
ISO/IEC JTC 1/SC 22/WG14

September 30, 2017

N 2175

v 1
Syntax proposal for attributes in C2x
accomodate C and C++?

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

We propose to find a middle ground between C and C++ to resolve the syntax compatibility problem for
attributes. Our approach uses Unicode characters to resolve the issue: special parenthesis are introduced as
tokens and a new separator character is used to separate the prefix (std or implementation defined) from
the attribute name. We use code points with glyphs that resemble the C++ usage of [[...]] and :: such
that visual habits are respected.

1. INTRODUCTION
The integration of attributes into the C language has been discussed since over 10 years,
now. A quick scan on WG14’s document site turns up at least the following documents:

N2165 2017/09/20 Ballman Attributes in C (revision to N2137)
N2137 2017/03/13 Ballman Attributes in C (revision to N2049)
N2053 2016/07/28 Ballman The maybe_unused attribute
N2052 2016/07/28 Ballman The fallthrough attribute
N2051 2016/07/28 Ballman The nodiscard attribute
N2050 2016/07/28 Ballman The deprecated attribute
N2049 2016/07/28 Ballman Attributes in C
N1403 2009/09/28 Svoboda Towards support for attributes in C
N1297 2008/03/14 Stoughton Attribute Syntax
N1280 2008/02/11 Walls Attribute Names, Use Existing Practice
N1279 2008/01/23 Walls Attributes Commonly Found in Open Source Applications
N1273 2007/10/11 Stoughton Attributes
N1262 2007/09/10 Kwok Towards support for attributes in C++
N1259 2007/09/09 Myers C1x: Attribute syntax
N1233 2007/04/26 Wong Towards support for attribute-like syntax

Table I. WG14 documents concerning the introduction of attributes.

Unfortunately, the documents in that list don’t agree upon the syntax that should be applied
for attributes, would they be introduced to the C language.
On the other hand, integrating the functionality into C seems to be largely consensual within
WG14. This proposal tries to break the blockage by proposing a new way to integrate
attributes smoothly, without needing to fallback to “uglification” of identifiers (such as in
_Bool or _Thread_local).
This proposal concerns a feature (attributes) that are widely present in existing implemen-
tations, but with varying syntax. The syntax proposed here is an invention by necessity that
tries to consolidate these different existing C implementations, portability requirements that
are specific to the C language, and the corresponding feature of C++.

2. PROBLEM DESCRIPTION
The principal idea of attributes is to introduce a syntactic tool to the C language that

— allows to add specifications to existing language constructs,
— has clear semantics to which construct it applies,
— is backwards compatible, that is for which the addition to headers will not invalidate

existing code, nor change its semantics.

Additionally, it would be highly desirable if the new syntax would also seamlessly integrate
into existing compilers and toolkits.
C++ already has adapted a syntax that (in the context of C++) fits well with these goals,
namely double brackets [[]] to introduce attributes and :: to separate name components

© 2017 Jens Gustedt. Distributed under a Creative Commons Attribution 4.0 International License

N2175:2 Jens Gustedt

of the attribute names. Aaron Ballman’s proposal in document N2165 shows that its model
of application to language constructs is sound and fits well for C, too.
Unfortunately though, the syntax does not integrate well with C. There are two issues:

—The token sequence]] appears in valid code, so parsers must be adapted to treat that
special case.

—Attribute specifications of the form some::thing where some and thing are non-reserved
identifiers can interfere badly with existing code.

Whereas the first point is relatively minor and poses the burden “only” on compiler imple-
mentors, the second is much more serious and concerns the whole C code base.
The reason for this is that there is no good solution for C how the character sequence ::
could be integrated. It could

— remain a two token sequence as it is now, or
— become a token of its own right, and thus be inseparable.

Regardless, a construct such as some::thing exposes two non-reserved identifier tokens
(some and thing) to the preprocessor. Thus such attributes would collide with existing
identifiers (user space and C library).
Standard C itself would certainly not rush to add many std attributes, so the amount of
additional identifiers that had to be reserved only for that would be small, namely std and
the list of names of such attributes.
The real problem arises for those attributes that are the main purpose of the attribute
extension: implementation specific attributes. As an example the GNU compiler framework
documents the following attributes that are common to all supported architectures:

alias aligned alloc_align alloc_size always_inline artificial assume_aligned
bnd_instrument bnd_legacy cleanup cold common constructor const deprecated
destructor error externally_visible flatten format_arg format gnu_inline hot
ifunc interrupt_handler interrupt leaf malloc mode no_address_safety_analysis
no_icf no_instrument_function no_reorder no_sanitize_address no_sanitize_thread
no_sanitize_undefined no_split_stack no_stack_limit noclone nocommon noinline
nonnull noplt noreturn nothrow optimize packed pure returns_nonnull returns_twice
section sentinel simd stack_protect target_clones target tls_model unused used
vector_size visibility warn_unused_result warning weakref weak

(And a lot more that are architecture specific.)

For their own attribute syntax, GNU uses uglification_by_underscores™ to protect against
naming conflicts. E.g a valid GNU function attribute would be __attribute__((__malloc__
)). Translated into C++ attributes this gives [[gnu::malloc]].

—The particle gnu may conflict with a user space identifier, in particular a macro.
—The particle malloc may conflict with a macro in the C library.

The number of interactions with existing code that implementation defined at-
tribute names may have is inpredictable, and could turn out to be a real burden
for porting software forward to new compiler versions or architectures.

3. POSSIBLE SOLUTIONS
3.1. Uglification
Traditionally, if C introduces new keywords to the language it choses from its reserved
identifier space, that is identifiers that

Syntax proposal for attributes in C2x N2175:3

—start with an underscore followed by another underscore or a captial Latin letter.

This lead e.g to the introduction of _Bool and _Static_assert.
Additions to the library are made by reserving a name prefix, e.g atomic_, E, SIG or
memory_order_.

3.1.1. Reserved identifiers. Reserved identifiers with leading underscores and capital letter
or even all-caps could be used for attribute name particles, e.g [[_Std::_Maybe_unused]],
[[_Gnu::_Malloc]], [[_STD::_MAYBE_UNUSED]], [[_GNU::_MALLOC]].
This would already be far from the existing C++ usage and would not much ease the design
of common C and C++ interfaces.

3.1.2. Leading double underscores. Leading underscores could be used for attribute name
particles, e.g [[__std::__maybe_unused]] or [[__gnu::__malloc]].
This is a bit closer to the existing C++ habits, but constructs such as [[__gnu::__format(
__printf, 2, 3)]] quickly become lengthy and illegible.

3.1.3. Prefixes. Prefixes could be a solution for standard attributes. We could e.g use std_
and have [[std_maybe_unused]] etc.
This would not be an easy solution for implementation specific attributes, though, because
no programmer could reasonably foresee which compilers could be relevant for their code in
the future, nor would there be a central register of compiler prefixes that they could easily
consult.

3.2. Introduce poor-man’s namespaces to C

The :: construct works well for C++ for two reasons. First, because there it refers to a well
established feature, namely identifier separation by class names or namespaces. Second,
the preprocessor is used much less than in C and so conflicts with user defined macros will
be much less frequent.
Introducing such a feature to simple C compilers would be a hurdle, because the grammar
would not only change for the newly introduced tokens, but also for the introduction of
names that are structured hierarchically.
In particular, to avoid the name clash with macros it would require to change the lexing
phase (phase 3) that would take care of the composed identifiers. Still, internally it would
have to mark the position of the :: inside the identifier with some special character.

4. OUR PROPOSAL: USE NEW CHARACTERS
We propose to circumvent all these problems by using Unicode code points to describe the
features that we need to implement this syntactically:

—Use double bracket characters as in ⟦ ⟧ to introduce and terminate attribute specifcations.
—Use ∶∶ as a special separator character between the prefix and the name of an attribute.

This leads to things such as ⟦std ∶∶maybe_unused⟧ or ⟦gnu ∶∶malloc⟧, that are visually equiv-
alent to the corresponding C++ syntax.
The most important features of this proposal to avoid naming conflicts are:

(1) Introduce a new separator character ∶∶ that may not be part of any other identifier.
(2) Define attributes as composed identifiers consisting of a prefix and an ordinary identifier.
(3) Join these two parts with ∶∶ to form a valid attribute name.

4.1. Most mathematical symbol code points are free to use
Almost unnoticed, Unicode support as of \u and \U had been added to C99. They allow to
include any Unicode point in wide character constants and strings and to extend the usable
character set for identifiers in a portable way. Thereby

N2175:4 Jens Gustedt

1 #define \u03c0 3.14159265358979323846

is a valid construct, even if on some specific platform π is not present in the source character
set.
C allows a wide range of code points to appear in identifiers, but there are some restrictions,
namely for code points that Unicode categorizes as punctuation or mathematical symbols.
Valid C code may only contain such characters inside character constants or strings:

No C program may contain code point \u2237 in identifiers.

The behavior of a C program containing code points \u27E6 or \u27E7 outside
character constants, strings or comments is undefined.

Therefore we can propose the use of characters ⟦ ⟧ ∶∶ for attributes, see Table II. Since the
characters are previously unused in C, syntax can easily be adapted to integrate the new
feature.

glyph code point category grammar optional digraph trigraph
∶∶ \u2237 math symbol identifier ??::

⟦ \u27E6 math, open parenthesis token [[<::

⟧ \u27E7 math, closing parenthesis token]] ::>

Table II. Code points used for attributes

4.2. Provisions for a seamless transition
The integration of this proposal into most implementations should be easy. Modern plat-
forms are much better in integrating different scripts to display Unicode code points than
this had been the case in the beginning of C. Many, if not most, are able to use UTF-8 en-
coded source files, and easily present all characters of Unicode’s Basic Multilingual Plane,
which includes the characters proposed here.
Also, nowadays text editors and IDEs are easily extensible such that they permit insertion
of arbitrary characters, be it from a drop down menu, by typing the hex sequence or the
name of the character or by defining an editor macro.
So the integration of attributes that are encoded with these characters into modern envi-
ronments is easy most of the time. Also, at the beginning attributes will principally occur
in header files, so the problem will be mostly for implementers and how to provide headers
with patched up specifications.
If nevertheless, implementations have difficulties because one of the three characters are not
present in the source character encoding, they can fallback to different presentations:

—All encodings that provide a \ character can use the universal characters encoding, \u2237,
\u27E6 or \u27E7.

—Otherwise, a ∶∶ replacement must be performed early in translation phase 1, that is when
trigraphs are replaced. One possibility would be to use the unused trigraph sequence ??:.
A variant that would be be closer to the C++ visual would be to replace ??::.

—Replacements for ⟦ and ⟧ only need to be introduced for translation phase 3, tokenization.

Syntax proposal for attributes in C2x N2175:5

—The ⟧ character cannot be encoded by a]] digraph without invalidating currently valid
C code. We propose to allow this as an implementation defined property. As a general
replacement, We introduce “digraph” ::>.

—The ⟦ character may be encoded by a [[digraph, because this character sequence
cannot appear in valid code other than strings etc. Nevertheless for the symmetry with
]] we prefer to introduce “digraph” <::.

As an example, the following two declarations

1 ⟦ some ∶∶ thing ⟧ int A[];
2 ⟦ gnu ∶∶ malloc ⟧ void* realloc(void*, size_t n);

can be written as follows:

1 \\ u27E6some \\ u2237thing \\u27E7 int A[];
2 <::gnu ??:: malloc::> void* realloc(void*, size_t n);

Whereas the first line is barely readable, the second could be a realistic alternative during
a transition to C2x.

5. SUGGESTED ADDITIONS TO THE C STANDARD
This only handles modifications that will be necessary for the naming aspect of this proposal.
For the modifications needed to introduce attributes per se, see N2165.

(1) Introduce the new characters to 5.2.1 p3. Introducing new characters to the base charac-
ter set it not possible since this would imply one-byte encodings for the new characters,
which we can’t assume.

In the extended source and execution character sets, there shall be the ad-
ditional graphic characters corresponding to the universal characters with the
following short identifiers and glyphs:

2237 ∶∶ 27e6 ⟦ 27e7 ⟧

Whether these characters have one byte or multibyte encodings is implemen-
tation defined.

(2) Make sure that the new characters are treated the same, regardless how they are encoded
in the source.

The additional graphic characters have specific roles in the grammar,
notwithstanding if they are entered verbally or through the universal character
name construct.

(3) Add the optional “trigraph” ??:: to 5.2.1.1.

In addition, it is implementation defined whether or not the character se-
quence ??:: is replaced by the character ∶∶ .

(4) Add ∶∶ to “identifier-nondigit” in 6.4.2.1 p1, Syntax.
(5) Add a new subclause 6.4.2.3 that describes reserved identifiers:

6.4.2.3 Reserved identifiers
Constraints
Identifiers starting with an underscore followed by another underscore or a
capital letter and identifiers that contain the character ∶∶ are reserved for fu-
ture extensions of the language and the library, and for implementation specific

N2175:6 Jens Gustedt

purpose. Implementations shall not use identifiers starting with std ∶∶ , stdc ∶∶
or __STDC_ other than those that are defined by this international standard.

(6) Add ⟦, ⟧, <:: and ::> as punctuation to 6.4.6 p1.
(7) Add <:: and ::> as digraphs to 6.4.6 p3.
(8) Add 2237 to Annex D1.

	Introduction
	Problem description
	Possible solutions
	Uglification
	Reserved identifiers
	Leading double underscores
	Prefixes

	Introduce poor-man's namespaces to C

	Our proposal: use new characters
	Most mathematical symbol code points are free to use
	Provisions for a seamless transition

	Suggested additions to the C standard

