
Attributes in C
Reply-to: Aaron Ballman (aaron@aaronballman.com)
Document No: N2137
Revises Document No: N2049
Date: 2017-03-13

Summary of Changes

N2137

 Identified that it is common practice for header files to be written in C but consumed by a C or a

C++ compiler.

 Removed an example from the Proposal section of code that was not conforming C code; also

switched to some more C-like terms such as “identifier” rather than “name”.

 Added the Alternative Syntaxes section that discusses some alternative syntaxes and why they

are not being proposed in this paper.

 Added Proposed Wording.

N2049

 Original proposal.

Introduction
Attributes are a mechanism by which the developer can attach extra information to language entities

with a generalized syntax, instead of introducing new syntactic constructs or keywords for each feature.

This information is intended to be used by an implementation in ways which have minimal semantic

impact, such as improving the quality of diagnostics produced by an implementation or specifying

platform-specific behavior. Attributes are intended for lightweight situations where keywords may be

inappropriate, but are not intended to obviate the need or ability to add such keywords when

appropriate. Attributes are not an inventive concept in C, as vendors have produced different language

extensions covering this functionality in the past, as discussed in great detail in N1229, N1264, and

N1403. Attributes can either be vendor-specific attributes, which are introduced by a vendor-supplied

namespace, or standardized attributes, which are not.

// Standardized attributes.

[[something]] void f([[something_else]] int i);

// Vendor-specific attributes.

[[gnu::something]] void g([[clang::something_else]] int i);

Rationale
The C++ syntax was carefully designed to allow full generality, and is being proposed over Microsoft

__declspec and GNU __attribute__ syntaxes. For instance, __declspec attributes appertain

only to declarations, and not to other syntactic constructs such as statements. The __attribute__

syntax can appertain to a wider range of entities, but suffers from ambiguity (e.g., void f(int

(__attribute__((foo)) x));) .

The placement of the attributes in various syntactic constructs was determined by WG21 to eliminate

ambiguity and provide a consistent design while covering all possible use cases. The general rule of

thumb for attribute placement is that an attribute at the start of a declaration or statement appertains

to everything to the right of the attribute, and an attribute elsewhere appertains to the syntactic

element immediately preceding the attribute.

Use of the C++ syntax is also consistent with the WG14 charter principle to minimize incompatibilities

with C++ [N2021]. The C++ syntax using double square brackets was introduced in C++11 and has gained

wide vendor adoption (MSVC, GCC, Clang, EDG, et al) and considerable positive use from users in the

form of adding new, vendor-specific attributes in addition to standards-mandated attributes. Concerns

were raised in the past about the inventiveness of using double square brackets, but their inclusion in

the C++ standard for 5+ years and their implementation by major compiler vendors that also support C

implementations suggests that this is no longer a truly inventive syntax.

Use of double colons to delineate vendor-specific attributes from standards-based attributes is similarly

proposed to be consistent with the C++ syntax. While this construct is not currently found in the C

programming language, deviation from this syntax causes a seemingly-gratuitous incompatibility with

C++. A different syntax may be plausible, but it forces users desiring interoperability with C++ to make

extended use of the preprocessor and increases the teaching burden for people learning about

attributes in either language. While the syntax may be unfortunate for the C programming language, it is

also not unduly egregious -- it poses no backwards compatibility issues nor an extra burden on

implementers to support and is concise. Given the utility of vendor-specific attributes in practice and the

extant syntax with C++, this proposal recommends use of double colons as a reasonable syntax for the

feature.

Note that this proposal is not proposing to add attributes to C in the form proposed simply because C++

has them in that form, but instead due to the wide popularity vendor-specific attribute implementations

in C have enjoyed over the past two decades. The choice of syntax is a pragmatic one, especially given

the common practice of providing a header file written in C that is to be consumed by either a C or C++

compiler.

Previous proposals raised concerns about how double square brackets would interact with other C-like

languages, such as Objective-C. Specifically, Objective-C uses square brackets for "message send"

expressions. e.g., [foo bar]; where foo is the recipient of the message and bar is the selector.

There were concerns that using double square brackets would create parsing ambiguity, such as with an

attributed expression-statement that was a complex message send expression. Objective-C has a sibling

language called Objective-C++ (usually denoted with a .mm file extension instead of a .m file extension)

that uses C++ instead of C as a foundation, and this language is implemented by the Clang open source

compiler. In practice, there is no ambiguity between Objective-C++ and C++ attributes. Given that Clang

does not currently implement any attributes that appertain to an expression-statement, I privately

implemented an attribute named foobar and tested it with what could be an ambiguous parse to see

whether the Clang parser could handle it without modification, and whether AST properly reflected the

attribute.

 @interface Base

 @end

 @interface S : Base

 - (void) bar;

 @end

 @implementation S

 - (void) bar {}

 @end

 @interface T : Base

 - (S *) foo;

 @end

 @implementation T

 - (S *) foo { return nullptr; }

 @end

 void func(T *t) {

 [[foobar]][[t foo] bar];

 }

The above code was properly parsed and the foobar attribute was properly applied to the Objective-C

message send expression, as shown by this AST dump of the func() function definition:

`-FunctionDecl 0x5c591327c0 <line:20:1, line:22:1> line:20:6 func 'void (T *)'
 |-ParmVarDecl 0x5c59132700 <col:8, col:11> col:11 used t 'T *'
 `-CompoundStmt 0x5c59132980 <col:14, line:22:1>
 `-AttributedStmt 0x5c59132960 <line:21:3, col:31>
 |-FoobarAttr 0x5c59132950 <col:5>
 `-ObjCMessageExpr 0x5c59132920 <col:19, col:31> 'void' selector=bar
 `-ObjCMessageExpr 0x5c591328f0 <col:20, col:26> 'S *' selector=foo
 `-ImplicitCastExpr 0x5c591328d8 <col:21> 'T *' <LValueToRValue>
 `-DeclRefExpr 0x5c591328b0 <col:21> 'T *' lvalue ParmVar 0x5c59132700 't' 'T *'

Because Objective-C++ is a superset of Objective-C, it is reasonable to conclude that possible ambiguous

parses that could arise from adoption of the proposed attribute syntax in C can be overcome by vendors

supporting the feature in Objective-C using similar implementation strategies.

Another possible ambiguity arises from the fact that WG21 chose to standardize the concept of a

function that never returns by using the [[noreturn]] attribute, while WG14 chose to standardize

the same concept by using the _Noreturn keyword. It is likely that with acceptance of this proposal

users will attempt to use the following declaration in a header file shared by both C and C++ code:

[[noreturn]] void f(void); However, this construct can be gracefully handled in one of two

ways: a user concerned about code portability can define a macro to specify that the function never

returns using the proper language-specific constructs, or the user's vendor can implement

[[noreturn]] in C as a matter of QoI due to the fact that use of attribute tokens not specified by the

C standard results in implementation-defined behavior.

Proposal
This document proposes to add support for attributes in C using the syntax introduced by WG21 for

attributes in C++ [WG21 N2761, N1403]. This document also serves as background information on

syntax for the following four, related WG14 proposals: N2051 (nodiscard), N2053 (maybe_unused),

N2050 (deprecated), and N2052 (fallthrough).

Attributes appertain to a particular source construct, such as a variable, type, identifier, statement, etc.

Concrete examples include:

 [[attr1]] struct [[attr2]] S { } [[attr3]] s1 [[attr4]], s2 [[attr5]];

attr1 appertains to the identifiers s1 and s2, attr2 appertains to the declaration of struct S,

attr3 appertains to the type struct S, attr4 appertains to the identifier s1, and attr5

appertains to the identifier s2.

 [[attr1]] int [[attr2]] * [[attr3]] f([[attr4]] float [[attr5]] f1 [[attr6]],
int i) [[attr7]];

attr1 appertains to the function declaration f(), attr2 appertains to the type int, attr3

appertains to the type int *, attr4 appertains to the function parameter f1, attr5 appertains to

the type float, attr6 appertains to the identifier f1, and attr7 appertains to the function

declaration f().

 [[attr1]] int [[attr2]] a[10] [[attr3]], b [[attr4]];

attr1 appertains to the variable declarations a and b, attr2 appertains to the type int, attr3

appertains to the variable declaration a, and attr4 appertains to the variable declaration b.

 [[attr1]] stmt;

attr1 appertains to the entire statement, regardless of statement kind (including null statements,

labels, and compound blocks).

Attributes can also appear in constructs that allow the declaration of an identifier.

 for ([[attr1]] int i = 0; i < 10; ++i)

 ;

attr1 appertains to the variable declaration i.

 enum e { i [[attr1]] };

attr1 appertains to the enumerator i.

 struct S {

 [[attr1]] int i, *j;

 int k [[attr2]];

 int l [[attr3]] : 10;

 };

attr1 appertains to both i and j member declarations, attr2 appertains to the member declaration

k, and attr3 appertains to the bit-field member declaration l.

In all cases, attributes are delimited by double square brackets. Between the square brackets is the

(possibly empty) comma-separated list of attributes. If no attributes are present in the list, the attribute

specifier is silently ignored. Attributes in the list that are not specified by the International Standard

have implementation-defined behavior. The order of the attributes in the attribute list is not significant.

The attribute identifier determines additional requirements for an optional attribute argument clause,

allowing attributes to be parameterized; e.g., a hypothetical deprecated attribute may have an

argument clause allowing an optional message for the compiler to use when emitting a diagnostic, but

another attribute specification may disallow any arguments.

C++ supports vendor-specific attribute syntax, which is an integral component to the feature that has

considerable popularity with vendors. For instance, to date, the Clang implementation supports 30

vendor-specific attributes under the clang attribute scope, and the GCC implementation supports all

GNU-style __attribute__ constructs under the gnu attribute scope (50+ unique attributes). This

vendor-specific syntax uses the C++ nomenclature of double colons to separate the vendor name

component from the attribute name component, e.g., clang::fallthrough or gnu::format. It

is worth noting that the notion of scoped attributes is separate from the notion of namespaces in C++.

The name component does designate a namespace of sorts, but does not tie in to the namespace

feature itself (attribute names do not participate in name lookup, scoped attribute tokens cannot be

compounded to form a scope chain, etc). Attribute tokens (including scoped attribute tokens) that are

unknown to the implementation are ignored. This allows vendors to implement an attribute without

fear of conflicting with the International Standard (including future revisions) or other vendors, but still

allows a vendor the latitude to implement attributes from other vendors. For instance, the Clang

implementation also implements several attributes under the gnu scoped attribute name, as a matter

of QoI.

Alternative Syntaxes
During the Oct 2016 Pittsburgh meeting, a few alternative syntaxes were discussed by the committee.

The alternatives discussed were:

_Pragma

It was observed that C already has the ability to attach extra information to language constructs with the

_Pragma preprocessor directive, and it was questioned whether an attribute syntax was required.

The _Pragma preprocessor directive is unfit as a replacement for an attribute syntax. The string-literal

provided to the directive is processed through translation phase 3 as though it was a series of pp-tokens,

which are limited in their capabilities.

_Attribute

As an alternative to using [[]] to denote an attribute list, it was questioned whether a function-like

keyword would be more appropriate, such as _Attribute. Concerns were raised that the double

square bracket syntax would disallow multiple attributes in a single attribute list from being used as a

macro replacement list; e.g.,

#define M(x) x

M([[foo, bar]]) void f(void);

However, this code is ill-formed in C++ and would not be expected to successfully translate as C code

under this proposal. Further, the Clang compiler implementation has not received any feature requests

to allow such a construct in C++.

It was nonetheless observed that a function-like keyword would prevent such problems while still

allowing common code to be shared between C and C++ through use of macros; e.g.,

#define _Attribute(…) [[__VA_ARGS__]]

A function-like keyword would work but is not being proposed due to it being divergent from the C++

syntax. One common approach to writing libraries is to provide a header file in C that is consumed by

either a C++ compiler or a C compiler and the nature of attributes is that they frequently appertain to

constructs in a header file (such as tag declarations, function declarations, and function parameters).

While a macro like the one above could be used to support this case, there is a strong incentive to not

diverge from the syntax of feature already implemented in C++ unless there is clearly specified rationale

[SC22WG14.14310].

The implementation experience in C++, at least for the implementations with public bug trackers, is that

the double square bracket syntax does not result in complications where users are asking for a function-

like keyword syntax. Further, this approach would require users to write error-prone macros for a

common use case in the field.

Proposed Wording
The wording proposed is a diff from ISO/IEC 9899-2011 with DR 444 applied [DR444]. Green text is new

text, while red text is deleted text.

6.4 Lexical elements
Drafting notes:

Some attributes in the wild make use of keywords as part of the attribute identifier, such as

[[gnu::const]]. In order to support that use case, we need to allow identifiers that could be either

a keyword or an identifier to be an identifier for attribute tokens.

Additionally, in order to support vendor namespaces for attributes in the same manner as C++, :: is

added as a punctuator. However, this could potentially break conforming extensions. GCC has the

__asm__ extension, which uses colons to separate optional string literals. Code exists in the wild that

looks like: __asm__("..." ::: "memory");, for which treating :: as a single token might

require GCC to alter the implementation of their extension. However, GCC already handles the above

example in C++, so this change may or may not break user code, but using consecutive single colon

tokens creates the possibility of users writing attributes accepted by C that are rejected by C++, such as

[[foo: :bar]]. Due to this, the single token form is proposed, but if implementation experience

suggests this breaks conforming extensions, the consecutive token form may be a viable alternative.

Modify 6.4.1p2:

The above tokens (case sensitive) are reserved (in translation phases 7 and 8) for use as keywords,

except in an attribute-token, and shall not be used otherwise.

Modify 6.4.2.1p4:

When preprocessing tokens are converted to tokens during translation phase 7, if a preprocessing token

could be converted to either a keyword or an identifier, it is converted to a keyword except in an

attribute-token.

Modify 6.4.4.3p1:

enumeration-constant:

 identifier attribute-specifier-seqopt

The optional attribute-specifier-seq appertains to the enumerator.

Modify 6.4.6p1:

punctuator: one of

[] () { } . ->

++ -- & * + - ~ !

/ % << >> < > <= >= == != ^ | && ||

? : :: ; ...

= *= /= %= += -= <<= >>= &= ^= |=

, # ##

<: :> <% %> %: %:%:

6.7 Declarations
Drafting notes:

The goal of these changes are to allow an attribute specifier to appear to the left of a declaration so that

the attributes appertain to all of the declarators in the declaration list, or to appear to the right of all

declaration specifiers so that the attributes appertain to the type determined by the specifier sequence.

One divergence from C++ is with the alignment specifier. In C++, an alignment specifier is an attribute

itself, and the remainder of the grammar falls out naturally from that. Further, in C++, the alignment

specifier may only appear after the full sequence of declaration specifiers, not in the middle of the

sequence. In this draft, I have left alignment-specifier as-is in order to reduce drafting churn or break

existing code.

Similarly, an attribute specifier can appear to the right of a type in a declarator to appertain to the type,

or to the right of an identifier in a declarator to appertain to the identifier declared.

There is a notion of an attribute declaration, which is a convenience production (rather than having a

null attributed statement) that is used for attributes like [[fallthrough]];.

Finally, this adds a new subclause for the syntactic and semantic requirements for attributes themselves.

Under this subclause is where the specific attribute definitions (deprecated, nodiscard, etc.) will

be defined.

Modify 6.7p1:

declaration:

 declaration-specifiers init-declarator-listopt ;

 attribute-specifier-seq declaration-specifiers init-declarator-list ;

 static_assert-declaration

 attribute-declaration

declaration-specifiers:

 storage-class-specifier declaration-specifiersopt

 type-specifier declaration-specifiersopt

 type-qualifier declaration-specifiersopt

 function-specifier declaration-specifiersopt

 alignment-specifier declaration-specifiersopt

 declaration-specifier attribute-specifier-seqopt

 declaration-specifier declaration-specifiers

declaration-specifier:

 storage-class-specifier

 type-specifier-qualifier

 function-specifier

init-declarator-list:

 init-declarator

 init-declarator-list , init-declarator

init-declarator:

 declarator

 declarator = initializer

attribute-declaration:

 attribute-specifier-seq ;

The optional attribute-specifier-seq terminating a sequence of declaration-specifiers appertains to the

type determined by the preceding sequence of declaration-specifiers. The attribute-specifier-seq affects

the type only for the declaration it appears in, not other declarations involving the same type.

Modify 6.7p2:

A declaration other than a static_assert or attribute declaration shall declare at least a declarator (other

than the parameters of a function or the members of a structure or union), a tag, or the members of an

enumeration.

Modify 6.7p6:

The declaration specifiers consist of a sequence of specifiers that indicate the linkage, storage duration,

and part of the type of the entities that the declarators denote. The init-declarator-list is a comma-

separated sequence of declarators, each of which may have additional type information, or an initializer,

or both. The declarators contain the identifiers (if any) being declared. The optional attribute-specifier-

seq appertains to each of the entities declared by the declarators of the init-declarator-list.

Insert new paragraph after 6.7p6. Note that the deprecated attribute is proposed in N2050, but we can

use any attribute that appertains to a function as our example.

7 Example 1 In the declaration for an entity, attributes appertaining to that entity may appear at the

start of the declaration and after the identifier for that declaration.

[[deprecated]] void f [[deprecated]] (void); // valid

Add new paragraph after existing 6.7p7:

9 Except where otherwise specified, the meaning of an attribute-declaration is implementation-defined.

Modify 6.7.2.1p1:

Drafting notes: These changes are assuming DR 444 has been applied [DR 444].

struct-or-union-specifier:

 struct-or-union attribute-specifier-seqopt identifieropt { struct-declaration-list }

 struct-or-union attribute-specifier-seqopt identifier

struct-or-union:

 struct

 union

struct-declaration-list:

 struct-declaration

 struct-declaration-list struct-declaration

struct-declaration:

 attribute-specifier-seqopt specifier-qualifier-list struct-declarator-listopt ;

 static_assert-declaration

specifier-qualifier-list:

 type-specifier specifier-qualifier-listopt

 type-qualifier specifier-qualifier-listopt

 alignment-specifier specifier-qualifier-listopt

 type-specifier-qualifier attribute-specifier-seqopt

 type-specifier-qualifier specifier-qualifier-list

type-specifier-qualifier:

 type-specifier

 type-qualifier

 alignment-specifier

struct-declarator-list:

 struct-declarator

 struct-declarator-list , struct-declarator

struct-declarator:

 declarator

 declarator attribute-specifier-seq : constant-expression

 declaratoropt : constant-expression

Add 6.7.2.1p6-10 (to the Constraints section):

6 An attribute-specifier-seq shall not appear in a struct-or-union-specifier of the form struct-or-union

attribute-specifier-seqopt identifier if the struct-or-union-specifier is an incomplete type used in a

parameter-declaration or type-name. The attribute-specifier-seq, if any, appertains to the struct or union

being declared; the attributes in the attribute-specifier-seq are thereafter considered attributes of the

struct or union whenever it is named.

7 Example 1 This allows forward declarations of a struct or union to include attribute information while

preventing the attribute from being written on all tag uses.

 struct [[deprecated]] S { /* ... */ }; // valid

 void f(struct [[deprecated]] S s); // invalid, struct S is already attributed

8 The optional attribute-specifier-seq in a struct-declaration appertains to each of the declarations

declared by the struct-declarator-list; it shall not appear if the optional struct-declarator-list is omitted.

9 The attribute-specifier-seq in a struct-declarator appertains to the bit-field being declared.

10 The optional attribute-specifier-seq in a specifier-qualifier-list appertains to the type denoted by the

preceding type-specifier-qualifiers. The attribute-specifier-seq affects the type only for the struct-

declaration or type-name it appears in, not other types or declarations involving the same type.

Modify 6.7.2.2p1:

Drafting notes:

Because C and C++ do not allow the forward declaration of an enum type, the type specifier that does

not define an enumeration is not allowed to specify any attributes. This is intentionally different than

struct and union specifiers, which can be a forward declaration.

enum-specifier:

 enum attribute-specifier-seqopt identifieropt { enumerator-list }

 enum attribute-specifier-seqopt identifieropt { enumerator-list , }

 enum identifier

enumerator-list:

 enumerator

 enumerator-list , enumerator

enumerator:

 enumeration-constant

 enumeration-constant = constant-expression

The optional attribute-specifier-seq in the enum-specifier appertains to the enumeration; the attributes

in that attribute-specifier-seq are thereafter considered attributes of the enumeration whenever it is

named.

Modify 6.7.2.3p6-9:

6 A type specifier of the form

struct-or-union attribute-specifier-seqopt identifieropt { struct-declaration-list }

or

enum attribute-specifier-seqopt identifieropt { enumerator-list }

or

enum attribute-specifier-seqopt identifieropt { enumerator-list , }

declares a structure, union, or enumerated type. The list defines the structure content, union content, or

enumeration content. If an identifier is provided,130) the type specifier also declares the identifier to be

the tag of that type.

7 A declaration of the form

struct-or-union attribute-specifier-seqopt identifier ;

specifies a structure or union type and declares the identifier as a tag of that type.131)

8 If a type specifier of the form

struct-or-union attribute-specifier-seqopt identifier

occurs other than as part of one of the above forms, and no other declaration of the identifier as a tag is

visible, then it declares an incomplete structure or union type, and declares the identifier as the tag of

that type.131)

9 If a type specifier of the form

struct-or-union attribute-specifier-seqopt identifier

or

enum identifier

occurs other than as part of one of the above forms, and a declaration of the identifier as a tag is visible,

then it specifies the same type as that other declaration, and does not redeclare the tag.

6.7.4 and 6.7.5 Drafting notes:

_Noreturn and _Alignas are implemented as attributes in the C++ standard, rather than separate

specifiers. In this draft, I have left the function and alignment specifiers alone to reduce drafting churn.

It may make sense to alter these productions in a follow-up paper exploring the changes, though it

should not result in a difference to existing code.

Modify 6.7.6p1:

Drafting notes:

I was not certain whether it would make sense to allow attributes on the identifiers in an identifier-list or

not. If we decide to allow them, we need a new production to differentiate the identifier-list in a macro

vs a function (macro parameters are not allowed attributes in C++) and to specify whether the

parameter declaration list needs/prohibits the attributes.

In general, I think the parameters should be allowed to have an attribute. However, I think they may

already be covered. e.g.,

void f(a, b)

 int a [[foo]], b [[bar]];

 {}

I believe the above example is already covered, and I think it would be a point of confusion to require

that to be written as:

void f(a [[foo]], b [[bar]])

 int a [[foo]], b [[bar]];

 {}

or

void f(a [[foo]], b [[bar]])

 int a, b;

 {}

Also, It might make sense to allow an optional attribute-specifier-seq to precede the type-qualifier-list in

an array [abstract] declarator with the same semantics as in a type-qualifier-list: the attributes would

appertain to the pointer type formed by array-to-pointer decay. However, this would diverge from C++

by allowing int a[[[foo]] 5];, which is invalid in C++ due to containing a [[that does not

denote an attribute. For this reason, the syntax is not being proposed at this time.

There are known ambiguous parses with code like:

int f (a) [[something]] int a; {return 0;}

int (*f(a, b))(int, int) [[something]] int a; int b; {return 0;}

int (*f(a, b))[] [[something]] int a; int b; {return 0;}

declarator:

 pointeropt direct-declarator

direct-declarator:

 identifier attribute-specifier-seqopt

 (declarator)

 direct-declarator [type-qualifier-listopt assignment-expressionopt] attribute-specifier-seqopt

 direct-declarator [static type-qualifier-listopt assignment-expression] attribute-specifier-seqopt

 direct-declarator [type-qualifier-list static assignment-expression] attribute-specifier-seqopt

 direct-declarator [type-qualifier-listopt *] attribute-specifier-seqopt

 direct-declarator (parameter-type-list) attribute-specifier-seqopt

 direct-declarator (identifier-listopt) attribute-specifier-seqopt

pointer:

 * attribute-specifier-seqopt type-qualifier-listopt

 * attribute-specifier-seqopt type-qualifier-listopt pointer

type-qualifier-list:

 type-qualifier

 type-qualifier-list type-qualifier

parameter-type-list:

 parameter-list

 parameter-list , ...

parameter-list:

 parameter-declaration

 parameter-list , parameter-declaration

parameter-declaration:

 attribute-specifier-seqopt declaration-specifiers declarator

 attribute-specifier-seqopt declaration-specifiers abstract-declaratoropt

identifier-list:

 identifier

 identifier-list , identifier

Modify 6.7.6p5:

If, in the declaration “T D1”, D1 has the form

identifier attribute-specifier-seqopt

then the type specified for ident is T and the optional attribute-specifier-seq appertains to D1.

Modify 6.7.6.1p1:

If, in the declaration “T D1”, D1 has the form

* attribute-specifier-seqopt type-qualifier-listopt D

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T”, then the type

specified for ident is “derived-declarator-type-list type-qualifier-list pointer to T”. For each type qualifier

in the list, ident is a so-qualified pointer. The optional attribute-specifier-seq appertains to the pointer

and not the object pointed to.

Modify 6.7.6.2p3:

If, in the declaration “T D1”, D1 has one of the forms:

D [type-qualifier-listopt assignment-expressionopt] attribute-specifier-seqopt

 D [static type-qualifier-listopt assignment-expression] attribute-specifier-seqopt

 D [type-qualifier-list static assignment-expression] attribute-specifier-seqopt

 D [type-qualifier-listopt *] attribute-specifier-seqopt

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T”, then the type

specified for ident is “derived-declarator-type-list array of T”.142) The optional attribute-specifier-seq

appertains to the array.

(See 6.7.6.3 for the meaning of the optional type qualifiers and the keyword static.)

Modify 6.7.6.3p5:

If, in the declaration “T D1”, D1 has the form

D(parameter-type-list) attribute-specifier-seqopt

or

D(identifier-listopt) attribute-specifier-seqopt

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T”, then the type

specified for ident is “derived-declarator-type-list function returning T”. The optional attribute-specifier-

seq appertains to the function type.

Add new paragraph after 6.7.6.3p13:

The optional attribute-specifier-seq in a parameter-declaration appertains to the parameter.

Modify 6.7.7p1:

type-name:

 specifier-qualifier-list abstract-declaratoropt

abstract-declarator:

 pointer

 pointeropt direct-abstract-declarator

direct-abstract-declarator:

 (abstract-declarator)

 direct-abstract-declaratoropt [type-qualifier-listopt

 assignment-expressionopt] attribute-specifier-seqopt

 direct-abstract-declaratoropt [static type-qualifier-listopt

 assignment-expression] attribute-specifier-seqopt

 direct-abstract-declaratoropt [type-qualifier-list static

 assignment-expression] attribute-specifier-seqopt

 direct-abstract-declaratoropt [*] attribute-specifier-seqopt

 direct-abstract-declaratoropt (parameter-type-listopt) attribute-specifier-seqopt

The optional attribute-specifier-seq in a direct-abstract-declarator appertains to the preceding array or

function type. The attribute-specifier-seq affects the type only for the declaration it appears in, not

other declarations involving the same type.

Add new Subclause after 6.7.10.

Drafting notes:

This new subclause specifies the syntax and semantics of attributes in general, and is followed by sub-

subclauses for each of the standardized attributes. Since this proposal is concerned only with the

attribute syntax and semantics rather than specific attributes, no concrete attributes are included in this

draft.

The primary concerns are that attributes are introduced as a list contained within double-square

brackets (as individual tokens, rather than a single token). Attributes come in two forms, one is a single

identifier which should only be used for standardized attributes and the other is a “scoped” form, which

is a pair of identifiers delimited by double colons (as a single token) and should be used by

implementations for implementation-defined attributes. Each implementation is recommended to

select a unique identifier for their attribute namespace. Any attribute not specified by the standard is

implementation-defined, and implementations are required to ignore unknown attributes. Each

attribute specifies its own requirements on whether it accepts arguments or not, but the parsing

constraints on arguments are left purposefully loose so that implementations have flexibility (for

instance, an attribute argument could be arbitrary source code).

6.7.11 Attributes
Syntax

1 attribute-specifier-seq:

 attribute-specifier-seqopt attribute-specifier

attribute-specifier:

 [[attribute-list]]

attribute-list:

 attributeopt

 attribute-list , attributeopt

attribute:

 attribute-token attribute-argument-clauseopt

attribute-token:

 identifier

 attribute-scoped-token

attribute-scoped-token:

 attribute-namespace :: identifier

attribute-namespace:

 identifier

attribute-argument-clause:

 (balanced-token-seqopt)

balanced-token-seq:

 balanced-token

 balanced-token-seq balanced-token

balanced-token:

 (balanced-token-seqopt)

 [balanced-token-seqopt]

 { balanced-token-seqopt }

 any token other than a parenthesis, a bracket, or a brace

Constraints

2 For each individual attribute, the form of balanced-token-seq will be specified. Commented [AB1]: This is a [Note] in C++, but I don't see how
to formulate that for C.

3 Each attribute-specifier-seq is said to appertain to some source construct, identified by the syntactic

context where it appears (Subclause 6.7, Subclause 6.8). The attribute-specifier-seq appertaining to

some source construct shall contain only attributes that are allowed to apply to that source construct.

Semantics

4 Attributes specify additional information for various source constructs such as types, variables,

identifiers, blocks, or translation units.

5 An attribute-specifier that contains no attributes has no effect. The order in which attribute-tokens

appear in an attribute-list is not significant. If a keyword (6.4.1) that satisfies the syntactic requirements

of an identifier (6.4.2) is contained in an attribute-token, it is considered an identifier. The attribute-

token determines additional requirements on the attribute-argument-clause (if any).

6 For an attribute-token (including an attribute-scoped-token) not specified in this International

Standard, the behavior is implementation-defined. Any attribute-token that is not recognized by the

implementation is ignored.

Recommended Practice

7 Each implementation should choose a distinctive name for the attribute-namespace in an attribute-

scoped-token.

6.8 Statements and blocks
Drafting notes:

Introduce optional attribute specifier sequences that precede the statement. The attribute will

appertain to the statement itself. In the case of labels, ensure that the attribute appertains to the

declaration of the label name rather than the subsequent statement being labeled.

Modify 6.8p1:

statement:

 labeled-statement

 attribute-specifier-seqopt compound-statement

 expression-statement

 attribute-specifier-seqopt selection-statement

 attribute-specifier-seqopt iteration-statement

 attribute-specifier-seqopt jump-statement

The optional attribute-specifier-seq appertains to the respective statement.

Modify 6.8.1p1:

labeled-statement:

 attribute-specifier-seqopt identifier : statement

 attribute-specifier-seqopt case constant-expression : statement

 attribute-specifier-seqopt default : statement

The optional attribute-specifier-seq appertains to the label.

Modify 6.8.3p1:

Drafting notes:

This is required to prevent ambiguous parses with the attribute-declaration production through

declaration, the result is:

[[something]]; // Parses as an attribute-declaration.

void func(void) {

 [[something]]; // Parses as an attribute-declaration.

 [[something]]1; // Parses as an expression-statement.

}

expression-statement:

 expressionopt ;

 attribute-specifier-seq expression ;

The attribute-specifier-seq appertains to the expression.

6.9 External Definitions
Modify 6.9.1p1:

function-definition:

 attribute-specifier-seqopt declaration-specifiers declarator

 declaration-listopt compound-statement

declaration-list:

 declaration

 declaration-list declaration

The optional attribute-specifier-seq in a function-definition appertains to the function.

Acknowledgements
I would like to recognize the following people for their help in this work: David Keaton, David Svoboda,

Jens Maurer, Joseph Meyers, Michael Wong, and Richard Smith.

References
[DR 444]

Defect Report Summary for C11 Version 1.10. <unknown>. http://www.open-

std.org/jtc1/sc22/wg14/www/docs/summary.htm#dr_444

[N1229]

Potential Extensions For Inclusion In a Revision of ISO/IEC 9899. <unknown>. http://www.open-

std.org/jtc1/sc22/wg14/www/docs/n1229.pdf

[N1264]
Potential Extensions For Inclusion In a Revision of ISO/IEC 9899. <unknown>. http://www.open-

std.org/jtc1/sc22/wg14/www/docs/n1264.pdf

[N1403]

Towards support for attributes in C. David Svoboda. http://www.open-

std.org/jtc1/sc22/wg14/www/docs/n1403.pdf

[N2021]
C - Preliminary C2x Charter. David Keaton. http://www.open-

std.org/jtc1/sc22/wg14/www/docs/n2021.htm

[WG21 N2761]
Towards support for attributes in C++. Jens Maurer, Michael Wong. http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf

[SC22WG14.14310]

attributes. David Keaton. http://www.open-std.org/jtc1/sc22/wg14/14310

