
Update to N2213 suggested TC for CFP CR 13
N2252

Submitter: C FP group
Submission Date: 2018-05-10
Source: WG14
Reference Document: N2202, N2213, TS 18661-3
Subject: Type-generic macros for functions that round result to narrower type

Summary

This document updates the suggested TC for TS 18661-3 CR 13 presented in N2213, which was
an update to N2202.

After N2202 was posted, Joseph Myers sent the following message:

Joseph Myers
(SC22WG14.14921) Floating-point DR#13 and integer arguments to type-generic macros
To: SC22 WG14

I believe these comments all still apply to the version of the DR
resolution in N2202: it still determines a type, but says nothing about
what function is determined from that type (needed to cover dadd(f, f)
which needs to call daddl to stay compatible with TS 18661-1, for example
- the type determined is float, but what function is determined from it?).

--
Joseph S. Myers
joseph@codesourcery.com

On Thu, 23 Nov 2017, Joseph Myers wrote:

Looking at the latest proposed DR resolution
<http://wiki.edg.com/pub/CFP/WebHome/tgmath_for_narrowing_functions-20171117.pdf>:

This resolution changes text that partially determines a function called
by type-generic macros such as dadd, to text that determines a type. Does
it then result in a call to a function whose parameters have that type? I
don't see anything saying so, but it's possible I've missed some text in
the complicated sequence of (C11 amended by 18661-1 amended by 18661-2
amended by 18661-3 amended by DR#9 amended by DR#13 as modified by this
proposed change to the resolution of DR#13).

In any case, there needs to be *something* about choosing a function whose
arguments have a wider type than the one determined from the types of the
arguments (subject to whatever's needed to keep things well-defined in the
case of integer arguments, if desired), because of the dadd(f, f) case,
which is clearly specified in TS 18661-1 to call the function daddl, and
is included as an example there - as there isn't any dadd function with
float or double arguments. A correction to TS 18661-3 should not have the
effect of invalidating something that was valid with TS 18661-1.

--
Joseph S. Myers
joseph@codesourcery.com

The 23 Nov message Joseph Myers refers to had been overlooked and the valid issue it raises was
not considered in the preparation of N2202. The suggested TC below revises the one in N2202 to
address this issue. The changes to the suggested TC in N2202 are the additions of the last bullet
and the last three examples.

With the approach suggested here, and in N2213, rounding of arguments might occur. For
example, f32xsqrt(f32x) invokes f32xsqrtf64x(f32x) if _Float64x is supported,
else f32xsqrtf64. Thus, if _Float64x is not supported and _Float32z is wider than
_Float64, the argument f32x will be rounded to _Float64. We didn’t see a way to avoid
such roundings without unduly complicating the specification and/or breaking with the overall
approach in C and the other parts of TS 18661. Note that the cases where argument rounding
might occur do not represent the intended use of the macros: to round result to narrower type.

The macros that round results to narrower type differ from other <tgmath.h> macros in that
the type of the expanded expression can be determined by the macro prefix, rather than by the
argument types. We considered directly specifying that these macros produce their result with at
most one rounding (after appropriately converting integer type arguments), and leaving the
function to be called, or other manner of computation, to the implementation. We rejected this
approach because it was inconsistent with the rest of the specification in <tgmath.h>.

After N2213 was posted, Joseph Myers sent the following message:

Joseph Myers
(SC22WG14.14928) Floating-point DR#13 and integer arguments to type-generic macros
To: SC22 WG14

Regarding the latest version in N2213:

This version does seem to make the chosen functions unambiguous, but it
also leaves the chosen functions in some decimal floating-point cases
different from what they are in TS 18661-2.

Consider the d64add(d32, d32) example in TS 18661-2, which is specified
there as resulting in a call to d64addd128. Under the new proposal,
because there is no d64addd32 function, it would call d64addd64x. This
difference isn't observable to the user, but at very least the example
would need updating, to reflect that in the case where
__STDC_IEC_60559_TYPES__ is defined d64addd64x is called (whereas if
__STDC_IEC_60559_TYPES__ isn't defined, neither _Decimal64x nor _Decimal96
is supported and so the new wording would result in the same function
choice as in TS 18661-2).

If the arguments to d64add had a 128-bit integer type and _Decimal64x had
less precision than _Decimal128, the difference in results would be
user-visible. (Note, however, that I don't know if there are any existing
implementations of the narrowing functions for decimal floating point, or
of the associated type-generic macros, or of _Decimal64x, or of
_Decimal96.)

The following suggested TC includes a minor change to N2213 so that the TS 18661-3 rules are
consistent with the ones in TS 18661-2. The change was to rows 3 and 5 in the table and the
f32add and f64div examples.

Suggested Technical Corrigendum

In clause 15, after the change to 7.25#6, add:

Change 7.25#6a from:

[6a] The functions that round result to a narrower type have type-generic macros
whose names are obtained by omitting any suffix from the function names. Thus,
the macros with f or d prefix are:

fadd fmul ffma
dadd dmul dfma
fsub fdiv fsqrt
dsub ddiv dsqrt

and the macros with d32 or d64 prefix are:

d32add d32mul d32fma
d64add d64mul d64fma
d32sub d32div d32sqrt
d64sub d64div d64sqrt

All arguments are generic. If any argument is not real, use of the macro results in
undefined behavior. If the macro prefix is f or d, use of an argument of decimal
floating type results in undefined behavior. If the macro prefix is d32 or d64,
use of an argument of standard floating type results in undefined behavior. The
function invoked is determined as follows:

— If any argument has type _Decimal128, or if the macro prefix is d64, the

function invoked has the name of the macro, with a d128 suffix.

— Otherwise, if the macro prefix is d32, the function invoked has the name of

the macro, with a d64 suffix.

— Otherwise, if any argument has type long double, or if the macro prefix

is d, the function invoked has the name of the macro, with an l suffix.

— Otherwise, the function invoked has the name of the macro (with no suffix).

 to:

[6a] The functions that round result to a narrower type have type-generic macros
whose names are obtained by omitting any suffix from the function names. Thus,
the macros with f or d prefix are:

fadd fmul ffma
dadd dmul dfma
fsub fdiv fsqrt
dsub ddiv dsqrt

and the macros with fM, fMx, dM, or dMx prefix are:

fMadd fMxmul dMfma
fMsub fMxdiv dMsqrt
fMmul fMxfma dMxadd
fMdiv fMxsqrt dMxsub
fMfma dMadd dMxmul
fMsqrt dMsub dMxdiv
fMxadd dMmul dMxfma
fMxsub dMdiv dMxsqrt

All arguments are generic. If any argument is not real, use of the macro results in
undefined behavior. If the macro prefix is f or d, use of an argument of
interchange or extended floating type results in undefined behavior. If the macro
prefix is fM, or fMx, use of an argument of standard or decimal floating type
results in undefined behavior. If the macro prefix is dM or dMx, use of an
argument of standard or binary floating type results in undefined behavior. The
function invoked is determined as follows:

— Arguments that have integer type are regarded as having type double if the

macro prefix is f or d, as having type _Float64 if the macro prefix is fM
or fMx, and as having type _Decimal64 if the macro prefix is dM or
dMx.

— If the function has exactly one generic parameter, the type determined is the

type of the argument.

— If the function has exactly two generic parameters, the type determined is the

type determined by the usual arithmetic conversions (6.3.1.8) applied to the
arguments.

— If the function has three generic parameters, the type determined is the type

determined by applying the usual arithmetic conversions twice, first to the
first two arguments, then to that result type and the third argument.

— If no function with the given prefix has the parameter type determined above,
the parameter type is determined from the prefix as follows:

f double
d long double
fM _FloatN for minimum N > M if supported, else _FloatMx
fMx _FloatNx for minimum N > M if supported, else _FloatN for

minimum N > M
dM _DecimalN for minimum N > M if supported, else _DecimalMx
dMx _DecimalNx for minimum N > M if supported, else _DecimalN

for minimum N > M

In clause 15, at the end of the text appended to the table in 7.25#7, further append:

fsub(d, ld) fsubl
f32add(f64x, f64) f32addf64x
d32xsqrt(n) d32xsqrtd64
f32mul(f128, f32x) f32mulf128 if _Float128 is at least as

wide as _Float32x, or f32mulf32x if
_Float32x is wider than _Float128

f32fma(f32x, n, f32x) f32fmaf64 if _Float64 is at least as wide
as _Float32x, or f32fmaf32x if
_Float32x is wider than _Float64

ddiv(ld, f128) undefined
f32fma(f64, d, f64) undefined
fmul(dc, d) undefined
f32add(f32, f32) f32addf64(f32, f32)
f32xsqrt(f32) f32xsqrtf64x(f32) if _Float64x is

supported, else f32xsqrtf64
f64div(f32x, f32x) f64divf128(f32x, f32x

