(sig, SIG_DFL); is executed or the implementation prevents some imple-
mentation-defined set of signals (at least including sig) from occurring until the current signal
handling has completed; in the case of SIGILL, the implementation may alternatively define that
no action is taken. Then the equivalent of (*func)(sig); is executed. If and when the function
returns, if the value of sig is SIGFPE, SIGILL, SIGSEGV, or any other implementation-defined value
corresponding to a computational exception, the behavior is undefined; otherwise the program will
resume execution at the point it was interrupted.

4 If the signal occurs as the result of calling the abort or raise function, the signal handler shall not
call the raise function.

5 If the signal occurs other than as the result of calling the abort or raise function, the behavior is
undefined if the signal handler refers to any object with static or thread storage duration that is
not a lock-free atomic object other than by assigning a value to an object declared as volatile
sig_atomic_t, or the signal handler calls any function in the standard library other than

— the abort function,

— the _Exit function,

— the quick_exit function,

— the functions
::::
and

:::::::
generic

::::::::
functions

:
in <stdatomic.h> (except where explicitly stated other-

wise) when the atomic arguments are lock-free,

— the atomic_is_lock_free
:::::::
generic function with any atomic argument, or

— the signal function with the first argument equal to the signal number corresponding to the
signal that caused the invocation of the handler. Furthermore, if such a call to the signal
function results in a SIG_ERR return, the value of errno is indeterminate.259)

6 At program startup, the equivalent of

signal(sig, SIG_IGN);

may be executed for some signals selected in an implementation-defined manner; the equivalent of

signal(sig, SIG_DFL);

is executed for all other signals defined by the implementation.

7 Use of this function in a multi-threaded program results in undefined behavior. The implementation
shall behave as if no library function calls the signal function.

Returns
8 If the request can be honored, the signal function returns the value of func for the most recent

successful call to signal for the specified signal sig. Otherwise, a value of SIG_ERR is returned and
a positive value is stored in errno.

Forward references: the abort function (7.22.4.1), the exit function (7.22.4.4), the _Exit function
(7.22.4.5), the quick_exit function (7.22.4.7).

7.14.2 Send signal
7.14.2.1 The raise function
Synopsis

1 #include <signal.h>
int raise(int sig);

259)If any signal is generated by an asynchronous signal handler, the behavior is undefined.

198 Library § 7.14.2.1

ISO/IEC 9899:2017
::
2x (E)

:::
diff

::::::
marks — December 8, 2018 C2x CHANGES N2329

7.17 Atomics <stdatomic.h>
7.17.1 Introduction

1 The header <stdatomic.h> defines several macros and declares several types and functions for
performing atomic operations on data shared between threads.261)

2 Implementations that define the macro __STDC_NO_ATOMICS__ need not provide this header nor
support any of its facilities.

3 The macros defined are

__STDC_STDATOMIC_VERSION__

which expands to the same token as __STDC_VERSION__ (yyyymmL)262) and the atomic lock-free macros

ATOMIC_BOOL_LOCK_FREE
ATOMIC_CHAR_LOCK_FREE
ATOMIC_CHAR16_T_LOCK_FREE
ATOMIC_CHAR32_T_LOCK_FREE
ATOMIC_WCHAR_T_LOCK_FREE
ATOMIC_SHORT_LOCK_FREE
ATOMIC_INT_LOCK_FREE
ATOMIC_LONG_LOCK_FREE
ATOMIC_LLONG_LOCK_FREE
ATOMIC_POINTER_LOCK_FREE

which expand to constant expressions suitable for use in #if preprocessing directives and which
indicate the lock-free property of the corresponding atomic types (both signed and unsigned); and

ATOMIC_FLAG_INIT

which expands to an initializer for an object of type atomic_flag.

4 The types include

memory_order

which is an enumerated type whose enumerators identify memory ordering constraints;

atomic_flag

which is a structure type representing a lock-free, primitive atomic flag; and several atomic analogs
of integer types.

5 In the following synopses:

— An A refers to an atomic type
::::
that

::
is

:::
not

:::::::::::::::
const-qualified.

— A C refers to its corresponding non-atomic
::::::::::
unqualified

:
type.

— An M refers to the type of the other argument for arithmetic operations. For atomic integer

:::::::::
arithmetic

:
types, M is C. For atomic pointer types, M is ptrdiff_t.

— The functions not ending in _explicit have the same semantics as the corresponding
_explicit function with memory_order_seq_cst for the memory_order argument.

6
:::
The

:::::::::
prototype

:::
for

::
a
:::
call

:::
to

:
a
:::::::
generic

::::::::
function

::::::::
specified

::
in

::::
this

::::::
clause

::
is

::::::::::
determined

:::
by

:::
the

::::::::::
pointed-to

::::
type

::
A

::
of

::::
the

::::
first

:::::::::
argument

::
of

:::
the

::::
call

::::
and

:::
the

:::::
types

::
C

:::
and

:::
M

:::
are

::::::::
deduced

:::::::::
according

:::
to

:::
the

::::::
above

261)See "future library directions" (7.31.8).
262)The intent of this macro is to keep track of the version of this document to which a particular C library implementation

of <stdatomic.h> adheres. This is meant to facilitate the transition to a new standard for users, not as a leeway for
implementations to delay an upgrade.

204 Library § 7.17.1

N2329 C2x CHANGES
:::
diff

::::::
marks — December 8, 2018 ISO/IEC 9899:2017

::
2x (E)

:::::
rules.

::::::
Other

::::::::::
arguments

::
to

::::
the

:::
call

:::::
shall

:::
be

:::::::::
implicitly

:::::::::::
convertable

::
to

:::
the

::::::
types

::::
that

:::
are

::::::::
required

:::
by

:::
the

::::::
chosen

::::::::::
prototype

:::
and

::::
are

:::::::::
converted

:::::::::::
accordingly

::::::
before

:::
the

::::
call.

:

7 It is unspecified whether any generic function declared in
::::::::
specified

::
in

::::
this

::::::
clause is a macro or an

identifier declared with external linkage. If a macro definition is suppressed in order to access an
actual function, or a program defines an external identifier with the name of a generic function, the
behavior is undefined.

Many operations are volatile-qualified. The "volatile as device register" semantics have not
changed in the standard. This qualification means that volatility is preserved when applying these
operations to volatile objects.

7.17.2 Initialization
1 The expands to a token sequence suitable for initializing an atomic object of a type that is

initialization-compatible with value. An atomic object with automatic storage duration that is
not explicitly initialized is initially in an indeterminate state; however, the default (zero) initializa-
tion for objects with static or thread-local storage duration is guaranteed to produce a valid state.See
"future library directions" (7.31.8).

2 Concurrent access to the variable being initialized, even via an atomic operation, constitutes a data
race.

3 EXAMPLE 1
:::
The

:::::::
following

::::::::
definitions

:::::
ensure

::::
valid

::::
states

:::
for

:::::
guide

:::
and

::::
head

:::::::
regardless

::
if

::::
these

::
are

:::::
found

::
in

::
file

:::::
scope

::
or

::::
block

:::::
scope.

::::
Thus

:::
any

:::::
atomic

:::::::
operation

:::
that

::
is

::::::::
performed

::
on

::::
them

::::
after

:::
their

::::::::::
initialization

:::
has

:::
been

:::
met

::
is
:::
well

:::::::
defined.

_Atomic int guide = 42;
static void*_Atomic head;

4 EXAMPLE 2
::::
With

::
the

::::::::
following

::::::::
definition

::
in

::::
block

:::::
scope,

:::::::::
concurrent

::::::
accesses

::
to

:::::
cumul

:::
are

::::::::
undefined

:::::
unless

::
a

::::
prior

::::::
race-free

::::::::::
initialization,

::::
either

:::
by

:
a
:::
call

:
to
:::::::::::
atomic_init,

:
a
::::
store

:::::::
operation

::
or

::
by

:::::::::
assignment,

:::
has

:::
been

:::::::::
performed.

_Atomic double cumul;

7.17.2.1 The atomic_init generic function
Synopsis

1 #include <stdatomic.h>
void atomic_init(A *obj, C value);

Description
2 The atomic_init generic function initializes the atomic object pointed to by obj to the value value,

while also initializing any additional state that the implementation might need to carry for the
atomic object.

3 Although this function initializes an atomic object, it does not avoid data races; concurrent access to
the variable being initialized, even via an atomic operation, constitutes a data race.

4 If a signal occurs other than as the result of calling the abort or raise functions, the behavior is
undefined if the signal handler calls the atomic_init generic function.

Returns
5 The atomic_init generic function returns no value.
6 EXAMPLE

_Atomic int guide;
atomic_init(&guide, 42);

7.17.3 Order and consistency
1 The enumerated type memory_order specifies the detailed regular (non-atomic) memory synchro-

nization operations as defined in 5.1.2.4 and may provide for operation ordering. Its enumeration

§ 7.17.3 Library 205

ISO/IEC 9899:2017
::
2x (E)

:::
diff

::::::
marks — December 8, 2018 C2x CHANGES N2329

constants are as follows:263)

memory_order_relaxed
memory_order_consume
memory_order_acquire
memory_order_release
memory_order_acq_rel
memory_order_seq_cst

2 For memory_order_relaxed, no operation orders memory.

3 For memory_order_release, memory_order_acq_rel, and memory_order_seq_cst, a store opera-
tion performs a release operation on the affected memory location.

4 For memory_order_acquire, memory_order_acq_rel, and memory_order_seq_cst, a load opera-
tion performs an acquire operation on the affected memory location.

5 For memory_order_consume, a load operation performs a consume operation on the affected mem-
ory location.

6 There shall be a single total order S on all memory_order_seq_cst operations, consistent with the
"happens before" order and modification orders for all affected locations, such that each
memory_order_seq_cst operation B that loads a value from an atomic object M observes one of
the following values:

— the result of the last modification A of M that precedes B in S, if it exists, or

— if A exists, the result of some modification of M that is not memory_order_seq_cst and that
does not happen before A, or

— if A does not exist, the result of some modification of M that is not memory_order_seq_cst.

7 NOTE 1 Although it is not explicitly required that S include lock operations, it can always be extended to an order that does
include lock and unlock operations, since the ordering between those is already included in the "happens before" ordering.

8 NOTE 2 Atomic operations specifying memory_order_relaxed are relaxed only with respect to memory ordering. Imple-
mentations still guarantee that any given atomic access to a particular atomic object is indivisible with respect to all other
atomic accesses to that object.

9 For an atomic operation B that reads the value of an atomic object M , if there is a
memory_order_seq_cst fence X sequenced before B, then B observes either the last
memory_order_seq_cst modification of M preceding X in the total order S or a later mod-
ification of M in its modification order.

10 For atomic operations A and B on an atomic object M , where A modifies M and B takes its value, if
there is a memory_order_seq_cst fence X such that A is sequenced before X and B follows X in S,
then B observes either the effects of A or a later modification of M in its modification order.

11 For atomic modifications A and B of an atomic object M , B occurs later than A in the modification
order of M if:

— there is a memory_order_seq_cst fence X such that A is sequenced before X , and X precedes
B in S, or

— there is a memory_order_seq_cst fence Y such that Y is sequenced before B, and A precedes
Y in S, or

— there are memory_order_seq_cst fences X and Y such that A is sequenced before X , Y is
sequenced before B, and X precedes Y in S.

12 NOTE 3
:::
The

:::::::
memory

::::::::
orderings

::
of

:::::::::::
memory_order

::::::
impose

:::::::
different

::::::::
ordering

::::::::
constraints

:::
on

::::::
certain

:::::::::
operations.

::

::::::::::::::::::
memory_order_relaxed,

::::::::::::::::::::
memory_order_consume,

:::::::::::::::::::::
memory_order_acquire,

::::::::::::::::::::
memory_order_acq_rel

:::::
and

:::

:::::::::::::::::
memory_order_seq_cst

::::
form

:::
an

::::::
inclusive

:::::
chain

::
of

:::
such

:::::::::
constraints,

::::
from

::::::
weakest

::
to
::::::::
strongest.

::::::::::::::::::
memory_order_release

263)See "future library directions" (7.31.8).

206 Library § 7.17.3

N2329
:::
diff

::::::
marks — December 8, 2018 ISO/IEC 9899:2017

::
2x (E)

::::::
imposes

::::::::
constraints

:::
that

:::
are

:::::::::
incompatible

::::
with

::::::::::::::::::
memory_order_consume

:::
and

::::::::::::::::::
memory_order_acquire,

:::
and

:::
that

::
are

:::::::
stronger

:::
than

::::::::::::::::::
memory_order_relaxed

:::
and

::::::
weaker

:::
than

::::::::::::::::::
memory_order_acq_rel.

:

13 Atomic read-modify-write operations shall always read the last value (in the modification order)
stored before the write associated with the read-modify-write operation.

14 An atomic store shall only store a value that has been computed from constants and program input
values by a finite sequence of program evaluations, such that each evaluation observes the values of
variables as computed by the last prior assignment in the sequence. The ordering of evaluations in
this sequence shall be such that

— If an evaluation B observes a value computed by A in a different thread, then B does not
happen before A.

— If an evaluation A is included in the sequence, then all evaluations that assign to the same
variable and happen before A are also included.

15 NOTE 4 The second requirement disallows "out-of-thin-air", or "speculative" stores of atomics when relaxed atomics are
used. Since unordered operations are involved, evaluations can appear in this sequence out of thread order. For example,
with x and y initially zero,

// Thread 1:
r1 = atomic_load_explicit(&y, memory_order_relaxed);
atomic_store_explicit(&x, r1, memory_order_relaxed);

// Thread 2:
r2 = atomic_load_explicit(&x, memory_order_relaxed);
atomic_store_explicit(&y, 42, memory_order_relaxed);

is allowed to produce r1 == 42 && r2 == 42. The sequence of evaluations justifying this consists of:

atomic_store_explicit(&y, 42, memory_order_relaxed);
r1 = atomic_load_explicit(&y, memory_order_relaxed);
atomic_store_explicit(&x, r1, memory_order_relaxed);
r2 = atomic_load_explicit(&x, memory_order_relaxed);

On the other hand,

// Thread 1:
r1 = atomic_load_explicit(&y, memory_order_relaxed);
atomic_store_explicit(&x, r1, memory_order_relaxed);

// Thread 2:
r2 = atomic_load_explicit(&x, memory_order_relaxed);
atomic_store_explicit(&y, r2, memory_order_relaxed);

is not allowed to produce r1 == 42 && r2 == 42, since there is no sequence of evaluations that results in the computation
of 42. In the absence of "relaxed" operations and read-modify-write operations with weaker than memory_order_acq_rel
ordering, the second requirement has no impact.

Recommended practice
16 The requirements do not forbid r1 == 42 && r2 == 42 in the following example, with x and y

initially zero:

// Thread 1:
r1 = atomic_load_explicit(&x, memory_order_relaxed);
if (r1 == 42)

atomic_store_explicit(&y, r1, memory_order_relaxed);

// Thread 2:
r2 = atomic_load_explicit(&y, memory_order_relaxed);
if (r2 == 42)

atomic_store_explicit(&x, 42, memory_order_relaxed);

§ 7.17.3 Library 207

N2329 C2x CHANGES
:::
diff

::::::
marks — December 8, 2018 ISO/IEC 9899:2017

::
2x (E)

Synopsis

1 #include <stdatomic.h>
void atomic_signal_fence(memory_order order);

Description
2 Equivalent to atomic_thread_fence(order), except that the resulting ordering constraints are

established only between a thread and a signal handler executed in the same thread.
3 NOTE 1 The atomic_signal_fence function can be used to specify the order in which actions performed by the thread

become visible to the signal handler.

4 NOTE 2 Compiler optimizations and reorderings of loads and stores are inhibited in the same way as with
atomic_thread_fence, but the hardware fence instructions that atomic_thread_fence would have inserted are not
emitted.

Returns
5 The atomic_signal_fence function returns no value.

7.17.5 Lock-free property
1 The atomic lock-free macros indicate the lock-free property of integer and address atomic

::::::
atomic

::::::
integer

::::
and

:::::::
pointer types. A value of 0 indicates that the type is never lock-free; a value of 1 indicates

that the type is sometimes lock-free; a value of 2 indicates that the type is always lock-free.
2 NOTE 1

::
In

:::::::
addition

::
to

::
the

::::::::::::
synchronization

::::::::
properties

:::::::
between

::::::
threads,

:::
the

:::::::
lock-free

::::::
property

::
of
::

a
:::
type

:::::::
warrants

::::
that

::::::::
operations

::
are

:::::::
perceived

::::::::
indivisible

::
in

:::
the

::::::
presence

::
of

::::::::
interrupts,

:::
see

:::::
5.1.2.3.

Recommended practice
3 Operations that are lock-free should also be address-free. That is, atomic operations on the same

memory location via two different addresses will communicate atomically.
:::::::::::
synchronize.

::
The

implementation should not depend on any per-process
:::::::::
execution

::::::::::
dependent state. This restriction

enables communication via memory mapped into a process
::::::::::::::
synchronization

:::
via

::::::::
memory

:::::
that

::
is

:::::::
mapped

::::
into

:::
an

:::::::::
execution

:
more than once and memory shared between two processes

::::::::::
concurrent

::::::::
program

::::::::::
executions.

7.17.5.1 The atomic_is_lock_free generic function
Synopsis

1 #include <stdatomic.h>
_Bool atomic_is_lock_free(const A *obj);

Description
2 The atomic_is_lock_free generic function indicates whether or not atomic operations on objects

of the type pointed to by obj are lock-free.

Returns
3 The atomic_is_lock_free generic function returns nonzero (true) if and only if atomic operations

on objects of the type pointed to by the argument are lock-free. In any given program execution, the
result of the lock-free query shall be consistent for all pointers of the same type.264)

7.17.6 Atomic integer types
1 For

:
If

:::
the

:::::::::::
non-atomic

:::::::
version

:::
of

:::
the

::::::
direct

::::
type

::::::
exists,

:::
for

:
each line in the following table,265) the

atomic type name is declared as a type that has the same representation and alignment requirements
as the corresponding direct type.266)

264)obj can be a null pointer.
265)See "future library directions" (7.31.8).
266)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,

return values from functions, and members of unions.

§ 7.17.6 Library 209

ISO/IEC 9899:2017
::
2x (E)

:::
diff

::::::
marks — December 8, 2018 C2x CHANGES N2329

Atomic type name Direct type
atomic_bool _Atomic _Bool

:::::::::::::::
_Atomic(_Bool)

atomic_char _Atomic char
::::::::::::::
_Atomic(char)

atomic_schar _Atomic signed char
::::::::::::::::::::::
_Atomic(signed char)

atomic_uchar _Atomic unsigned char
:::::::::::::::::::::::::
_Atomic(unsigned char)

atomic_short _Atomic short
:::::::::::::::
_Atomic(short)

atomic_ushort _Atomic unsigned short
:::::::::::::::::::::::::
_Atomic(unsigned short)

atomic_int _Atomic int
:::::::::::::
_Atomic(int)

atomic_uint _Atomic unsigned int
::::::::::::::::::::::::
_Atomic(unsigned int)

atomic_long _Atomic long
::::::::::::::
_Atomic(long)

atomic_ulong _Atomic unsigned long
:::::::::::::::::::::::::
_Atomic(unsigned long)

atomic_llong _Atomic long long
::::::::::::::::::::
_Atomic(long long)

atomic_ullong _Atomic unsigned long long
::::::::::::::::::::::::::::::
_Atomic(unsigned long long)

atomic_char16_t _Atomic char16_t
:::::::::::::::::::
_Atomic(char16_t)

atomic_char32_t _Atomic char32_t
:::::::::::::::::::
_Atomic(char32_t)

atomic_wchar_t _Atomic wchar_t
::::::::::::::::::
_Atomic(wchar_t)

atomic_int_least8_t _Atomic int_least8_t
::::::::::::::::::::::::
_Atomic(int_least8_t)

atomic_uint_least8_t _Atomic uint_least8_t
:::::::::::::::::::::::::
_Atomic(uint_least8_t)

atomic_int_least16_t _Atomic int_least16_t
:::::::::::::::::::::::::
_Atomic(int_least16_t)

atomic_uint_least16_t _Atomic uint_least16_t
:::::::::::::::::::::::::
_Atomic(uint_least16_t)

atomic_int_least32_t _Atomic int_least32_t
:::::::::::::::::::::::::
_Atomic(int_least32_t)

atomic_uint_least32_t _Atomic uint_least32_t
:::::::::::::::::::::::::
_Atomic(uint_least32_t)

atomic_int_least64_t _Atomic int_least64_t
:::::::::::::::::::::::::
_Atomic(int_least64_t)

atomic_uint_least64_t _Atomic uint_least64_t
:::::::::::::::::::::::::
_Atomic(uint_least64_t)

atomic_int_fast8_t _Atomic int_fast8_t
::::::::::::::::::::::
_Atomic(int_fast8_t)

atomic_uint_fast8_t _Atomic uint_fast8_t
::::::::::::::::::::::::
_Atomic(uint_fast8_t)

atomic_int_fast16_t _Atomic int_fast16_t
::::::::::::::::::::::::
_Atomic(int_fast16_t)

atomic_uint_fast16_t _Atomic uint_fast16_t
:::::::::::::::::::::::::
_Atomic(uint_fast16_t)

atomic_int_fast32_t _Atomic int_fast32_t
::::::::::::::::::::::::
_Atomic(int_fast32_t)

atomic_uint_fast32_t _Atomic uint_fast32_t
:::::::::::::::::::::::::
_Atomic(uint_fast32_t)

atomic_int_fast64_t _Atomic int_fast64_t
::::::::::::::::::::::::
_Atomic(int_fast64_t)

atomic_uint_fast64_t _Atomic uint_fast64_t
:::::::::::::::::::::::::
_Atomic(uint_fast64_t)

atomic_intptr_t _Atomic intptr_t
:::::::::::::::::::
_Atomic(intptr_t)

atomic_uintptr_t _Atomic uintptr_t
::::::::::::::::::::
_Atomic(uintptr_t)

atomic_size_t _Atomic size_t
:::::::::::::::::
_Atomic(size_t)

atomic_ptrdiff_t _Atomic ptrdiff_t
::::::::::::::::::::
_Atomic(ptrdiff_t)

atomic_intmax_t _Atomic intmax_t
:::::::::::::::::::
_Atomic(intmax_t)

atomic_uintmax_t _Atomic uintmax_t
::::::::::::::::::::
_Atomic(uintmax_t)

Recommended practice
2 The representation of an atomic integer type is not required to have the same size as the

corresponding regular
::::::::::
non-atomic

:::::::
version

:::
of

:::
the

:::::
direct

:
type but it should have the same size when-

ever possible, as it eases effort required to port existing code.
:
It
::

is
::::::::::::::

recommended
::::
that

:::
the

:::::::
atomic

::::
type

:::::
name

:::::::
defines

:::::::
exactly

:::
the

::::::::::::::
corresponding

:::::
direct

:::::
type.

:

7.17.7 Operations on atomic types
1 There are only a few kinds of

::
In

::::::::
addition

::
to

::::
the operations on atomic types, though there are many

instances of those kinds
::::::
objects

::::
that

::::
are

:::::::::
described

::
by

::::::::::
operators,

:::::
there

:::
are

:
a
::::
few

::::::
kinds

::
of

::::::::::
operations

:::
that

::::
are

::::::::
specified

::
as

:::::::
generic

:::::::::
functions. This subclause specifies each general kind

:::::::
generic

::::::::
function.

:::::
After

::::::::::
evaluation

::
of

:::
its

:::::::::::
arguments,

:::::
each

::
of

::::::
these

:::::::
generic

:::::::::
functions

::::::
forms

:
a
::::::

single
::::::

read,
:::::
write

:::
or

::::::::::::::::
read-modify-write

:::::::::
operation

:::::
with

:::::
same

:::::::
general

::::::::::
properties

::
as

:::::::::
described

::
in

::::::
5.1.2.4

::::
and

::::::
6.2.6.1.

210 Library § 7.17.7

N2329 C2x CHANGES
:::
diff

::::::
marks — December 8, 2018 ISO/IEC 9899:2017

::
2x (E)

7.17.7.1 The atomic_store generic functions
Synopsis

1 #include <stdatomic.h>
void atomic_store(A *object, C desired);
void atomic_store_explicit(A *object, C desired, memory_order order);

Description
2 The order argument shall not be memory_order_acquire, memory_order_consume, nor

memory_order_acq_rel. Atomically replace the value pointed to by object with the value of
desired. Memory is affected according to the value of order.

Returns
3 The atomic_store generic functions return no value.

7.17.7.2 The atomic_load generic functions
Synopsis

1 #include <stdatomic.h>
C atomic_load(const A *object);
C atomic_load_explicit(const A *object, memory_order order);

Description
2 The order argument shall not be memory_order_release nor memory_order_acq_rel. Memory is

affected according to the value of order.

Returns
3 Atomically returns the value pointed to by object.

7.17.7.3 The atomic_exchange generic functions
Synopsis

1 #include <stdatomic.h>
C atomic_exchange(A *object, C desired);
C atomic_exchange_explicit(A *object, C desired, memory_order order);

Description
2 Atomically replace the value pointed to by object with desired. Memory is affected according to

the value of order. These operations are read-modify-write operations (5.1.2.4).

Returns
3 Atomically returns the value pointed to by object immediately before the effects.

7.17.7.4 The atomic_compare_exchange generic functions
Synopsis

1 #include <stdatomic.h>
_Bool atomic_compare_exchange_strong(A *object, C *expected, C desired);
_Bool atomic_compare_exchange_strong_explicit(A *object,

C *expected, C desired, memory_order success, memory_order failure);
_Bool atomic_compare_exchange_weak(A *object, C *expected, C desired);
_Bool atomic_compare_exchange_weak_explicit(A *object,

C *expected, C desired, memory_order success, memory_order failure);

Description
2 The failure argument shall not be memory_order_release nor memory_order_acq_rel. The

failure argument shall be no stronger than the success
:::
not

:::::::
impose

:::::
more

:::::::::::
constraints

:::
on

::::
the

:::::::::
operation

::::
than

:::
the

::::::::
success

:
argument.

§ 7.17.7.4 Library 211

ISO/IEC 9899:2017
::
2x (E)

:::
diff

::::::
marks — December 8, 2018 C2x CHANGES N2329

3 Atomically, compares the contents of the memory pointed to by object for equality with that
pointed to by expected, and if true, replaces the contents of the memory pointed to by object
with desired, and if false, updates the contents of the memory pointed to by expected with that
pointed to by object. Further, if the comparison is true, memory is affected according to the value
of success, and if the comparison is false, memory is affected according to the value of failure.
These operations are atomic read-modify-write operations (5.1.2.4).

4 NOTE 1 For example, the effect of atomic_compare_exchange_strong is

if (memcmp(object, expected, sizeof (*object)) == 0)
memcpy(object, &desired, sizeof (*object));

else
memcpy(expected, object, sizeof (*object));

5 A weak compare-and-exchange operation may fail spuriously. That is, even when the contents
of memory referred to by expected and object are equal, it may return zero and store back to
expected the same memory contents that were originally there.

6 NOTE 2 This spurious failure enables implementation of compare-and-exchange on a broader class of machines, e.g.
load-locked store-conditional machines.

7 EXAMPLE A consequence of spurious failure is that nearly all uses of weak compare-and-exchange will be in a loop.

exp = atomic_load(&cur);
do {

des = function(exp);
} while (!atomic_compare_exchange_weak(&cur, &exp, des));

When a compare-and-exchange is in a loop, the weak version will yield better performance on some platforms. When a weak
compare-and-exchange would require a loop and a strong one would not, the strong one is preferable.

Returns
8 The result of the comparison.

7.17.7.5 The atomic fetch and modify generic functions
1 The following operations perform arithmetic and bitwise computations. All of these

:::::
These

:
op-

erations are applicable to an object of any atomic integer type . None of these operations is
applicable to atomic_bool.

:
as

:::::
long

:::
as

:::
the

:::::::::::
non-atomic

:::::::
version

::
of

::::
the

::::
type

::::
can

:::
be

:::
the

::::
left

::::::::
operand

::
of

:::
the

:::::::::::::
corresponding

::::
op=

::::::::::
compound

:::::::::::
assignment.267) The key, operator, and computation correspon-

dence is:

key op computation
add + addition
sub - subtraction

::::
mult

:*: :::::::::::::
multiplication

:::
div

:
/
: :::::::

division
or | bitwise inclusive or
xor ^ bitwise exclusive or
and & bitwise and

:::::
lshift

::
<<

: :::
left

::::
shift

:::::
rshift

::
>>

: ::::
right

:::::
shift

267)
:::
Thus

:::::
these

::::::::
operations

::
are

:::
not

:::::::
permitted

:::
for

::::::
pointers

::
to

:::::
atomic

::::::
_Bool,

:::::
bitwise

::::::::
operations

:::
are

::
not

::::::::
permitted

::
for

::::::
atomic

:::::
floating

:::::
point

::::
types,

:::
and

::::
only

::::
"add"

:::
and

:::::
"sub"

::::::
variants

::
are

::::::::
permitted

::
for

:::::
atomic

::::::
pointer

:::::
types.

::
For

:::
the

::::
latter

:::
the

:::
type

:::
for

::
M

:
is
:::::::::
ptrdiff_t,

::
see

:::::
7.17.1.

212 Library § 7.17.7.5

N2329 C2x CHANGES
:::
diff

::::::
marks — December 8, 2018 ISO/IEC 9899:2017

::
2x (E)

Synopsis

2 #include <stdatomic.h>
C atomic_fetch_key(A *object, M operand);
C atomic_fetch_key_explicit(A *object, M operand, memory_order order);
C atomic_key_fetch(A *object, M operand);
C atomic_key_fetch_explicit(A *object, M operand, memory_order order);

Description
3 Atomically replaces the value pointed to by object with the result of the computation applied to

the value pointed to by object and the given operand. Memory is affected according to the value of
order. These operations are atomic read-modify-write operations (5.1.2.4). For signed integer types,
arithmetic is defined to use two’s complement representation with silent wrap-around on overflow;
there are no undefined results. For address types, the result may be an undefined address, but the
operations otherwise have no undefined behavior.

Returns
4 Atomically, the value pointed to by object immediately before the effects .

:::
(for

:::::::::::::::
atomic_fetch_

:::
key

::::::::
variants)

::
or

:::::
after

:::
the

::::::
effects

::::
(for

::::::::
atomic_

:::
key

:::::::
_fetch

::::::::
variants).

:

5 NOTE The
:::
For

::::
many

::::::
aspects

:::
the operation of the atomic fetch and modify generic functions are nearly equivalent to

the operation of the corresponding op= compound assignment operators. The only differences arethat the compound
assignment operators are not guaranteed to operate atomically, and the value yielded by a compound assignment operator
is the updated

:::::
Notable

::::::::
differences

:::
are:

::::::::
according

::
to

::
the

::::::
variant

::
the

:::::
value

::::::
returned

::
by

:::
the atomic fetch and modify generic

functions
:
is
:::
the

:::::::
previous value of the object, whereas the value returned by the is the previous value of

:::::
atomic

:::::
object;

:::
the

::::::
memory

::::
order

:::
can

::
be

:::::::
specified

::
to

::
be

:::
less

::::
strict

:::
than

:::
the

:::::::
operator;

::
the

:::::::
possible

::::
range

::
of

:::::
values

::
for

:::::::
operand

:::
can

::
be

:::::::
narrower

::
or

::::
larger

::::
than

::
for

:::
the

::::::
operator.

:

6 EXAMPLE 1
::::::
Provided

::::
that

:::
the

:::::::::::
implementation

:::::
allows

::::
such

::::
large

:::::
array

::::
sizes,

:
the atomic object.

:::::::
following

:::
use

::
of

::
the

:::
+=

::::::
operator

::
is

::::
valid.

:::::
Before

:::
the

:::::
generic

:::::::
function

:::
call,

:
a
::::::::
conversion

::
of
:::::
large

::
to

::::::::
ptrdiff_t

:::
has

::
to

::
be

::::::::
performed.

::::
This

:::
may

::::
trap

::::
before

:::
the

:::
call

::
or

:::
will

:::
give

::
an

::::::::::::
implementation

::::::
defined

::::
result

::::
that

::::
differs

::::
from

:::
the

::::::
operator

::::::
version.

:

static const size_t large = PTRDIFF_MAX + 1ULL
static unsigned char block[large+1];
static unsigned char*_Atomic cp = block;
cp += large; // valid, equivalent to cp = &block[large]
atomic_fetch_add(&cp, large); // invalid

7 EXAMPLE 2
::::::::
Performing

::::::
integer

::::::::
promotion

::::::
instead

::
of

:
a
::::::::
conversion

::
to
:::

an
:::::::
unsigned

::::
type

:::
can

::::
have

:::
the

:::::
inverse

:::::
effect

::
of

:::::::
narrowing

:::
the

::::::
possible

:::::
range

::
for

:::
the

::::::::
compound

:::::::::
assignment.

_Atomic unsigned char one = 1;
one += INT_MAX; // invalid
atomic_fetch_add(&one, INT_MAX); // valid, equivalent to ((one = 0), 1)

:::
Here

:::
the

::::::::::
intermediate

::::
value

::::::::
1+INT_MAX

::::::::
overflows

:::
and

::::
either

::::
traps

::
or

:::::::
provides

::
an

::::::::::::
implementation

::::::
defined

::::
value,

:::::::
whereas

::
the

::::::::
argument

::
for

:::
the

:::::
generic

::::::
function

::
is
:::
first

::::::::
converted

:
to
:::::::::
UCHAR_MAX.

:

7.17.8 Atomic flag type and operations
1 The atomic_flag type provides the classic test-and-set functionality. It has two states, set and clear.

2 Operations on an object of type atomic_flag shall be lock free.
3 NOTE Hence, as per 7.17.5, the operations should also be address-free. No other type requires lock-free operations, so the

atomic_flag type is the minimum hardware-implemented type needed to conform to this document. The remaining types
can be emulated with atomic_flag, though with less than ideal properties.

4 The macro ATOMIC_FLAG_INIT may be used to initialize an atomic_flag to the clear state. An
atomic_flag that is not explicitly initialized with ATOMIC_FLAG_INIT is initially in an indeterminate
state.

5 EXAMPLE

atomic_flag guard = ATOMIC_FLAG_INIT;

§ 7.17.8 Library 213

ISO/IEC 9899:2017
::
2x (E)

:::
diff

::::::
marks — December 8, 2018 C2x CHANGES N2329

6
::
In

:::
the

:::::::::
following

::::::::
synopsis

::
A

:::::::
denotes

:::::::::::::
atomic_flag,

:::::::
possibly

::::::::::
volatile

::::::::
qualified.

::
It
::
is
:::::::::::
unspecified

::
if

:::
any

::
of

::::
the

::::
type

:::::::
generic

:::::::::
functions

:::
has

:::::
only

:::
one

:::::::
variant

:::::
with

:::::::::
volatile

:::::::::::
qualification

:::
or

::::
also

:
a
:::::::
second

::::::
variant

::::::::
without.

:

7.17.8.1 The atomic_flag_test_and_set generic functions
Synopsis

1 #include <stdatomic.h>
_Bool atomic_flag_test_and_set(A *object);
_Bool atomic_flag_test_and_set_explicit(A *object, memory_order order);

Description
2 Atomically places the atomic flag pointed to by object in the set state and returns the value

corresponding to the immediately preceding state. Memory is affected according to the value of
order. These operations are atomic read-modify-write operations (5.1.2.4).

Returns
3 The atomic_flag_test_and_set generic functions return the value that corresponds to the state of

the atomic flag immediately before the effects. The return value true
::::
true

:
corresponds to the set

state and the return value false
:::::
false

:
corresponds to the clear state.

7.17.8.2 The atomic_flag_clear generic functions
Synopsis

1 #include <stdatomic.h>
void atomic_flag_clear(A *object);
void atomic_flag_clear_explicit(A *object, memory_order order);

Description
2 The order argument shall not be memory_order_acquire nor memory_order_acq_rel. Atomically

places the atomic flag pointed to by object into the clear state. Memory is affected according to the
value of order.

Returns
3 The atomic_flag_clear generic functions return no value.

214 Library § 7.17.8.2

N2329 C2x CHANGES
:::
diff

::::::
marks — December 8, 2018 ISO/IEC 9899:2017

::
2x (E)

Returns
4 The at_quick_exit function returns zero if the registration succeeds, nonzero if it fails.

Forward references: the quick_exit function (7.22.4.7).

7.22.4.4 The exit function
Synopsis

1 #include <stdlib.h>
_Noreturn void exit(int status);

Description
2 The exit function causes normal program termination to occur. No functions registered by the

at_quick_exit function are called. If a program calls the exit function more than once, or calls the
quick_exit function in addition to the exit function, the behavior is undefined.

3 First, all functions registered by the atexit function are called, in the reverse order of their registra-
tion,308) except that a function is called after any previously registered functions that had already
been called at the time it was registered. If, during the call to any such function, a call to the longjmp
function is made that would terminate the call to the registered function, the behavior is undefined.

4
::
A

:::::::::
sequence

::::::
point

:::::::
occurs

::
at
::::

the
:::::::::::

beginning
:::
of

::::
that

::::::::::
procedure

:::::
and

::::::::::::
immediately

:::::::
before

:::::
and

:::::::::::
immediately

:::::
after

::::
each

::::
call

::
to

::
a

:::::::
function

::::::::::
registered

::::
with

::::::::
atexit.

5 Next, all open streams with unwritten buffered data are flushed, all open streams are closed, and all
files created by the tmpfile function are removed.

6 Finally, control is returned to the host environment. If the value of status is zero or EXIT_SUCCESS,
an implementation-defined form of the status successful termination is returned. If the value of
status is EXIT_FAILURE, an implementation-defined form of the status unsuccessful termination is
returned. Otherwise the status returned is implementation-defined.

Returns
7 The exit function cannot return to its caller.

7.22.4.5 The _Exit function
Synopsis

1 #include <stdlib.h>
_Noreturn void _Exit(int status);

Description
2 The _Exit function causes normal program termination to occur and control to be returned to the

host environment. No functions registered by the atexit function, the at_quick_exit function,
or signal handlers registered by the signal function are called. The status returned to the host
environment is determined in the same way as for the exit function (7.22.4.4). Whether open
streams with unwritten buffered data are flushed, open streams are closed, or temporary files are
removed is implementation-defined.

Returns
3 The _Exit function cannot return to its caller.

7.22.4.6 The getenv function
Synopsis

1 #include <stdlib.h>
char *getenv(const char *name);

308)Each function is called as many times as it was registered, and in the correct order with respect to other registered
functions.

§ 7.22.4.6 Library 263

ISO/IEC 9899:2017
::
2x (E)

:::
diff

::::::
marks — December 8, 2018 C2x CHANGES N2329

Description
2 The getenv function searches an environment list, provided by the host environment, for a string that

matches the string pointed to by name. The set of environment names and the method for altering
the environment list are implementation-defined. The getenv function need not avoid data races
with other threads of execution that modify the environment list.309)

3 The implementation shall behave as if no library function calls the getenv function.

Returns
4 The getenv function returns a pointer to a string associated with the matched list member. The

string pointed to shall not be modified by the program, but may be overwritten by a subsequent call
to the getenv function. If the specified name cannot be found, a null pointer is returned.

7.22.4.7 The quick_exit function
Synopsis

1 #include <stdlib.h>
_Noreturn void quick_exit(int status);

Description
2 The quick_exit function causes normal program termination to occur. No functions registered by

the atexit function or signal handlers registered by the signal function are called. If a program calls
the quick_exit function more than once, or calls the exit function in addition to the quick_exit
function, the behavior is undefined. If a signal is raised while the quick_exit function is executing,
the behavior is undefined.

3 The quick_exit function first calls all functions registered by the at_quick_exit function, in the
reverse order of their registration,310) except that a function is called after any previously registered
functions that had already been called at the time it was registered. If, during the call to any such
function, a call to the longjmp function is made that would terminate the call to the registered
function, the behavior is undefined.

4
::
A

:::::::::
sequence

::::::
point

:::::::
occurs

::
at
::::

the
:::::::::::

beginning
:::
of

::::
that

::::::::::
procedure

:::::
and

::::::::::::
immediately

:::::::
before

:::::
and

:::::::::::
immediately

:::::
after

::::
each

::::
call

::
to

::
a

:::::::
function

::::::::::
registered

::::
with

:::::::::::::::
at_quick_exit.

:

5 Then control is returned to the host environment by means of the function call _Exit(status).

Returns
6 The quick_exit function cannot return to its caller.

7.22.4.8 The system function
Synopsis

1 #include <stdlib.h>
int system(const char *string);

Description
2 If string is a null pointer, the system function determines whether the host environment has a

command processor. If string is not a null pointer, the system function passes the string pointed to
by string to that command processor to be executed in a manner which the implementation shall
document; this might then cause the program calling system to behave in a non-conforming manner
or to terminate.

Returns
3 If the argument is a null pointer, the system function returns nonzero only if a command processor

is available. If the argument is not a null pointer, and the system function does return, it returns an

309)Many implementations provide non-standard functions that modify the environment list.
310)Each function is called as many times as it was registered, and in the correct order with respect to other registered

functions.

264 Library § 7.22.4.8

N2329 C2x CHANGES
:::
diff

::::::
marks — December 8, 2018 ISO/IEC 9899:2017

::
2x (E)

7.26.5.3 The thrd_detach function
Synopsis

1 #include <threads.h>
int thrd_detach(thrd_t thr);

Description
2 The thrd_detach function tells the operating system to dispose of any resources allocated to the

thread identified by thr when that thread terminates. The thread identified by thr shall not have
been previously detached or joined with another thread.

Returns
3 The thrd_detach function returns thrd_success on success or thrd_error if the request could

not be honored.

7.26.5.4 The thrd_equal function
Synopsis

1 #include <threads.h>
int thrd_equal(thrd_t thr0, thrd_t thr1);

Description
2 The thrd_equal function will determine whether the thread identified by thr0 refers to the thread

identified by thr1.

Returns
3 The thrd_equal function returns zero if the thread thr0 and the thread thr1 refer to different

threads. Otherwise the thrd_equal function returns a nonzero value.

7.26.5.5 The thrd_exit function
Synopsis

1 #include <threads.h>
_Noreturn void thrd_exit(int res);

Description
2 For every thread-specific storage key which was created with a non-null destructor and for which

the value is non-null, thrd_exit sets the value associated with the key to a null pointer value
and then invokes

::::
calls

:
the destructor with its previous value. The order in which destructors are

invoked is unspecified.
:::::
These

::::::::::
destructor

::::
calls

:::
are

:::::::::::::::
indeterminately

::::::::::
sequenced.

:

3 If after this process there remain keys with both non-null destructors and values, the implementation
repeats this process up to TSS_DTOR_ITERATIONS times.

4 Following this, the thrd_exit function terminates execution of the calling thread and sets its result
code to res.

:::
The

:::::::::
sequence

:::::
point

::
at

:::
the

::::
end

::
of

:::
the

:::::::::
execution

:::
of

:::
the thrd_exit function

::::::::::::
synchronizes

::::
with

:::
the

:::::::::::
completion

::
of

:
a
::::::::::
successful

::::
call,

::
if

::::
any,

::
of

:::
the

::::::::::
thrd_join

::::::::
function

:::
for

:::
the

:::::::
calling

::::::
thread

::::
and

::::
with

:::
the

::::::::::
beginning

::
of

:::
all

::::
calls

::
of

:::::::
atexit

:::
or

::::::::::::::
at_quick_exit

:::::::::
handlers

::
at

::::::::
program

:::::::::::
termination.325)

5 The program terminates normally after the last thread has been terminated. The behavior is as if the
program called the exit function with the status EXIT_SUCCESS at thread termination time.

Returns
6 The thrd_exit function returns no value.

7.26.5.6 The thrd_join function
325)

:::
This

:::::
leaves

::
it
:::::::::

unspecified
::

if
::::::

threads
::::

that
:::
are

:::::::::
terminated

::
by

:::::
other

:::::
means

::::
than

::::::::::
thrd_exit,

:::
for

::::::
example

:::
by

:::
an

:::::::::::
implementation

::::::
specific

:::::::::
mechanism

::
or
:::::::

because
:::
they

:::::
have

:::
not

::::
been

::::::::
terminated

:::::::
explicitly

::::::
before

::::::
program

::::::::::
termination,

:::::::::
synchronize

:::
with

::::::
atexit

::
or

:::::::::::
at_quick_exit

:::::::
handlers.

§ 7.26.5.6 Library 287

N2329 C2x CHANGES
:::
diff

::::::
marks — December 8, 2018 ISO/IEC 9899:2017

::
2x (E)

7.31 Future library directions
1 The following names are grouped under individual headers for convenience. All external names

described below are reserved no matter what headers are included by the program.

7.31.1 Complex arithmetic <complex.h>
1 The function names

cerf
cerfc
cexp2

cexpm1
clog10
clog1p

clog2
clgamma
ctgamma

and the same names suffixed with f or l may be added to the declarations in the <complex.h>
header.

7.31.2 Character handling <ctype.h>
1 Function names that begin with either is or to, and a lowercase letter may be added to the declara-

tions in the <ctype.h> header.

7.31.3 Errors <errno.h>
1 Macros that begin with E and a digit or E and an uppercase letter may be added to the macros

defined in the <errno.h> header.

7.31.4 Floating-point environment <fenv.h>
1 Macros that begin with FE_ and an uppercase letter may be added to the macros defined in the

<fenv.h> header.

7.31.5 Format conversion of integer types <inttypes.h>
1 Macros that begin with either PRI or SCN, and either a lowercase letter or X may be added to the

macros defined in the <inttypes.h> header.

7.31.6 Localization <locale.h>
1 Macros that begin with LC_ and an uppercase letter may be added to the macros defined in the

<locale.h> header.

7.31.7 Signal handling <signal.h>
1 Macros that begin with either SIG and an uppercase letter or SIG_ and an uppercase letter may be

added to the macros defined in the <signal.h> header.

7.31.8 Atomics <stdatomic.h>
1 Macros that begin with ATOMIC_ and an uppercase letter may be added to the macros defined

in the <stdatomic.h> header. Typedef names that begin with either atomic_ or memory_, and
a lowercase letter may be added to the declarations in the <stdatomic.h> header. Enumeration
constants that begin with memory_order_ and a lowercase letter may be added to the definition
of the memory_order type in the <stdatomic.h> header. Function names that begin with atomic_

and a lowercase letter may be added to the declarations in the <stdatomic.h> header.

2 The macro ATOMIC_VAR_INIT
:::::::::
possibility

::::
that

:::
an

::::::
atomic

:::::
type

:::::
name

::
of

:::
an

::::::
atomic

:::::::
integer

::::
type

:::::::
defines

:
a
::::::::
different

:::::
type

::::
than

:::
the

::::::::::::::
corresponding

:::::
direct

:::::
type is an obsolescent feature.

7.31.9 Boolean type and values <stdbool.h>
1 The ability to undefine and perhaps then redefine the macros bool, true, and false is an obsolescent

feature.

7.31.10 Integer types <stdint.h>
1 Typedef names beginning with int or uint and ending with _t may be added to the types defined

in the <stdint.h> header. Macro names beginning with INT or UINT and ending with _MAX, _MIN,

§ 7.31.10 Library 339

