
Revised	suggested	TC	for	CFP	DR	13	

Submitter:	C	FP	group	
Submission	Date:	2018-02-11		
Source:	WG14	
Reference	Document:	N2202	
Subject:	Type-generic	macros	for	functions	that	round	result	to	narrower	type		

Summary	

Joseph	Myers	has	pointed	out	problems	with	the	suggested	TC	for	CFP	DR	13,	regarding	the	
specification	in	TS	18661-3	for	type-generic	macros	for	functions	that	round	result	to	
narrower	type.	While	investigating,	we	discovered	another	problem.	Email	from	Joseph	
Myers	and	discussion	of	all	the	problems	follows	below.	

Joseph	Myers	<joseph@codesourcery.com>	
(SC22WG14.14879)	Floating-point	DR#13	and	integer	arguments	to	type-generic	macros	
To:	SC22	WG14	sc22wg14@open-std.org	
		

The	proposed	resolution	to	floating-point	DR#13	(regarding	type-generic	macros	
for	functions	that	round	result	to	narrower	type)	includes		
"Arguments	that	have	integer	type	are	regarded	as	having	type	_Decimal64	if	any	
argument	has	decimal	floating	type,	and	as	having	type	double	otherwise.".	
	
This	runs	into	problems	if	all	the	arguments	to	a	macro	such	as	d32add	are	of	
integer	type,	because	now	they	are	being	regarded	as	of	type	double,	whereas	in	TS	
18661-2	it	was	clear	that	it	was	valid	to	pass	integer	arguments	to	the	d32add	
macro	and	it	would	result	in	d32addd64	being	called	(and	passing	such	arguments	
to	the	d64add	macro	would	result	in	d64addd128	being	called).		Is	that	intended	-	
that	these	macros	should	not	be	valid	with	only	integer	type	arguments?		Or	should	
the	logic	for	what	type	integer	arguments	are	considered	to	have	be	based	on	the	
macro	prefix	in	this	case?	
		

CFP:	The	latter:	the	logic	for	what	type	integer	arguments	are	considered	to	have	should	be	
based	on	the	macro	prefix.		

	
That	DR	resolution	also	appears	to	leave	results	not	fully	determined	in	the	case	of	
integer	arguments.		The	chosen	function	is	specified	by	"The	unsuffixed	name	of	the	
function	is	the	name	of	the	macro,	and	its	suffix,	if	any,	corresponds	to	the	
parameter	type	which	may	be	any	type	with	at	least	the	range	and	precision	of	the	
argument	types.",	but	whereas	for	floating-point	arguments	the	result	of	the	call	
does	not	depend	on	exactly	which	function	gets	called,	as	long	as	the	parameter	type	
has	enough	range	and	precision,	for	integer	arguments	it	*does*	matter	whether	
(for	example)	a	call	of	f32add	with	two	long	long	arguments	ends	up	
calling	f32addf64	or	f32addf128,	because	loss	of	precision	when	converting	
such	arguments	to	_Float64.	
	
Possibilities	for	the	not-fully-determined	result	include:	allow	it	being	not	fully	
determined	(and	maybe	add	this	case	to	the	list	in	part	5	of	the	TS	of	features	that	



prevent	reproducibility);	require	the	integer	arguments	to	be	converted	to	the	type	
they	are	considered	to	have;	put	in	some	rules	that	determine	the	type	more	
precisely	in	the	case	of	integer	arguments;	apply	the	"any	type	with	at	least	the	
range	and	precision	of	the	argument	types"	to	the	original	integer	types	rather	than	
to	_Decimal64	/	double	(which	would	imply	that	e.g.	calling	fadd	/	dadd	with	long	
long	arguments	is	not	valid	if	long	double	is	IEEE	binary64,	because	then	long	
double	wouldn't	be	able	to	represent	all	long	long	values).	(Even	if	the	type	can	
represent	all	values	of	the	integer	argument	type,	you	still	have	issues	of	decimal	
exponents	depending	on	what	the	chosen	type	is,	but	that	may	be	less	significant.)	
	
--		
Joseph	S.	Myers	
joseph@codesourcery.com	

		
Joseph	Myers	<joseph@codesourcery.com>	
(SC22WG14.14880)	Floating-point	DR#13	and	integer	arguments	to	type-generic	macros	
To:	SC22	WG14	sc22wg14@open-std.org	
		
On	Mon,	6	Nov	2017,	Joseph	Myers	wrote:	
	

TS	of	features	that	prevent	reproducibility);	require	the	integer	arguments	to	be	
converted	to	the	type	they	are	considered	to	have;	put	in		
	
(Or	to	the	common	type	of	the	arguments	determined	as	in	DR#9,	to	make	these	
macros	as	similar	as	possible	to	the	other	type-generic	macros,	so	that	the	case	of	
(long	long,	long	long)	arguments	would	convert	them	to	double,	or	maybe	to	
_Decimal64	for	a	decimal	type-generic	macro,	but	(long	long,	long	double)	would	
convert	the	long	long	argument	to	long	double.)	
	

CFP:	We	agree	this	is	the	right	approach.	
	
--		
Joseph	S.	Myers	
joseph@codesourcery.com	

		
There’s	another	problem	here.	We	say	that	the	function	prefix	is	the	same	as	the	macro	
prefix	and	we	determine	the	type	for	generic	parameters	from	the	argument	types.	It	may	
happen	that	the	prefix	is	for	a	standard	floating	type	and	the	parameter	type	is	an	
interchange	or	extended	floating	type,	or	vice	versa.	In	these	cases	there	is	no	such	function.	
A	simple	example	is	the	macro	invocation	fadd(x, y)	where	x	and	y	are	_Float64.	
	
To	address	this	problem,	we	can	say	that	such	cases	result	in	undefined	behavior.	In	the	
example	above,	the	user	could	invoke	fadd((double)x, (double)y)	or	
(float)f32add(x, y),	but	not	fadd(x, y).	We	didn’t	see	a	portable	way	to	get	the	
effect	of	such	as	fadd(x, y)	if	x	is	_Decimal32x	and	y	is	long double,	where	the	
determined	parameter	type	group	will	differ	among	implementations.	
		
Alternatively,	we	considered	adding	functions	to	cover	all	the	cases,	but	the	large	number	of	
functions	required	didn’t	seem	to	justify	the	added	utility.		



	
We	also	considered	a	scheme	where	float	and	double	are	regarded	as	_Float32	and	
_Float64	to	avoid	type	group	mismatches,	but	it	became	exceedingly	complicated	and	
long double	was	still	a	problem.		

The	following	is	a	suggested	TC	to	replace	the	one	in	DR	13.	The	change	addresses	all	the	
problems	discussed	above.	

Suggested	Technical	Corrigendum	

In	clause	15,	after	the	change	to	7.25#6,	add:	
	

Change	7.25#6a	from:	
	

[6a]	The	functions	that	round	result	to	a	narrower	type	have	type-generic	
macros	whose	names	are	obtained	by	omitting	any	suffix	from	the	function	
names.	Thus,	the	macros	with	f	or	d	prefix	are:	
	

fadd														fmul																	ffma	
dadd														dmul																	dfma	
fsub														fdiv																	fsqrt	
dsub														ddiv																	dsqrt	

	
and	the	macros	with	d32	or	d64	prefix	are:	
	

d32add												d32mul															d32fma	
d64add												d64mul															d64fma	
d32sub												d32div															d32sqrt	
d64sub												d64div															d64sqrt	

	
All	arguments	are	generic.	If	any	argument	is	not	real,	use	of	the	macro	
results	in	undefined	behavior.	If	the	macro	prefix	is	f	or	d,	use	of	an	
argument	of	decimal	floating	type	results	in	undefined	behavior.	If	the	
macro	prefix	is	d32	or	d64,	use	of	an	argument	of	standard	floating	type	
results	in	undefined	behavior.	The	function	invoked	is	determined	as	
follows:	
	
—				If	any	argument	has	type	_Decimal128,	or	if	the	macro	prefix	is	d64,	

the	function	invoked	has	the	name	of	the	macro,	with	a	d128	suffix.	
	
—				Otherwise,	if	the	macro	prefix	is	d32,	the	function	invoked	has	the	name	

of	the	macro,	with	a	d64	suffix.	
	
—				Otherwise,	if	any	argument	has	type	long	double,	or	if	the	macro	prefix	

is	d,	the	function	invoked	has	the	name	of	the	macro,	with	an	l	suffix.	
	



—				Otherwise,	the	function	invoked	has	the	name	of	the	macro	(with	no	
suffix).	

	
	to:	
	

[6a]	The	functions	that	round	result	to	a	narrower	type	have	type-generic	
macros	whose	names	are	obtained	by	omitting	any	suffix	from	the	function	
names.	Thus,	the	macros	with	f	or	d	prefix	are:	
	

fadd														fmul																	ffma	
dadd														dmul																	dfma	
fsub														fdiv																	fsqrt	
dsub														ddiv																	dsqrt	

	
and	the	macros	with	fM,	fMx,	dM,	or	dMx	prefix	are:	
	

fMadd													fMxmul														dMfma	
fMsub													fMxdiv														dMsqrt	
fMmul													fMxfma														dMxadd	
fMdiv													fMxsqrt													dMxsub	
fMfma													dMadd															dMxmul	
fMsqrt												dMsub															dMxdiv	
fMxadd												dMmul															dMxfma	
fMxsub												dMdiv															dMxsqrt	

	
All	arguments	are	generic.	If	any	argument	is	not	real,	use	of	the	macro	
results	in	undefined	behavior.	If	the	macro	prefix	is	f	or	d,	use	of	an	
argument	of	interchange	or	extended	floating	type	results	in	undefined	
behavior.	If	the	macro	prefix	is	fM,	or	fMx,	use	of	an	argument	of	standard	or	
decimal	floating	type	results	in	undefined	behavior.	If	the	macro	prefix	is	dM	
or	dMx,	use	of	an	argument	of	standard	or	binary	floating	type	results	in	
undefined	behavior.		The	function	invoked	is	determined	as	follows:	
	
—	 Arguments	that	have	integer	type	are	regarded	as	having	type	double	if	

the	macro	prefix	is	f	or	d,	as	having	type	_Float64	if	the	macro	prefix	is	
fM	or	fMx,	and	as	having	type	_Decimal64	if	the	macro	prefix	is	dM	or	
dMx.	

	
—	 If	the	function	has	exactly	one	generic	parameter,	the	type	determined	

is	the	type	of	the	argument.		
	
—	 If	the	function	has	exactly	two	generic	parameters,	the	type	determined	

is	the	type	determined	by	the	usual	arithmetic	conversions	(6.3.1.8)	
applied	to	the	arguments.	

	
—	 If	the	function	has	three	generic	parameters,	the	type	determined	is	the	



type	determined	by	applying	the	usual	arithmetic	conversions	twice,	
first	to	the	first	two	arguments,	then	to	that	result	type	and	the	third	
argument.	

	
In	clause	15,	at	the	end	of	the	text	appended	to	the	table	in	7.25#7,	further	append:	

	
fsub(d,	ld)	 fsubl	
f32add(f64x,	f64)	 f32addf64x	
d32xsqrt(n)	 d32xsqrtd64		
f32mul(f128,	f32x)	 f32mulf128	if	_Float128	is	at	least	as	wide	

as	_Float32x,	or	f32mulf32x	if	_Float32x	is	
wider	than	_Float128	

f32fma(f32x,	n,	f32x)	 f32fmaf64	if	_Float64	is	at	least	as	wide	as	
_Float32x,	or	f32fmaf32x	if	_Float32x	is	
wider	than	_Float64	

ddiv(ld,	f128)	 undefined		
f32fma(f64,	d,	f64)	 undefined		
fmul(dc,	d)	 undefined	

	

	


