
Update	to	N2108	suggested	TC	for	CR501	
WG	14	N2253	
	
Submitter:	C	FP	Group	
Submission	Date:	2018-05-11	
Source:	WG14	
Reference	Documents:	DR	501,	N2108,	C11,	N2211	
Subject:	Changes	for	obsolescing	DECIMAL_DIG	

Summary	

N2108	suggested	obsolescing	DECIMAL_DIG,	as	part	of	the	resolution	of	CR	501.	This	document	
updates	the	suggested	CR	in	N2108	to	eliminate	references	in	C11	to	DECIMAL_DIG,	and	to	clarify.	
Changes	below	(along	with	changes	to	TS	18661)	were	identified	in	N2211.	

Suggested	Technical	Corrigendum	

In	7.31,	add	a	subclause:	
	

7.31.x	Mathematics	<math.h>	
Use	of	the	DECIMAL_DIG	macro	is	an	obsolescent	feature.	A	similar	type-specific	macro,	
such	as	LDBL_DECIMAL_DIG	can	be	used	instead.	

	
In	5.2.4.2.2#11,	in	the	bullet	defining	DECIMAL_DIG,	attach	a	footnote	to	the	wording:	
	

DECIMAL_DIG
	
where	the	footnote	is:	

*)	See	‘‘future	library	directions’’	(7.31.x).	
	

In	5.2.4.2.2#14,	change:	

	[14]	Conversion	from	(at	least)	double	to	decimal	with	DECIMAL_DIG	digits	and	back	
should	be	the	identity	function.	

	
to:	
	

[14]	Conversion	between	real	floating	type	and	decimal	character	sequence	with	at	most	
T_DECIMAL_DIG	digits	should	be	correctly	rounded,	where	T	is	the	macro	prefix	for	the	
type.	This	assures	conversion	from	real	floating	type	to	decimal	character	sequence	with	
T_DECIMAL_DIG	digits	and	back,	using	to-nearest	rounding,	is	the	identity	function.	

	
In	5.2.4.2.2#16,	in	the	list	of	macro	values	in	EXAMPLE	2,	omit:	
	

DECIMAL_DIG 17
	
In	5.2.4.2.2#16,	at	the	end	of	EXAMPLE	2,	omit:	
	

If	a	type	wider	than	double	were	supported,	then	DECIMAL_DIG	would	be	greater	than	
17.	For	example,	if	the	widest	type	were	to	use	the	minimal-width	IEC	60559	double-
extended	format	(64	bits	of	precision),	then	DECIMAL_DIG	would	be	21.		

	
In	7.21.6.1#13	and	7.29.2.1#13,	change:	
	

[13]	For	e,	E,	f,	F,	g,	and	G	conversions,	if	the	number	of	significant	decimal	digits	is	at	most	
DECIMAL_DIG,	then	the	result	should	be	correctly	rounded.283)	If	the	number	of	
significant	decimal	digits	is	more	than	DECIMAL_DIG	but	the	source	value	is	exactly	
representable	with	DECIMAL_DIG	digits,	then	the	result	should	be	an	exact	representation	
with	trailing	zeros.	Otherwise,	the	source	value	is	bounded	by	two	adjacent	decimal	strings	
L	<	U,	both	having	DECIMAL_DIG	significant	digits;	the	value	of	the	resultant	decimal	string	
D	should	satisfy	L	≤	D	≤	U,	with	the	extra	stipulation	that	the	error	should	have	a	correct	
sign	for	the	current	rounding	direction.	

	
to:	
	

[13]	For	e,	E,	f,	F,	g,	and	G	conversions,	if	the	number	of	significant	decimal	digits	is	at	most	
the	maximum	value	M	of	the	T_DECIMAL_DIG	macros	(defined	in	<float.h>),	then	the	
result	should	be	correctly	rounded.283)	If	the	number	of	significant	decimal	digits	is	more	
than	M	but	the	source	value	is	exactly	representable	with	M	digits,	then	the	result	should	be	
an	exact	representation	with	trailing	zeros.	Otherwise,	the	source	value	is	bounded	by	two	
adjacent	decimal	strings	L	<	U,	both	having	M	significant	digits;	the	value	of	the	resultant	
decimal	string	D	should	satisfy	L	≤	D	≤	U,	with	the	extra	stipulation	that	the	error	should	
have	a	correct	sign	for	the	current	rounding	direction.	

	
In	7.22.1.3#9	and	7.29.4.1.1#9,	change:	
	

[9]	If	the	subject	sequence	has	the	decimal	form	and	at	most	DECIMAL_DIG	(defined	in	
<float.h>)	significant	digits,	the	result	should	be	correctly	rounded.	If	the	subject	
sequence	D	has	the	decimal	form	and	more	than	DECIMAL_DIG	significant	digits,	consider	
the	two	bounding,	adjacent	decimal	strings	L	and	U,	both	having	DECIMAL_DIG	significant	
digits,	such	that	the	values	of	L,	D,	and	U	satisfy	L	≤	D	≤	U.	The	result	should	be	one	of	the	
(equal	or	adjacent)	values	that	would	be	obtained	by	correctly	rounding	L	and	U	according	
to	the	current	rounding	direction,	with	the	extra	stipulation	that	the	error	with	respect	to	D	
should	have	a	correct	sign	for	the	current	rounding	direction.294)	

	
to:	
	

[9]	If	the	subject	sequence	has	the	decimal	form	and	at	most	M	significant	digits,	where	M	is	
the	maximum	value	of	the	T_DECIMAL_DIG	macros	(defined	in	<float.h>),	the	result	
should	be	correctly	rounded.	If	the	subject	sequence	D	has	the	decimal	form	and	more	than	
M	digits,	consider	the	two	bounding,	adjacent	decimal	strings	L	and	U,	both	having	M	
significant	digits,	such	that	the	values	of	L,	D,	and	U	satisfy	L	≤	D	≤	U.	The	result	should	be	
one	of	the	(equal	or	adjacent)	values	that	would	be	obtained	by	correctly	rounding	L	and	U	
according	to	the	current	rounding	direction,	with	the	extra	stipulation	that	the	error	with	
respect	to	D	should	have	a	correct	sign	for	the	current	rounding	direction.294)	

	
In	7.22.1.3	footnote	294	and	7.29.4.1.1	footnote	345,	change:	

	
DECIMAL_DIG,	defined	in	<float.h>,	should	be	sufficiently	large	that	L	and	U	will	
usually	round	to	the	same	internal	floating	value,	but	if	not	will	round	to	adjacent	values.	

	
to:	
	

M	is	sufficiently	large	that	L	and	U	will	usually	correctly	round	to	the	same	internal	floating	
value,	but	if	not	will	correctly	round	to	adjacent	values.	

	
In	F.5,	omit	footnote	361:	
	

If	the	minimum-width	IEC	60559	extended	format	(64	bits	of	precision)	is	supported,	
DECIMAL_DIG	shall	be	at	least	21.	If	IEC	60559	double	(53	bits	of	precision)	is	the	widest	
IEC	60559	format	supported,	then	DECIMAL_DIG	shall	be	at	least	17.	(By	contrast,	
LDBL_DIG	and	DBL_DIG	are	18	and	15,	respectively,	for	these	formats.)	

	
The	following	change	is	needed	only	if	TS	18661-1	(with	CR	20)	is	not	incorporated	into	C.		
	
In	F.5,	replace::	
	

[1]	Conversion	from	the	widest	supported	IEC	60559	format	to	decimal	with	DECIMAL_DIG	
digits	and	back	is	the	identity	function.361)	
	
[2]	Conversions	involving	IEC	60559	formats	follow	all	pertinent	recommended	practice.	In	
particular,	conversion	between	any	supported	IEC	60559	format	and	decimal	with	
DECIMAL_DIG	or	fewer	significant	digits	is	correctly	rounded	(honoring	the	current	
rounding	mode),	which	assures	that	conversion	from	the	widest	supported	IEC	60559	
format	to	decimal	with	DECIMAL_DIG	digits	and	back	is	the	identity	function.	

	
with:	

[1]	Conversions	involving	IEC	60559	formats	follow	all	pertinent	recommended	practice.	
Conversion	between	any	supported	IEC	60559	format	and	decimal	character	sequence	with	
M	or	fewer	significant	digits	is	correctly	rounded	(honoring	the	current	rounding	mode),	
where	M	is	the	maximum	value	of	the	T_DECIMAL_DIG	macros	(defined	in	<float.h>).	
Conversion	from	any	supported	IEC	60559	format	to	decimal	character	sequence	with	at	
least	T_DECIMAL_DIG	digits	(for	the	corresponding	type)	and	back,	using	to-nearest	
rounding,	is	the	identity	function.	

	
and	renumber	the	subsequent	paragraph.	
	
	

	
	
	
	
	
	

	
	
	
	

