
Document Number: N2241
Submitter: Keld Simonsen
Submission Date: 2018-04-23
Subject: Reentrant APIs

Summary:
This document is in response to the Danish
comments on the NWIP on thread-safe extensions.

It contains some ISO wording because I already had
that formulated. We can discuss whether this should
be a part of some other document, or a separate
document, maybe in the form of a TS.

It addresses issues both contained in POSIX and in
ISO/IEC TR 30112 – which is an enhanced locale
specification backwards compatible with POSIX and
C.

Reentrant APIs that are present in POSIX are
backwards compatible. APIs that are not in POSIX,
but addresses the enhanced functionality in 30112,
could be moved to an informative annex.

The functionality of the APIs are implemented to
some extent in GLIBC, but not in their reentrant
versions.

The specification is written in a way so that it could
be bound to easilly from other programming
languages.

mailto:fweimer@redhat.com

ISO/IEC 9899-RAPI WD1

INTERNATIONAL ISO/IEC 9899-RAPI WD1
STANDARD

ISO/IEC 9899-RAPI WD1
2018-04-22

Information technology —
Programming language C – Reentrant APIs

Technologies de l'information —

2

ISO/IEC 9899-RAPI WD1

This page left for ISO/IEC copyright notices.

Contents Page

CONTENTS iii
FOREWORD iv
INTRODUCTION v
1 SCOPE 1
2 NORMATIVE REFERENCES 1
3 TERMS, DEFINITIONS AND NOTATIONS 1
4 FUNCTIONALITY 6

3

ISO/IEC 9899-RAPI WD1

Foreword

ISO (the International Organization for Standardization) and IEC (the
International Electrotechnical Commission) form the specialized system for
worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical
committees established by the respective organization to deal with particular
fields of technical activity. ISO and IEC technical committees collaborate in
fields of mutual interest. Other international organizations, governmental and
non-governmental, in liaison with ISO and IEC, also take part in the work. In the
field of information technology, ISO and IEC have established a joint technical
committee, ISO/IEC JTC 1.

This document was prepared with reference to ISO/IEC 30112 – Specification
methods for cultural conventions (under development).

This document was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information technology, Subcommittee 22, Programming Languages,
their environments and system software interfaces.

4

ISO/IEC 9899-RAPI WD1

Introduction

This document defines C APIs for thread-safe programming via re-entrant APIs.

5

ISO/IEC 9899-RAPI WD1

Information technology — Programming Language C – - re-
entant APIS

1 SCOPE

This document specifies reentrant APIs for the C programming language.

The specification is upward compatible with POSIX API specifications. An
alignment effort has been undertaken for this specification to be aligned with
ISO/IEC 9945. APIs are specified to address handling of facilities of ISO/IEC TR
30112.

2 NORMATIVE REFERENCES

The following referenced documents are indispensible for the application of this
document. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any
amendments) applies.

ISO 8601, Data elements and interchange formats - Information interchange -
Representation of dates and times.

ISO/IEC 9899, Information technology - Programming language C.

ISO/IEC 9945, Information technology - Portable Operating System Interface
(POSIX).

3 TERMS, DEFINITIONS AND NOTATIONS

3.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.
(to be updated)

3.1.1 Bytes and characters

3.1.1.1
byte
An individually addressable unit of data storage that is equal to or larger than
an octet, used to store a character or a portion of a character.

Note: A byte is composed of a contiguous sequence of bits, the number of
which is implementation defined. The least significant bit is called the low-order
bit; the most significant bit is called the high-order bit

1

ISO/IEC 9899-RAPI WD1

3.1.1.2
character
A member of a set of elements used for the organization, control or
representation of data

3.1.1.3
coded character
A sequence of one or more bytes representing a single character

3.1.1.4
text file
A file that contains characters organized into one or more lines

3.1.2 cultural and other major concepts

3.1.2.1
cultural convention (locale)
A data item for information technology that may vary dependent on language,
territory, or other cultural habits

3.1.2.2
FDCC
A Formal Definition of a Cultural Convention, that is a cultural convention put
into a formal definition scheme

3.1.2.3
FDCC-set
A Set of Formal Definitions of Cultural Conventions (FDCC's). The definition of
the subset of a user's information technology environment that depends on
language and cultural conventions

 Note: the FDCC-set is a superset of the "locale" term in C and POSIX.

3.1.2.4
charmap
A definition of a mapping between symbolic character names and character
codes, plus related information

3.1.2.5
repertoiremap
A definition of a mapping between symbolic character names and characters
for the repertoire of characters used in a FDCC-set

NOTE: This further described in clause 6.

3.1.3 FDCC categories related

3.1.3.1

2

ISO/IEC 9899-RAPI WD1

character class:
A named set of characters sharing an attribute associated with the name of the
class.

3.1.3.2
collation
The logical ordering of strings according to defined precedence rules

3.1.3.3
collating element
The smallest entity used to determine logical ordering

Note: See collating sequence. A collating element consists of either a single
character, or two or more characters collating as a single entity. The
LC_COLLATE category in the associated FDCC-set determines the set of
collating elements.

3.1.3.4
multicharacter collating element
A sequence of two or more characters that collate as an entity

Note: For example, in some languages two characters are sorted as one letter,
as in the case for Danish and Norwegian "aa".

3.1.3.5
collating sequence
The relative order of collating elements as determined by the setting of the
LC_COLLATE category in the applied FDCC-set

3.1.3.6
equivalence class
A set of collating elements with the same primary collation weight

NOTE: Elements in an equivalence class are typically elements that naturally
group together, such as all accented letters based on the same letter.

The collation order of elements within an equivalence class is determined by
the weights assigned on any subsequent levels after the primary weight.

3

ISO/IEC 9899-RAPI WD1

3.2 Notations

The following notations and common conventions for specifications apply to
this International Standard:

3.2.1 Notation for defining syntax

In this International Standard, the description of an individual record in a FDCC-
set is done using the syntax notation given in the following.

The syntax notation looks as follows:

"<format>",[<arg1>,<arg2>,...,<argn>]

The <format> is given in a format string enclosed in double quotes, followed
by a number of parameters, separated by commas. It is similar to the format
specification defined in the ISO/IEC 9945 standard and the format specification
used in C language printf() function. The format of each parameter is given by
an escape sequence as follows:

 %s specifies a string
 %d specifies a decimal integer
 %c specifies a character
 %o specifies an octal integer
 %x specifies a hexadecimal integer

A " " (an empty character position) in the syntax string represents one or more
<blank> characters.

All other characters in the format string represent themselves, except:

 %% specifies a single %
 \n specifies an end-of-line

The notation "..." is used to specify that repetition of the previous specification
is optional, and this is done in both the format string and in the parameter list.

3.2.3 Portable character set

A set of symbolic names for characters in Table 1, which is called the portable
character set, is used in character description text of this specification. The first
eight entries in Table 1 are defined in ISO/IEC 6429 and the rest is defined in
ISO/IEC 9945 with some definitions from ISO/IEC 10646.

Table 1: Portable character set

Symbolic name Glyph UCS Description

4

ISO/IEC 9899-RAPI WD1

<NUL> <U0000> NULL (NUL)
<alert> <U0007> BELL (BEL)
<backspace> <U0008> BACKSPACE (BS)
<tab> <U0009> CHARACTER TABULATION (HT)
<carriage-return> <U000D> CARRIAGE RETURN (CR)
<newline> <U000A> LINE FEED (LF)
<vertical-tab> <U000B> LINE TABULATION (VT)
<form-feed> <U000C> FORM FEED (FF)
<space> <U0020> SPACE
<exclamation-mark> ! <U0021> EXCLAMATION MARK
<quotation-mark> " <U0022> QUOTATION MARK
<number-sign> # <U0023> NUMBER SIGN
<dollar-sign> $ <U0024> DOLLAR SIGN
<percent-sign> % <U0025> PERCENT SIGN
<ampersand> & <U0026> AMPERSAND
<apostrophe> ' <U0027> APOSTROPHE
<left-parenthesis> (<U0028> LEFT PARENTHESIS
<right-parenthesis>) <U0029> RIGHT PARENTHESIS
<asterisk> * <U002A> ASTERISK
<plus-sign> + <U002B> PLUS SIGN
<comma> , <U002C> COMMA
<hyphen-minus> - <U002D> HYPHEN-MINUS
<hyphen> - <U002D> HYPHEN-MINUS
<full-stop> . <U002E> FULL STOP
<period> . <U002E> FULL STOP
<slash> / <U002F> SOLIDUS
<solidus> / <U002F> SOLIDUS
<zero> 0 <U0030> DIGIT ZERO
<one> 1 <U0031> DIGIT ONE
<two> 2 <U0032> DIGIT TWO
<three> 3 <U0033> DIGIT THREE
<four> 4 <U0034> DIGIT FOUR
<five> 5 <U0035> DIGIT FIVE
<six> 6 <U0036> DIGIT SIX
<seven> 7 <U0037> DIGIT SEVEN
<eight> 8 <U0038> DIGIT EIGHT
<nine> 9 <U0039> DIGIT NINE
<colon> : <U003A> COLON
<semicolon> ; <U003B> SEMICOLON
<less-than-sign> < <U003C> LESS-THAN SIGN
<equals-sign> = <U003D> EQUALS SIGN
<greater-than-sign> > <U003E> GREATER-THAN SIGN
<question-mark> ? <U003F> QUESTION MARK
<commercial-at> @ <U0040> COMMERCIAL AT
<A> A <U0041> LATIN CAPITAL LETTER A
 B <U0042> LATIN CAPITAL LETTER B
<C> C <U0043> LATIN CAPITAL LETTER C
<D> D <U0044> LATIN CAPITAL LETTER D
<E> E <U0045> LATIN CAPITAL LETTER E
<F> F <U0046> LATIN CAPITAL LETTER F
<G> G <U0047> LATIN CAPITAL LETTER G
<H> H <U0048> LATIN CAPITAL LETTER H
<I> I <U0049> LATIN CAPITAL LETTER I
<J> J <U004A> LATIN CAPITAL LETTER J
<K> K <U004B> LATIN CAPITAL LETTER K
<L> L <U004C> LATIN CAPITAL LETTER L
<M> M <U004D> LATIN CAPITAL LETTER M
<N> N <U004E> LATIN CAPITAL LETTER N
<O> O <U004F> LATIN CAPITAL LETTER O

5

ISO/IEC 9899-RAPI WD1

<P> P <U0050> LATIN CAPITAL LETTER P
<Q> Q <U0051> LATIN CAPITAL LETTER Q
<R> R <U0052> LATIN CAPITAL LETTER R
<S> S <U0053> LATIN CAPITAL LETTER S
<T> T <U0054> LATIN CAPITAL LETTER T
<U> U <U0055> LATIN CAPITAL LETTER U
<V> V <U0056> LATIN CAPITAL LETTER V
<W> W <U0057> LATIN CAPITAL LETTER W
<X> X <U0058> LATIN CAPITAL LETTER X
<Y> Y <U0059> LATIN CAPITAL LETTER Y
<Z> Z <U005A> LATIN CAPITAL LETTER Z
<left-square-bracket> [<U005B> LEFT SQUARE BRACKET
<backslash> \ <U005C> REVERSE SOLIDUS
<reverse-solidus> \ <U005C> REVERSE SOLIDUS
<right-square-bracket>] <U005D> RIGHT SQUARE BRACKET
<circumflex-accent> ^ <U005E> CIRCUMFLEX ACCENT
<circumflex> ^ <U005E> CIRCUMFLEX ACCENT
<low-line> _ <U005F> LOW LINE
<underscore> _ <U005F> LOW LINE
<grave-accent> ` <U0060> GRAVE ACCENT
<a> a <U0061> LATIN SMALL LETTER A
 b <U0062> LATIN SMALL LETTER B
<c> c <U0063> LATIN SMALL LETTER C
<d> d <U0064> LATIN SMALL LETTER D
<e> e <U0065> LATIN SMALL LETTER E
<f> f <U0066> LATIN SMALL LETTER F
<g> g <U0067> LATIN SMALL LETTER G
<h> h <U0068> LATIN SMALL LETTER H
<i> I <U0069> LATIN SMALL LETTER I
<j> j <U006A> LATIN SMALL LETTER J
<k> k <U006B> LATIN SMALL LETTER K
<l> l <U006C> LATIN SMALL LETTER L
<m> m <U006D> LATIN SMALL LETTER M
<n> n <U006E> LATIN SMALL LETTER N
<o> o <U006F> LATIN SMALL LETTER O
<p> p <U0070> LATIN SMALL LETTER P
<q> q <U0071> LATIN SMALL LETTER Q
<r> r <U0072> LATIN SMALL LETTER R
<s> s <U0073> LATIN SMALL LETTER S
<t> t <U0074> LATIN SMALL LETTER T
<u> u <U0075> LATIN SMALL LETTER U
<v> v <U0076> LATIN SMALL LETTER V
<w> w <U0077> LATIN SMALL LETTER W
<x> x <U0078> LATIN SMALL LETTER X
<y> y <U0079> LATIN SMALL LETTER Y
<z> z <U007A> LATIN SMALL LETTER Z
<left-brace> { <U007B> LEFT CURLY BRACKET
<left-curly-bracket> { <U007B> LEFT CURLY BRACKET
<vertical-line> | <U007C> VERTICAL LINE
<right-brace> } <U007D> RIGHT CURLY BRACKET
<right-curly-bracket> } <U007D> RIGHT CURLY BRACKET
<tilde> ~ <U007E> TILDE

This International Standard may use other symbolic character names than the
above in examples, to illustrate the use of the range of symbols allowed by the
syntax specified in 4.1.1.

6

ISO/IEC 9899-RAPI WD1

4. FUNCTIONALITY

Functionality to access the information described in this International Standard
is described in ISO/IEC 9899 – Programming Language C. In addition the
following functions are specified:

4.1 The “strpcoll” function

Synopsis

#include <string.h>
int strpcoll(const char *s1, const char *s2, int p);

Description

The strpcoll function compares the string pointed to by s1 to the string pointed
to by s2, both interpreted as appropriate to the LC_COLLATE category of the
current FDCC-set, and to the precision of p.

Returns

The strpcoll function returns an integer greater than, equal to, or less than
zero, accordingly as the string pointed to by s1 is greater than, equal to, or less
than the string pointed to by s2, given the precision p, when both are
interpreted as appropriate to the current FDCC-set. The precision p is the level
of the collation data that will be used, on alphabetic characters, precision=1
will normally regard all versions, including upper case, lowercase and accented
versions of a letter as equal; and precision=2 will normally regard upper case
and lower case versions of an accented letter as equal, both in composed and
decomposed forms; precision=3 would normally distinction between composed
and decomposed forms of a letter.

4.2 The “setmedia” function

Synopsis

int setmedia(int io, int media, int allow);

Description

The setmedia function sets the message interfaces to be used. io gives input or
output; input=0, output=1. media gives the media type: text=1, voice=2,
gestures=3, selection=4. allow specifies if the combination of io and media will
be allowed or not, allow=1, and deny=0.

Returns

The setmedia function returns a 0 if the function executes without error, and a

7

ISO/IEC 9899-RAPI WD1

positive non-zero error code if the function executes with error.

4.3 String, encoding, repertoire, and locale data types

As basic string handling is dependent on the user's preferences (as given via the string), encoding,
repertoire, and locale data types are described together here.

 4.3.1 String data type

The string handling APIs defined in this document operate on an internal representation of
character strings, which are arrays of characters, A void string is indicated by the implementation-
defined value NIL. The string data type is defined by:

#define string *wchar_t

 4.3.2 Encoding data type

The "encoding" data type holds data necessary to convert to and from an external encoding and
the internal string representation. This includes mapping of coded characters to the internal
repertoire, how to shift between subencodings such as via ISO 2022 techniques, or representation
via symbolic character names identified via introducing sequences, and state information. The
enocding data type is defined by:

struct encoding {
string encodingname;
// other things ???

}
NOTE The encoding definition is closely related to the "charmap" specification of POSIX and TR 14652, the "charset" definition

in the Internet MIME specification, and newer developments for the C and C++ programming languages.

4.3.2.1 int newencoding(const string encodingname,encoding enc)

The "newencoding" API creates an encoding object with the necessary space to hold all
information necessary to convert between the encoding and the internal string representation. The
"newencoding" API sets default values, including the "line_terminator" to being the characters
"CR""LF", the "invalid_char" to being the character "SUB", the "symbolic_char_introducer" to
being "NUL" (not valid), the "sub_encoding_change" API, the "get_symbolic_char_name" API and
the "put_symbolic_char_name" API to be the null API, and the "input_state" and the "output_state"
variables to be the initial state .

The "encodingname" is an implementation defined string with the following characterisics:
An initial string of "std/" refers to the charmaps registered in the international cultural register,

ISO/IEC 15897.
If the specified encoding is syntactically valid and supported by the implementation, the

"newencoding" API allocates memory for the new object and returns a pointer to the object in the
parameter "enc". It is the application's responsibility to free this memory with a call to the
"freeencoding" API when the struct is no longer needed. If the API fails for any reason, the contents
of "enc" is undefined.

The "newencoding" API returns one of the following values:
0 -LC_SUCCESS - The API call was successful

8

ISO/IEC 9899-RAPI WD1

1 - LC_NOTSUPPORTED - The encoding is not supported by the current system.
2 - LC_NOMEMORY - there was insufficient memory to perform the API
3 -LC_INVALID - The specified encoding is invalid

4.3.2.2 int freeencoding(encoding enc)

The "freeencoding" API frees the memory occupied by the encoding "enc". It returns a zero if the
operation is succesful, and a -1 otherwise.

4.3.2.4 int setencint(encoding enc,const string param,int val)

iThe "setencint" API sets a specific parameter as specified in the string "param" of the encoding
specification to a specific integer value as specified in "val". The defined values for "param" are:

(to be described)
It returns a zero if the operation is succesful, and a 1 otherwise.

4.3.2.4 int setencbytes(encoding enc,const string param,const char *val,int len)

The "setencbytes" API sets a specific parameter as specified in the string "param" of the encoding
specification to a specific multibyte value as specified in "val" with the length "len" bytes. The
defined values for "param" are:

"line_terminator"
 "invalid_char"
 "symbolic_char_introducer"

4.3.2.5 int setencproc(encoding enc, const string param, int val())

The "setencproc" API sets a specific parameter as specified in the string "param" of the encoding
specification to a specific API value as specified in "val" . The defined values for "param" are:

"sub_encoding_change" - procedure subec()
"get_symbolic_char_name" - procedure gscn(c, p , len)
"put_symbolic_char_name" - procedure pscn(c, p, len)

4.3.2.6 int gscn(c, p, len)

The application defined "get_symbolic_char_name" API is called by the "bytes2string" API
when the character sequence in "symbolic_char_introducer" is met in the input octet sequence. It
gets a pointer "p" to the first octet after the "symbolic_char_introducer" and determines whether
there is a symbolic character according to the application APIs definitions, with or without a
terminator sequence, within "len" octets after the "p" pointer. If successful the API returns the found
character in the internal string representation in "c" and the pointer "p" to the first octet after the
symbolic character, including the possible terminator sequence. The application defined API
returns:

0 if succesful
1 if it could not recognise a symbolic character within the "len" octets. "p" is not changed.
2 if the octet sequence is invalid according to the rules of the application. "p" is not changed.

4.3.2.7 int pscn(c, p, len)

The application defined "put_symbolic_char_name" API is called by the "string2bytes" API
when a character is not present in the external encoding. It gets a pointer "p" to the next octet to be
written in the sequence of octets and determines whether there is room to put a symbolic character

9

ISO/IEC 9899-RAPI WD1

according to the application APIs definitions, with the "symbolic_char_introducer" value and with
or without a terminator sequence, within "len" octets after the "p" pointer. If successful, the API
returns "p", a pointer, to the first octet after the symbolic character written, including the possible
terminator sequence. The application defined API returns:

0 if successful
1 if the API was not able to write the symbolic character within "len" octets. The pointer "p" is

not changed.
2 if the API had no means of writing the character "c", The pointer "p" is not changed.
 4.3.3 Repertoire data type

The "repertoire" data type holds data necessary for the "stringtrans" transliteration API.
4.3.3.1 int newrepertoire(const string repertoirename,repertoire rep)

The "newrepertoire" API creates a repertoire object with the necessary space to hold all
information necessary. The "repertoirename" is an implementation defined string with the following
characteristics: An initial string of "std/" refers to repertoiremaps registered in the international
cultural register, ISO/IEC 15897. If the specified repertoire is valid and supported, the
"newrepertoire" API allocates memory for the new object and returns a pointer to the object in
"rep". It is the application's responsibility to free this memory with a call to the "freerepertoire" API
when the object is no longer needed. If the API fails for any reason, the contents of "rep" is
undefined.

The "newrepertoire" API returns one of the following values:
 0 - The API call was successful

 1 - The repertoire is not supported by the current system.
 2 - There was insufficient memory to perform the API
 3 - The specified repertoire is invalid

4.3.3.2 int freerepertoire(repertoire rep)

The "freerepertoire" API frees the memory occupied by the repertoire "rep". It returns 0 if the
operation is successful, and 1 otherwise.

4.3.3.3 int enc2repertoire(encoding enc,repertoire rep)

The "enc2repertoire" API generates a repertoire object with a repertoire corresponding to the
character repertoire of the encoding "enc". If the API is successful, it returns the repertoire object in
"rep". It has the same return values as the "newrepertoire" API.

4.3.4 Locale data type

The "locale" data type is a pointer to a struct with a number of variables capable of holding
information sufficient to service all language-dependent internationalization services. The "locale"
data type has provisions to affect groups of functionalities in categories, which are:

1 NULL
2 LC_ALL
3 LC_IDENTIFICATION
4 LC_COLLATE
5 LC_CTYPE
6 LC_MONETARY
7 LC_NUMERIC
8 LC_TIME

10

ISO/IEC 9899-RAPI WD1

9 LC_MESSAGES
10 LC_XLITERATE
11 LC_NAME
12 LC_ADDRESS
13 LC_TELEPHONE

The category LC_ALL denotes all of the other non-void categories.
The category NULL denotes a void category.

The "locale" data type includes the following variables (which are further described in this
document:)

LC_MONETARY values:
int_curr_symb: string.

currency_symbol: string.
mon_deccimal_point: string.
mon_thousands_sep: string.
mon_grouping: string
positive_sign: string.
negative_sign: string.
int_frac_digits: integer.
frac_digits: integer.
p_cs_precedes: integer
p_sep_by_space: integer.
n_cs_precedes: integer
n_sep_by_space: integer
p_sign_posn: integer
n_sign_posn: integer

LC_NUMERIC values:
decimal_point: string

thousands_sep: string
grouping: array of integers

LC_TIME values:
abday: array (1,7) of string

day: array (1,7) of string
abmon: array (1,13) of string
mon: array (1,13) of string
d_t_fmt: string
d_fmt: string
t_fmt: string
am_pm: string
t_fmt_ampm: string
era: string
era_year: string
era_d_fmt: string
alt_digits: array (1,100) of string

LC_MESSAGES values:

11

ISO/IEC 9899-RAPI WD1

yesexpr: string
noexpr: string

4.3.4.1 int newlocale(int category_mask, const string localename,locale lc)

The "newlocale" API creates a locale struct with all the necessary information to perform the
language-sensitive operations of internationalization APIs accepting an argument of the type
"locale". If the API is successful, all categories of the locale object are created and initialized. Any
categories in the locale identified by "localename" are initalized to the i18n locale.

The "localename" is an implementation-defined value with the following characteristics:
- An initial string of "std/" refers to the locales registered in the international cultural register,

ISO/IEC 15897.
If the specified locale is valid and supported, the "newlocale" API allocates memory for the new

object and returns a pointer to the object in "lc". It is the application's responsibility to free this
memory with a call to the "freelocale" API when the object is no longer needed. If the API fails for
any reason, the contents of "lc" is undefined.

The "newlocale" API returns one of the following values:
 0 - LC_SUCCESS - The API call was successful.
1 - LC_INCOMPLETE - The specified locale has been created, but the locale object contains one

or more categories that were initialized to the i18n locale because the "localename" did not identify
a value for that category.

 2 - LC_NOTSUPPORTED - The locale is not supported by the current system.
 3 - LC_NOMEMORY - there was insufficient memory to perform the API.
 4 - LC_INVALID - The specified locale is invalid.

4.3.4.2 int freelocale(locale lc)

The "freelocale" API frees the memory occupied by the locale "lc". It returns 0 if the operation is
succesful, and 1 otherwise.

4.3.4.3 int modifylocale(const int category,const string localename,locale lc)

The "modifylocale" API modifies the values of the locale object "lc" parameter relating to the
category "category" and with values as specified in "localename". "category" takes values as
defined in 5.4 and "localename" is defined as for the "newlocale" API. The return value is as for the
"newlocale" API.

4.3.4.4 int intlocaleinfo(const int category,const string keywordname,locale lc)

The "intlocaleinfo" API gets the integer value of the keyword "keywordname" of the locale
object "lc" relating to the category "category". "category" takes values as defined in 5.4.The return
value is the integer value of the keyword.

4.3.4.5 string stringlocaleinfo(const int category,const string keywordname,locale lc)

The "stringlocaleinfo" API gets the string value of the keyword "keywordname" of the locale
object "lc" relating to the category "category". "category" takes values as defined in 5.4.The return
value is the string value of the keyword.

 4.3.5 Character handling
The character handling APIs behave according to the LC_CTYPE category of the locale

parameter for the individual APIs.

12

ISO/IEC 9899-RAPI WD1

4.3.5.1 int istype(wchar_t c,const string c_type,const locale lc)

The "istype" API returns 1 if the character "c" is in the type "c_type", else 0.
"c_type" can have the following values:
alnum, alpha, cntrl, digit, graph, lower, print, punct, space, blank, upper, xdigit
 4.3.5.2 int tolowers(string s1,const string s2,const locale lc)

The "tolowers" API returns in string "s1" all characters in the string "s2" converted to the
corresponding lowercase characters with conversion rules given by the locale "lc". The API returns
the number of resulting characters in "s1".

 4.3.5.3 int touppers(string s1,const string s2,const locale lc)

The "touppers" API returns in string "s1" all characters in the string "s2" converted to the
corresponding uppercase characters with conversion rules given by the locale "lc". The API returns
the number of resulting charactes in "s1".

 4.3.5.4 int stringtrans(transtype, maxlen,string s1,const string s2, rep)

The "stringtrans" API transforms string "s2" into string "s1" given the transformation
specifications as noted below.

Values for the "transtype" parameter are
1 - as for the "tolowers" API
2 - as for the "touppers" API
3 - transliterate the string "s2" into the string "s1" (for example using for each character the first

"transform" specification of ISO/IEC TR 14652) that is using the repertoire of "rep" and has at most
"maxlen" characters as the transliteration. If the "s1" string is to be exceeded, or there is no valid
transliteration, the API returns -1. Otherwise it returns the resulting number of characters of "s1".

4.3.6 String comparison
The string comparison APIs behave according to the LC_COLLATE category of the locale

parameter for the individual APIs.
 4.3.6.1 int strcoll_l(const string s1,const string s2,locale lc)

 int strncoll_l(const string s1,const string s2, n,locale lc)

The "strcoll_l" API compares the two strings "s1" and "s2" with regards to the collating
specifications of the locale "lc".

The "strncoll_l" API compares at most "n" characters of the two strings "s1" and "s2" with
regards to the collating specifications of the locale "lc".

Both the "strcoll_l" and "strncoll_l" APIs returns -1 if "s1" < "s2", 0 if "s1" == "s2" and 1 if "s1"
> "s2" .

 4.3.6.2 int strxfrm_l(const string s1,const string s2,locale lc)

The "stringxfrm" API converts the character string "s2" using the locale "lc" and to the precision
in "precision"as defined in 4.2, to an internal representation in "s1" suitable for comparison via a
binary comparison API (in C this may be strcmp()).

13

ISO/IEC 9899-RAPI WD1

 4.3.6.3 int stringcoll(const string s1,const string s2,int precision,locale lc)

 4.3.6.4 int stringncoll(const string s1,const string s2,int precision,int n,locale lc)

The "stringcoll" API compares the two strings "s1" and "s2" with regards to the collating
specifications of the locale "lc" and to the precision in "precision".

The "stringncoll" API compares at most "n" characters of the two strings "s1" and "s2" with
regards to the collating specifications of the locale "lc" and to the precision in "precision".

The "precision" indicates to what level of preciseness the string comparison is done. "precision"
may have the following values:

 0 - all levels
 1 - only to level 1 - CASE_AND_ACCENT_INSENSITITVE
 2 - only to level 2 - CASE_INSENSITIVE
 3 - only to level 3 - IGNORE_SPECIALS
 4 - only to level 4 - EXACT_MATCHING
Both the "stringcoll" and "stringncoll" APIs returns -1 if "s1" < "s2", 0 if "s1" == "s2" and 1 if

"s1" > "s2" .
 4.3.6.5 int stringxfrm(const string s1,const string s2,int precision,locale lc)

The "stringxfrm" API converts the character string "s2" using the locale "lc" and to the precision
in "precision" as defined in 4.2, to an internal representation in "s1" suitable for comparison via a
binary comparison API (in C this may be strcmp()).

4.3.7 Message formatting
The message formatting APIs behave according to the LC_MESSAGES category of the locale

parameter for the individual APIs.

 4.3.7.1 string stringget(const string msgtag,const string textdomain,locale lc)

The "stringget" API gets the message with the tag "msgtag" in the current LC-MESSAGES part
of the "lc" locale with respect to the "textdomain" set of messages. If not found or the locale is
invalid and no "msgtag" is found in the default locale, then "msgtag" is returned.

4.3.8 Conversion between string and other
data types

 4.3.8.1 int string2int_l(string s,locale lc)

The "string2int_l" API converts a string to an integer, with respect to the locale "lc".

4.3.8.2 string int2string_l(int i,locale lc)

The "int2string_l" API creates a string with the necessary length and returns the string with an
integer formatted in characters, according to the locale "lc". If there is not enough memory to create
a new string, the API returns the void string.

14

ISO/IEC 9899-RAPI WD1

 4.3.8.3 double string2real_l(string s,locale lc)

The "string2real_l" API converts a string to a real value, using information about thousands and
decimal separators from the locale "lc". If there is not enough memory to create a new string, the
API returns the void string.

 4.3.8.4 string real2string_l(double r,locale lc)

The "real2string_l" API formats a real value into a string, with decimal and thousands separators
as given in the "lc" locale. Returns a string with the necessary length, or if memory is not available
it returns the empty string.

 4.3.8.5 int bytes2string_e(string s,char* p,int len,encoding enc)

The "bytes2string_e" API converts "len" octets from the multibyte value "p" in the encoding
"enc" to the string "s", and with the conversion input_state as recorded in "enc". The conversion
stops earlier in two cases: if the next character to be stored in the string "s" would exceed the length
of "s", or if there is a sequence not corresponding to a recognizable character in the input sequence
of octets, possibly after calling an application-defined "get_symbolic_char" API.

If the API stops without having converted "len" octets, the API returns the negative to the
number of octets converted. Otherwise it returns the number of internal characters converted (ie. the
last index in the string "s" for characters converted).

4.3.8.6 int string2bytes_e(char* p,string s,int len,encoding enc)

The "string2bytes_e" API converts a string "s" into a sequence of corresponding octets of "p" in
the encoding "enc", and beginning in the output_state recorded in "enc". The conversion continues
up to the lenght of the string "s". The conversion stops earlier in two cases: when a code is reached
that does not correspond to a valid representation in the sequence of octets, and either no
"invalid_char" value or "put_symbolic_char" API is defined, or the application defined
"put_symbolic_char" API returns with a value 2; or the next octet would exceed the limit of "len"
total octets to be stored in the multibyte "p" variable.

The API returns the negative index of the character in question if the conversion stops because it
could not convert a character in the string to octets. Otherwise it returns the number of octets in the
resulting sequence of octets.

 4.3.8.7 int time2string_l(string s,const string format,const struct tm *timeptr,locale lc)

The "time2string_l" API returns a string "s" formatted according to the format in "format" of the
time value in "timeptr", according to the local conventions in the locale "lc". The "format" string is
specified in IS 9945 (with extensions as described in this document) as the "d_t_fmt" specification.

4.3.8.8 int string2time_l(const struct tm *time,string s,locale lc)

The "string2time_l" API returns a binary time in "time", scanned from the string "s" according to
the locale conventions in the locale "lc".

NOTE: This specification needs more work. The C++ standard is the only standard having
provisions for this, but is very weak on the subject.

15

ISO/IEC 9899-RAPI WD1

 4.3.8.9 int money2string_l(string s,const string format,const double amount,const struct tm
*timeptr ,locale lc)

API "money2string_l" returns in parameter "s" a string formatted according to the format in
"format" of the money value "amount". The formatting is done with respect to the locale "lc" at the
time given in "time". The return value is the number of characters formatted, or -1 if an error
occurred.

The parameter "format" is a string that consist of characters that shall be transfered to the output
string "s" literally, and formatting specifications that specifies how the money value "amount" is to
be formatted.

A formatting specification consist of the following sequence:
- a "%" character

- optional flags
- optional field width
- optional left precision
- optional right position
- the formatting character to specify which formatting to perform.

Flags are given with special characters, width and precision information is given with decimal
digits, and formating characters are given with latin letters or the character "%".

The flags are:
"=f" an "=" followed by a single character which is used as the numeric fill character. No

restriction is made on the representation of this single character. The default numeric fill character
is the SPACE character. This flag does not affect the field width filling which always uses the
SPACE character. This flag is ignored unless a left precision (se below) is specified.

"^" Do not use the grouping characters when formatting the amount. The default is to insert the
grouping characters if defined in the locale "lc".

"+" or "(" Specify the style of representing positive and negative amounts. Only one of "+" or
"(" may be specified. If "+" is specified, the equivalent of "+" and "-" are used from the locale "lc".
If "(" is specified, negative amounts are enclosed within parenthesis. If neither flag is specified, the
"+" style is used.

"!" Suppersses the currency symbol from the output conversion.
"-" Specify the alignment. If this flag is present all fields are left-justified (padded to the right)

rather than right-justified.
Field Width
w A string of decimal digits specifying the minimum field width in characters in which the

result of the conversion is right-justified (or left-justified if the "-" flag is specified) The default is 0.
Left Precision
"#n" A "#" followed by a string of decimal digits specifying a maximum number of digits

expected to be formatted to the left of the radix character. This option can be used to keep the
formatted output from several calls to API "money2string" aligned in the same coloumns. It can
also be used to fill unused positions with a special character specified with the "=f" flag, as in
$***123.45. If more than "n" positions are required, this formatting specification is ignored. Digit
positions in excess of those actually required are filled with the numeric fill character, see the "=f"
flag above.

If grouping has not been suppressed with the "^" flag, and it is defined for the locale "lc",
grouping separators are inserted before the fill characters (if any) are added. Grouping separators
are not applied to fill characters, even if the fill character is a digit.

To ensure alignment, any characters appearing before or after the number in the formatted output
such as currency or sign, symbols are padded as neccessary with SPACE characters to make their

16

ISO/IEC 9899-RAPI WD1

positive or negative formats an equal length.
 Right precision
 ".p" A "." followed by a string of decimal digits specifying the number after the radix character.

If the value of the right precision is 0, no radix character appears. If a right precision is not included,
the value specified in the "lc" locale is used. It is recommended to normally use the value from the
locale. The amount being formatted is rounded to the specified number of digits prior to formatting.

Formatting characters:
The formatting characters and their meanings are:
"d" The following characters and up to any corresponding "%d" or the end of the formatting

string are only interpreted if there is a second currency in the "lc" locale for the time "t". The
amount "a" is converted according to the "conversion_rate" of the locale "lc" and formatted
according to any following formatting characters. No argument is converted. There shall be no
flags, nor width or precision parameters, just "%%" is allowed.

"i" The type money argument is formatted acording to the "lc" locales's international currency
format.

"n" The type money argument is formatted acording to the "lc" locales's national currency
format.

"%" Convert to a "%"; no argument is converted. There shall be no flags, nor width or precision
parameters, just "%%" is allowed.

4.3.8.10 int name2string_l(string s,const string format,const string name,locale lc)

The API “name2string_l” formats a set of personal name information as given in "name" to a
string "s" according to the format in"format" and to the locale given in "lc". The format
specification is unspecified (but a description may be found in TR 14652 for the keyword
"name_fmt") if this is the empty string, the format specified in the "name_fmt" keyword of the
locale in "lc" is used. The return value is the number of characters in the resulting string "s" or -1 if
the supplied string "s" had indufficient length to hold the result.

The namerecord shall contain the following strings, which may each be empty:
family - family names, corresponding to the %f and %F escape sequence

given - first given name
giveninit - initial of given name
middle - middle names
middleinit - middle initials
shortname - a shorter name, eg. "Bill"
profession - the profession title
salutation - common salutation, like "Mr."
intsalut - a string with a digit in the range 1 to 5 for salutation

Similar strings with a "r" prepended to the name shall be present to hold Romanized information
on the above items.

4.3.8.11 int address2string_l(string s,const string format,const string address,locale lc)

API “address2string_l” formats a set of address information as given in "address" to a string "s"
according to the format in"format" and to the locale given in "lc". The format specification is
unspecified, (but a description may be found in TR 14652 for the keyword "postal_fmt"); if this is
the empty string, the format specified in the "postal_fmt" keyword of the locale in "lc" is used. The
return value is the number of characters in the resulting string "s" - or -1 if an error occurred.

The addressrecord shall contain the following strings (with corresponding escape sequences

17

ISO/IEC 9899-RAPI WD1

given in parentheses), which may each be empty:
co - C/o address (%a)

firm - firm name (%f)
department - department name (%d)
building - building name (%b)
streetblock - street or block name (%s)
house - house number or designation (%h)
room - room number or designation (%r)
floor - floor number (%e)
village - village name (%v)
town - town or city name (%T)
countrycode - country designation or code (%C)
zip - zip or postal code (%z)
country- country name (%c)

Similar strings with a "r" prepended to the name shall be present to hold Romanized information
on the above items.

4.3.8.12 int teldom2string_l(string s,const string format,const string telephone,locale lc)

API teldom2string_l formats for domestic use a telephone number as given in "telephone" to a
string "s" according to the format in"format" and to the locale given in "lc". The format
specification is unspecified (but a description may be found in TR 14652 for the keyword
"tel_dom_fmt"); if this is the empty string, the format specified in the "tel_dom_fmt" keyword of
the locale in "lc" is used. The return value is the number of characters in the resulting string "s" - or
-1 if an error occurred.

 4.3.8.13 int telint2string_l(string s,const string format,const string telephone,locale lc)

The API telint2string_l formats for international use a telephone number as given in "telephone"
to a string "s" according to the format in"format" and to the locale given in "lc". The format
specification is unspecified (but a description may be found in TR 14652 for the keyword
"tel_int_fmt"); if this is the empty string, the format specified in the "tel_int_fmt" keyword of the
locale in "lc" is used. The return value is the number of characters in the resulting string "s" - or -1
if an error occurred.

18

ISO/IEC 9899-RAPI WD1

Bibliography

ISO/IEC TR 30112: 2014 Information Technology – Specification methods for
cultural conventions.

19

	4.3.2.1 int newencoding(const string encodingname,encoding enc)
	4.3.2.2 int freeencoding(encoding enc)
	4.3.2.4 int setencint(encoding enc,const string param,int val)
	4.3.2.4 int setencbytes(encoding enc,const string param,const char *val,int len)
	4.3.2.5 int setencproc(encoding enc, const string param, int val())
	4.3.2.6 int gscn(c, p, len)
	4.3.2.7 int pscn(c, p, len)

	4.3.3.1 int newrepertoire(const string repertoirename,repertoire rep)
	4.3.3.2 int freerepertoire(repertoire rep)
	4.3.3.3 int enc2repertoire(encoding enc,repertoire rep)
	4.3.4.1 int newlocale(int category_mask, const string localename,locale lc)
	4.3.4.2 int freelocale(locale lc)
	4.3.4.3 int modifylocale(const int category,const string localename,locale lc)
	4.3.4.4 int intlocaleinfo(const int category,const string keywordname,locale lc)
	4.3.4.5 string stringlocaleinfo(const int category,const string keywordname,locale lc)
	 4.3.5 Character handling
	4.3.6 String comparison
	4.3.7 Message formatting
	4.3.8 Conversion between string and other data types

