Update to N2108 suggested TC for CR501
WG 14 N2253
Submitter: C FP Group
Submission Date: 2018-05-11
Source: WG14
Reference Documents: DR 501, N2108, C11, N2211
Subject: Changes for obsolescing DECIMAL_DIG

Summary

N2108 suggested obsolescing DECIMAL_DIG, as part of the resolution of CR 501. This document updates the suggested CR in N2108 to eliminate references in C11 to DECIMAL_DIG, and to clarify. Changes below (along with changes to TS 18661) were identified in N2211.

Suggested Technical Corrigendum

In 7.31, add a subclause:

7.31.x Mathematics <math .h>

Use of the DECIMAL_DIG macro is an obsolescent feature. A similar type-specific macro, such as LDBL_DECIMAL_DIG can be used instead.

In 5.2.4.2.2\#11, in the bullet defining DECIMAL_DIG, attach a footnote to the wording:
DECIMAL_DIG
where the footnote is:
${ }^{*}$) See "future library directions" (7.31.x).
In 5.2.4.2.2\#14, change:
[14] Conversion from (at least) double to decimal with DECIMAL_DIG digits and back should be the identity function.
to:
[14] Conversion between real floating type and decimal character sequence with at most T_DECIMAL_DIG digits should be correctly rounded, where T is the macro prefix for the type. This assures conversion from real floating type to decimal character sequence with T_DECIMAL_DIG digits and back, using to-nearest rounding, is the identity function.

In 5.2.4.2.2\#16, in the list of macro values in EXAMPLE 2, omit:
DECIMAL_DIG
In 5.2.4.2.2\#16, at the end of EXAMPLE 2, omit:

If a type wider than double were supported, then DECIMAL_DIG would be greater than 17. For example, if the widest type were to use the minimal-width IEC 60559 doubleextended format (64 bits of precision), then DECIMAL_DIG would be 21.

In 7.21.6.1\#13 and 7.29.2.1\#13, change:
[13] For $\mathbf{e}, \mathbf{E}, \mathbf{f}, \mathbf{F}, \mathbf{g}$, and \mathbf{G} conversions, if the number of significant decimal digits is at most DECIMAL_DIG, then the result should be correctly rounded.283) If the number of significant decimal digits is more than DECIMAL_DIG but the source value is exactly representable with DECIMAL_DIG digits, then the result should be an exact representation with trailing zeros. Otherwise, the source value is bounded by two adjacent decimal strings $L<U$, both having DECIMAL_DIG significant digits; the value of the resultant decimal string D should satisfy $L \leq D \leq U$, with the extra stipulation that the error should have a correct sign for the current rounding direction.
to:
[13] For $\mathbf{e}, \mathbf{E}, \mathbf{f}, \mathbf{F}, \mathbf{g}$, and \mathbf{G} conversions, if the number of significant decimal digits is at most the maximum value M of the T _DECIMAL_DIG macros (defined in <float.h>), then the result should be correctly rounded.283) If the number of significant decimal digits is more than M but the source value is exactly representable with M digits, then the result should be an exact representation with trailing zeros. Otherwise, the source value is bounded by two adjacent decimal strings $L<U$, both having M significant digits; the value of the resultant decimal string D should satisfy $L \leq D \leq U$, with the extra stipulation that the error should have a correct sign for the current rounding direction.

In 7.22.1.3\#9 and 7.29.4.1.1\#9, change:
[9] If the subject sequence has the decimal form and at most DECIMAL_DIG (defined in <float.h>) significant digits, the result should be correctly rounded. If the subject sequence D has the decimal form and more than DECIMAL_DIG significant digits, consider the two bounding, adjacent decimal strings L and U, both having DECIMAL_DIG significant digits, such that the values of L, D, and U satisfy $L \leq D \leq U$. The result should be one of the (equal or adjacent) values that would be obtained by correctly rounding L and U according to the current rounding direction, with the extra stipulation that the error with respect to D should have a correct sign for the current rounding direction.294)
to:
[9] If the subject sequence has the decimal form and at most M significant digits, where M is the maximum value of the T_DECIMAL_DIG macros (defined in <float. h\rangle), the result should be correctly rounded. If the subject sequence D has the decimal form and more than M digits, consider the two bounding, adjacent decimal strings L and U, both having M significant digits, such that the values of L, D, and U satisfy $L \leq D \leq U$. The result should be one of the (equal or adjacent) values that would be obtained by correctly rounding L and U according to the current rounding direction, with the extra stipulation that the error with respect to D should have a correct sign for the current rounding direction.294)

In 7.22.1.3 footnote 294 and 7.29.4.1.1 footnote 345, change:

DECIMAL_DIG, defined in <float. h\rangle, should be sufficiently large that L and U will usually round to the same internal floating value, but if not will round to adjacent values.
to:
M is sufficiently large that L and U will usually correctly round to the same internal floating value, but if not will correctly round to adjacent values.

In F.5, omit footnote 361:
If the minimum-width IEC 60559 extended format (64 bits of precision) is supported, DECIMAL_DIG shall be at least 21. If IEC 60559 double (53 bits of precision) is the widest IEC 60559 format supported, then DECIMAL_DIG shall be at least 17. (By contrast, LDBL_DIG and DBL_DIG are 18 and 15, respectively, for these formats.)

The following change is needed only if TS 18661-1 (with CR 20) is not incorporated into C.

In F.5, replace::
[1] Conversion from the widest supported IEC 60559 format to decimal with DECIMAL_DIG digits and back is the identity function.361)
[2] Conversions involving IEC 60559 formats follow all pertinent recommended practice. In particular, conversion between any supported IEC 60559 format and decimal with DECIMAL_DIG or fewer significant digits is correctly rounded (honoring the current rounding mode), which assures that conversion from the widest supported IEC 60559 format to decimal with DECIMAL_DIG digits and back is the identity function.
with:
[1] Conversions involving IEC 60559 formats follow all pertinent recommended practice. Conversion between any supported IEC 60559 format and decimal character sequence with M or fewer significant digits is correctly rounded (honoring the current rounding mode), where M is the maximum value of the T DECIMAL_DIG macros (defined in <float. h\rangle). Conversion from any supported IEC 60559 format to decimal character sequence with at least T_DECIMAL_DIG digits (for the corresponding type) and back, using to-nearest rounding, is the identity function.
and renumber the subsequent paragraph.

