
Clarifying the restrict Keyword v2

 Doc. No.: WG14/N2260
 Date: 2018-05-20
 Author 1: Troy A. Johnson
 Email: troyj@cray.com
 Author 2: Bill Homer
 Email: homer@cray.com

Introduction

Drafts of the proposal to add the restrict qualifier to the C standard
contained more examples than were eventually included in the standard.
The examples that were included were limited to cases in which all pointers
were restricted, which are most helpful to a translator. The examples
that were not included served to show what the formal definition implied
in cases in which not all pointers were restricted.

The absence of those additional examples may have been intended to avoid
encouraging usages that are needlessly challenging for a translator, but they
have also apparently lead to confusion about how to interpret the formal
definition in such cases. That confusion has resulted in translators
that infer non-aliasing in cases where the standard does not imply it,
and so make unsafe optimizations.

This proposal seeks to clarify the restrict keyword, both for programmers
and for implementers of translators, by adding examples in which only a
single pointer is restrict-qualified. They illustrate that the formal
definition can effectively imply non-aliasing in such cases, but only
with a careful analysis that considerably exceeds what is necessary for
the examples currently in the standard. Accompanying text makes it clear
that a translator may reasonably decline to attempt such analysis, and so
programs meant to be portable should avoid relying on such usages.

Problem

Consider these functions:

 void f1(int *p, int *q) { ... }
 void f2(int * restrict p, int * restrict q) { ... }
 void f3(int * restrict p, int *q) { ... }
 void f4(int *p, int * restrict q) { ... }

In f1, a translator must assume that p and q may point to the the same
object, or to different elements of the same array. In f2, the use
of restrict guarantees that such aliasing does not happen, at least for
objects that are modified during the execution of f2.

Although there is universal agreement on the difference between f1 and f2, there
is disagreement among programmers and implementations as to whether f2, f3, and
f4 are semantically equivalent. Note that the examples provided in the standard
do not help resolve this disagreement, since all examples are similar to f2.

A careful reading of C11 6.7.3 leads to the conclusion that f2, f3, and f4 do
NOT provide identical information. An implementation is able to infer without
examining the body of f2 that accesses through p and q do not alias. Both f3
and f4 admit the possibility that the unrestricted pointer becomes "based" (see
6.7.3.1 paragraph 3) on the restricted pointer during execution of the
function's body. For f3 this might happen directly with q = p and for f4 this
might happen directly with p = q, but it could happen through less obvious,
indirect means. This situation is impossible in f2 due to the limitations that
6.7.3.1 paragraph 4 places on assignments between two restricted pointers, but
there is no such limitation on assigning a restricted pointer to an unrestricted
pointer. Once the unrestricted pointer becomes based on the restricted pointer,
it may be used to access the same object; such an access does not violate the
standard because all accesses to the object are still being performed using a
pointer that is based on the restricted pointer. Therefore, in order to have
the same freedom to optimize f3 or f4 as f2, an implementation must analyze the
function's body and prove that this situation does not occur. One generally
should expect less optimization of f3 and f4 compared to f2, unless using a
particular implementation that performs the necessary analysis, the code is
easily analyzable, and the situation does not occur. An implementation
reasonably might not attempt this analysis for a variety of reasons: trust that
the programmer would have written f2 if their code permitted the second
restrict, belief that f3 and f4 are too rare to be worth special effort, or
belief that the analysis often will need to reach a conservative conclusion.

For a concrete example, try compiling the program below with and without
optimization, but leave inlining disabled. The opaque function call to g() is
used to represent an unanalyzable basing of q upon p.

 #include <stdio.h>

 void g(int **a, int *b)
 {
 *a = b;
 }

 int foo(int * restrict p, int *q)
 {
 g(&q, p); // effectively q = p
 *p = 1;
 *q = 2;
 return *p + *q;
 }

 int main()
 {
 int x, y;
 printf("%d\n", foo(&x, &y));
 return 0;
 }

Some compilers, like Clang 6.0, behave correctly:

 > clang -O0 test.c
 > ./a.out

 4
 > clang -O2 -fno-inline test.c
 > ./a.out
 4

Other compilers, like GNU 7.3.0, behave incorrectly:

 > gcc -O0 test.c
 > ./a.out
 4
 > gcc -O2 -fno-inline test.c
 > ./a.out
 3

One commercial compiler was found to display the incorrect behavior as well.

For an example where q becomes based on p in the same function, consider:

 #include <stdio.h>

 int z;

 int foo(int * restrict p, int *q)
 {
 if (z) q = p; // Together, these two statements are q = p. The
 if (!z) q = p; // conditions are used to prevent forwarding.
 *p = 1;
 *q = 2;
 return *p + *q;
 }

 int main()
 {
 int x, y;
 printf("%d\n", foo(&x, &y));
 return 0;
 }

For that program, the same commercial compiler continues to translate foo() as
returning 3 (it folds the addition at compile time), but the GNU and Clang
compilers both produce correct code.

It is our experience that this problem has gone unnoticed for so long because
many programmers expect equivalent optimization for f2, f3, and f4. Such
programmers fall into two groups. The first group does not know about the
semantic difference among f2, f3, and f4. Because they think the
implementation
is being presented with identical information in all cases, they expect the same
optimization behavior in all cases. The second group understands the semantic
difference, but believes that a quality implementation contains analysis
sufficient to optimize f3 or f4 like f2. Their reason for not including the
second restrict is brevity. Both groups of programmers see their expectations
met by implementations that are actually behaving incorrectly. When they
encounter an implementation that behaves correctly, they conclude that the
conforming implementation is the defective one!

Proposed Additions to C

The standard needs examples that clarify the meaning of a solitary
restricted pointer so that programmers and language implementers can agree.

6.7.3.1
...
8. EXAMPLE 2 The function parameter declarations in the following example

 void f(int n, int * restrict p, int * restrict q)
 {
 while (n-- > 0)
 *p++ = *q++;
 }

 assert that, during each execution of the function, if an object is accessed
 through one of the pointer parameters, then it is not also accessed through
 the other.
 [ADD] The translator can make this no-aliasing inference based on the
 parameter declarations alone, without analyzing the function body.

[ADD] 13. EXAMPLE 5 Suppose that a programmer knows that references of the
 form p[i] and q[j] are never aliases in the body of a function:

 void f(int n, int *p, int *q) { ... }

 There are several ways that this information could be
 conveyed to a translator, using the restrict qualifier.
 Example 2 shows the most effective way, qualifying all pointer
 parameters, and can be used provided that neither p nor q becomes
 based on the other in the function body.

 A potentially effective alternative is:

 void f(int n, int * restrict p, int * const q) { ... }

 Again it is possible for a translator to make the inference
 based on the parameter declarations alone, though now it
 must use subtler reasoning: that the const-qualification
 of q precludes it becoming based on p. There is also
 a requirement that q is not modified, so this way cannot be
 used for the function in Example 2, as written.

[ADD] 14. EXAMPLE 6 Another potentially effective alternative is:

 void f(int n, int *p, int const * restrict q) { ... }

 Again it is possible for a translator to make the inference
 based on the parameter declarations alone, though now it
 must use even subtler reasoning: that this combination of
 restrict and const means that objects referenced using q
 cannot be modified, and so no modified object can be referenced

 using both p and q.

[ADD] 15. EXAMPLE 7 The least effective alternative is:

 void f(int n, int * restrict p, int *q) { ... }

 Here the translator can make the inference only by analyzing
 the body of the function and proving that q cannot become
 based on p. Some translator designs may choose to exclude
 this analysis, given availability of the more effective
 alternatives above. Such a translator shall assume that aliases
 are present; assuming that aliases are not present may result in
 an incorrect translation. Also, a translator that attempts the
 analysis may not succeed in all cases and need to conservatively
 assume that aliases are present.

