
Draft DRs for TS 18661 WG 14 N2077

2016-09-10

DDR #1
==

Reference Document: C11�

Subject: Ambiguous specification for FLT_EVAL_METHOD

Summary

5.2.4.2.2#9:

Except for assignment and cast (which remove all extra range and precision), the
values yielded by operators with floating operands and values subject to the usual
arithmetic conversions and of floating constants are evaluated to a format whose
range and precision may be greater than required by the type. The use of
evaluation formats is characterized by the implementation-defined value
of FLT_EVAL_METHOD:

-1 indeterminable;

0 evaluate all operations and constants just to the range and precision of the type;

1 evaluate operations and constants of type float and double to the range and
precision of the double type, evaluate long double operations and constants
to the range and precision of the long double type;

2 evaluate all operations and constants to the range and precision of the long
double type.

All other negative values for FLT_EVAL_METHOD characterize implementation-
defined behavior

Do the words:

the values yielded by operators with floating operands and values subject to the
usual arithmetic conversions

in the first sentence mean the same as:

Interpretation 1: the values yielded by operators with: (a) floating operands and
(b) values subject to the usual arithmetic conversions

or:

Interpretation 2: (a) the values yielded by operators with floating operands and (b)
the values subject to the usual arithmetic conversions?

Interpretation	2	is	problematic	because	the	evaluation	methods	pertain	only	to	
operators	that	return	a	value	of	floating	type,	not	to,	for	example,	the	relational	
operators	with	floating	operands.	Nor	do	they	apply	to	all	values	subject	to	the	usual	
arithmetic	conversions,	and	so	(b)	doesn’t	add	anything.	Thus,	reasonableness	
suggests	Interpretation	1.	However,	the	mention	of	assignment	and	cast	(which	are	
not	subject	to	the	usual	arithmetic	conversions)	suggests	Interpretation	2.	
	
Interpretation 2, unlike Interpretation 1, implies that values yielded by unary operators
are widened to the evaluation format. In some cases whether a unary operator is widened
matters. Widening a signaling NaN operand raises the “invalid” floating-point exception.
Widening an operand with a non-canonical encoding canonicalizes the encoding.

The IEC 60559 copy and negate operations are bit manipulation operations that affect at
most the sign. C operations bound to these IEC 60559 operations are expected to behave
accordingly, but won’t if they entail widening.

Widening unary operators would introduce conversions that might affect performance but
which have no benefit.

According to personal notes, this issue came up at the WG14 meeting in Chicago in
2013, but was not resolved and did not result in an action item.

Recently, this issue came up again as underlying the issue raised by Joseph Myers in
email SC22WG14.14278:

Suppose that with an implementation of C11 + TS 18661-1, that defines
FLT_EVAL_METHOD to 2, you have:

static volatile double x = SNAN;
(void) x;

Suppose also that the implementation defines the "(void) x;" statement to
constitute an access to volatile-qualified x.

May the implementation define that access to convert x from the format of
double to the format of long double, with greater range and precision,
that format being used to represent double operands in accordance with the
setting of FLT_EVAL_METHOD, and thereby to raise the "invalid" exception?

That is, may a convertFormat operation be applied as part of
lvalue-to-rvalue conversion where FLT_EVAL_METHOD implies that a wider
evaluation format is in use?

Even without signaling NaNs, the issue can apply to the case of exact
underflow, which can be detected using pragmas from TS 18661-5, if the
wider format has extra precision but not extra range and so exact underflow
occurs on converting a subnormal value to the wider format.

The following suggested Technical Corrigendum is intended to clarify the wording in
favor of Interpretation 1, which excludes widening unary operators to the evaluation
format.

Suggested Technical Corrigendum

In 5.2.4.2.2#9, replace:

Except for assignment and cast (which remove all extra range and precision), the
values yielded by operators with floating operands and values subject to the usual
arithmetic conversions and of floating constants are evaluated to a format whose
range and precision may be greater than required by the type.

with:

The values of floating type yielded by operators subject to the usual
arithmetic conversions and the values of floating constants are evaluated to a
format whose range and precision may be greater than required by the type. In all
cases, assignment and cast remove all extra range and precision.

DDR #2
==

Reference Document: C11�

Subject: Can DECIMAL_DIG be larger than necessary?

Summary

This is about the issue raised by Joseph Myers in email SC22WG14.14285:

C11 defines DECIMAL_DIG as "number of decimal digits, n, such that any
floating-point number in the widest supported floating type with p_max radix b
digits can be rounded to a floating-point number with n decimal digits and back
again without change to the value," and then gives a formula.

Is it OK for the value of DECIMAL_DIG to be larger than given by the
formula? Such a value would still seem to meet the textual description, though
being suboptimal.

This is an issue for implementing TS 18661-3 when that involves types wider
than long double. In C11, "real floating type" means float, double or long
double (6.2.5#10) (and then those types plus the three complex types are defined
to be the floating types). TS 18661-3 is supposed to be compatible with C11, so
that an implementation can conform to both simultaneously. The definition of
DECIMAL_DIG in TS 18661-3 covers all supported floating types and non-
arithmetic encodings. And that's not conditional on
__STDC_WANT_IEC_60559_TYPES_EXT__. So in an implementation of TS
18661-3 that supports _Float128, DECIMAL_DIG must be big enough for
_Float128, even if __STDC_WANT_IEC_60559_TYPES_EXT__ is not
defined when <float.h> is included. And that's only compatible with C11 (if long
double is narrower than _Float128) if C11 allows DECIMAL_DIG to be larger
than given by the formula.

Agreed. The current specification for DECIMAL_DIG in TS 18661-3 is incompatible
with C11, as explained.

The suggested Technical Corrigendum below allows DECIMAL_DIG to be larger than
the value of the given formula. Thus an implementation that supports a floating type
wider than long double, for example a wide type in TS 18661-3, could define
DECIMAL_DIG to be large enough for its widest type and still conform as a C
implementation without extensions.

Where DECIMAL_DIG is used to determine a sufficient number of digits, this change
might lead to conversions with more digits than needed and with more digits than would
have been used without the change. However, programs wishing the minimal sufficient
number of digit are better served by the type-specific macros FLT_DECIMAL_DIG,
etc.

We considered the alternative of changing TS 198661-3 to make DECIMAL_DIG
dependent on __STDC_WANT_IEC_60559_TYPES_EXT__. But this could lead to
errors resulting from separately compiled parts of a program using inconsistent values of
DECIMAL_DIG.

Suggested Technical Corrigendum

In 5.2.4.2.2#11, change the bullet defining DECIMAL_DIG from:

— number of decimal digits, n, such that any floating-point number in the
widest supported floating type with pmax radix b digits can be rounded to a
floating-point number with n decimal digits and back again without change
to the value,

< … formula … >

to:

— number of decimal digits, n, such that any floating-point number in the
widest supported floating type with pmax radix b digits can be rounded to a
floating-point number with n decimal digits and back again without change
to the value, at least

< … formula … >

DDR #3
==

Reference Document: Floating Point Extensions, Part 1�

Subject: Is return of same type convertFormat or copy?

Summary

This is about the issue raised by Joseph Myers in email SC22WG14.14280:

TS 18661-1 says "Whether C assignment (6.5.16) (and conversion as if by
assignment) to the same format is an IEC 60559 convertFormat or copy operation
is implementation-defined, even if <fenv.h> defines the macro
FE_SNANS_ALWAYS_SIGNAL (F.2.1).".

Does this apply to function return, where the return type of the function is the
same as the type of the expression passed to the return statement and no wider
evaluation format is in use - that is, may this act as either convertFormat or
copy? C11 F.6 clearly envisages that such a return statement may do a
conversion to the same type in the case of wider evaluation formats. But
6.8.6.4#3 only refers to conversions "If the expression has a type different from
the return type of the function in which it appears".

The specification, from F.3#3, quoted above is incomplete in that it doesn’t cover
function returns, which are not assignments or conversions as if by assignment. As
currently written, C11 + TS18661-1 might be read to exclude the possibility of using
convertFormat in this case. A statement should be added to say that the implementation
has the option to apply convertFormat to the return value. The change does not break
existing implementations.

The effect of convertFormat would be that signaling NaNs would signal and
noncanonical representations would be canonicalized. It is extremely unlikely that a
program would depend on convertFormat not being used.

Suggested Technical Corrigendum

In Clause 8, to the text for C F.3#3:

[3] Whether C assignment (6.5.16) (and conversion as if by assignment) to
the same format is an IEC 60559 convertFormat or copy operation is
implementation-defined, even if <fenv.h> defines the macro
FE_SNANS_ALWAYS_SIGNAL (F.2.1).

append the sentence:

If the return expression of a return statement is evaluated to the floating-
point format of the return type, it is implementation-defined whether a
convertFormat operation is applied to the result of the return expression.”

At the end of Clause 8, add:

In F.3#3, attach a footnote to the wording:

Whether C assignment (6.5.16) (and conversion as if by assignment) to the
same format is an IEC 60559 convertFormat or copy operation

where the footnote is:

*) Where the source and destination formats are the same, convertFormat
operations differ from copy operations in that convertFormat operations
raise the “invalid” floating-point exception on signaling NaN inputs and
do not propagate non-canonical encodings.

DDR #4
==

Reference Document: Floating Point Extensions, Part 1�

Subject: fetestexceptflag and exceptions passed to fegetexceptflag

Summary

This is about the issue raised by Joseph Myers in email SC22WG14.14328:

TS 18661-1 says, for fetestexceptflag, "The value of *flagp shall have been set
by a previous call to fegetexceptflag.".

This contrasts with the C11 wording for fesetexceptflag, "The value of *flagp
shall have been set by a previous call to fegetexceptflag whose second argument
represented at least those floating-point exceptions represented by the argument

excepts.". So what happens if more exceptions are specified in the call to
fetestexceptflag than were specified in the call to fegetexceptflag? Then
fegetexceptflag may or may not have stored any meaningful representation of the
state of the extra exceptions being tested.

I think fetestexceptflag should have the same wording for this issue as
fesetexceptflag: "whose second argument represented at least those floating-point
exceptions represented by the argument excepts".

fesetexceptflag sets global state, typically a hardware register, whereas fetestexceptflag
just reads a variable. It seems more important to avoid spurious data in the former.

Still, there’s no utility in testing spurious flag settings, and placing the same restrictions
on fetestexceptflag as on fesetexceptflag might be less error prone.

Suggested Technical Corrigendum

In 15.2, in the new text for C 7.6.2.4a#2, change:

The value of *flagp shall have been set by a previous call to
fegetexceptflag.

to:

The value of *flagp shall have been set by a previous call to
fegetexceptflag whose second argument represented at least those
floating-point exceptions represented by the argument excepts.

DDR #5
==

Reference Document: Floating Point Extensions, Part 1�

Subject: Editorial changes

Summary

In CFP email, Fred Tydeman noted:

Searching for "infinite precision" in part 1, most of them have "(as if) to" before
it. Except, ffma, ffmal, dfmal which is missing the "(as if)".

Right. In particular, all the functions that round result to narrower type have “(as if)”,
except for the fma family.

Suggested Technical Corrigendum

In 14.5, in the new text for C 7.12.13a.5#2, insert “(as if)” before “to infinite precision”.

DDR #6
==

Reference Document: Floating Point Extensions, Part 2 �

Subject: Editorial clarification about number digits in the coefficient

Summary

In 12.5, n is defined to be “the number of digits in the coefficient c”, where the decimal
floating-point argument is represented by the triple (s, c, q). The intention is that n is the
number of digits in the coefficient of the particular argument, i.e., the number of
significant digits, not the maximum number of digits in the coefficient for the type. This
might be misread, particularly since 5.2.4.2.2a says

⎯ number of digits in the coefficient

DEC32_MANT_DIG 7
DEC64_MANT_DIG 16
DEC128_MANT_DIG 34

This part of 5.2.4.2.2a is in the context of characterizing the type, so clearly refers to the
type and not any particular representation.

Suggested Technical Corrigendum

In 12.5, change:

where n is the number of digits in the coefficient c

to:

 where n is the number of significant digits in the coefficient c

DDR #7
==

Reference Document: Floating Point Extensions, Part 3 �

Subject: Missing specification for usual arithmetic conversions, tgmath

Summary

This is about the issue raised by Joseph Myers in email SC22WG14.14282:

C11 specifies that the usual arithmetic conversions on the pair of types (long
double, double) produces a result of type long double.

Suppose long double and double have the same set of values. TS 18661-3
rewrites the rules for usual arithmetic conversions so that the case "if both
operands are floating types and the sets of values of their corresponding real types
are equivalent" prefers interchange types to standard types to extended types. But
this leaves the case of (long double, double) unspecified as to which type is
chosen, unlike in C11, as those are both standard types.

I think this is a defect in TS 18661-3, and it should say that if both are standard
types with the same set of values then long double is preferred to double which is
preferred to float, as in C11.

A similar issue could arise if two of the extended types have equivalent sets of
values. I'm not aware of anything to prohibit that, although it seems less likely in
practice. I think the natural fix would be to say that _Float128x is preferred to
_Float64x which is preferred to _Float32x.

I think such an issue would also arise for <tgmath.h> (if _Float64x and
_Float128x have the same set of values, the choice doesn't seem to be
specified). It also seems possible for the <tgmath.h> rules for purely floating-
point arguments to produce a different result from the usual arithmetic
conversions (consider the case where _Float32x is wider than long double, and
<tgmath.h> chooses long double), and since rules that are the same in most cases
but subtly different in obscure cases tend to be confusing, I wonder if it might be
better to specify much simpler rules for <tgmath.h>: take the type resulting from
the usual arithmetic conversions[*], where integer arguments are replaced by
_Decimal64 if there are any decimal arguments and double otherwise. (That's
different from the present rules for e.g. (_Float32x, int), but it's a lot simpler, and
seems unlikely in practice to choose a type with a different set of values from the
present choice.)

[*] Meaningful for more than two arguments as long as the usual arithmetic
conversions are commutative and associative as an operation on pairs of types.

Though substantive, the suggested change to the usual arithmetic conversions is
consistent with the intention in TS 18661-3 to specify all the cases (except where neither
format is a subset of the other and the formats are not the same). The missing cases were
an oversight. The suggested preferences of long double over double over float and
_Float128x over _Float64x over _Float32x are the obvious choices.

Joseph Myers notes that the <tgmath.h> specification is incomplete in the same way as
the usual arithmetic conversions. He argues for simplifying the specification by referring
to the usual arithmetic conversions specification, rather than mostly repeating it, as the
current specification does. The suggested Technical Corrigendum below follows this new
approach. Though a substantive change to TS 18661-3, the effects on implementations
and users are expected to be minimal – worth the simplification.

The suggested Technical Corrigendum below also restores footnote number 62, which is
lost in the current TS 18661-3.

Suggested Technical Corrigendum

In clause 8, change the replacement text for 6.3.1.8#1:

If one operand has decimal floating type, the other operand shall not have
standard floating type, binary floating type, complex type, or imaginary
type.

If both operands have floating types and neither of the sets of values of
their corresponding real types is a subset of (or equivalent to) the other,
the behavior is undefined.

Otherwise, if both operands are floating types and the sets of values of
their corresponding real types are equivalent, then the following rules are
applied:

If both operands have the same corresponding real type, no further
conversion is needed.

Otherwise, if the corresponding real type of either operand is an
interchange floating type, the other operand is converted, without
change of type domain, to a type whose corresponding real type
is that same interchange floating type.

Otherwise, if the corresponding real type of either operand is a
standard floating type, the other operand is converted, without
change of type domain, to a type whose corresponding real type
is that same standard floating type.

Otherwise, if both operands have floating types, the operand, whose set of
values of its corresponding real type is a (proper) subset of the set of
values of the corresponding real type of the other operand, is converted,
without change of type domain, to a type with the corresponding real type
of that other operand.

Otherwise, if one operand has a floating type, the other operand is
converted to the corresponding real type of the operand of floating type.

Otherwise, the integer promotions are performed on both operands. Then
the following rules are applied to the promoted operands:

. . .

to:

If one operand has decimal floating type, the other operand shall not have
standard floating type, binary floating type, complex type, or imaginary
type.

If both operands have floating types and neither of the sets of values of
their corresponding real types is a subset of (or equivalent to) the other,
the behavior is undefined.

If both operands have the same corresponding real type, no further
conversion is needed.

Otherwise, if both operands are floating types and the sets of values of
their corresponding real types are equivalent, then the following rules are
applied:

If the corresponding real type of either operand is an interchange
floating type, the other operand is converted, without change of
type domain, to a type whose corresponding real type is that same
interchange floating type.

Otherwise, if the corresponding real type of either operand is
long double, the other operand is converted, without change of
type domain, to a type whose corresponding real type
is long double.

Otherwise, if the corresponding real type of either operand
is double, the other operand is converted, without change of
type domain, to a type whose corresponding real type is double.

(All cases where float might have the same format as another type
are covered above.)

Otherwise, if the corresponding real type of either operand
is _Float128x or _Decimal128x, the other operand is converted,
without change of type domain, to a type whose corresponding real
type is _Float128x or _Decimal128x, respectively.

Otherwise, if the corresponding real type of either operand
is _Float64x or _Decimal64x, the other operand is converted,
without change of type domain, to a type whose corresponding real
type is _Float64x or _Decimal64x, respectively.

Otherwise, if both operands have floating types, the operand, whose set of
values of its corresponding real type is a (proper) subset of the set of
values of the corresponding real type of the other operand, is converted,
without change of type domain62), to a type with the corresponding real
type of that other operand.

Otherwise, if one operand has a floating type, the other operand is
converted to the corresponding real type of the operand of floating type.

Otherwise, the integer promotions are performed on both operands. Then
the following rules are applied to the promoted operands:

. . .

In clause 15, replace:

In 7.25#3c, replace the bullets:

… bullets …

with:

— If two arguments have floating types and neither of the sets of values
of their corresponding real types is a subset of (or equivalent to) the
other, the behavior is undefined.

— If any arguments for generic parameters have type _DecimalM where
M ≥ 64 or _DecimalNx where N ≥ 32, the type determined is the
widest of the types of these arguments. If _DecimalM and
_DecimalNx are both widest types (with equivalent sets of values) of
these arguments, the type determined is _DecimalM.

— Otherwise, if any argument for generic parameters is of integer type
and another argument for generic parameters has type _Decimal32, the
type determined is _Decimal64.

— Otherwise, if any argument for generic parameters has type
_Decimal32, the type determined is _Decimal32.

— Otherwise, if the corresponding real type of any argument for generic
parameters has type long double, _FloatM where M ≥ 128, or
_FloatNx where N ≥ 64, the type determined is the widest of the

corresponding real types of these arguments. If _FloatM and either
long double or _FloatNx are both widest corresponding real types
(with equivalent sets of values) of these arguments, the type
determined is _FloatM. Otherwise, if long double and _FloatNx are
both widest corresponding real types (with equivalent sets of values)
of these arguments, the type determined is long double.

— Otherwise, if the corresponding real type of any argument for generic
parameters has type double, _Float64, or _Float32x, the type
determined is the widest of the corresponding real types of these
arguments. If _Float64 and either double or _Float32x are both
widest corresponding real types (with equivalent sets of values) of
these arguments, the type determined is _Float64. Otherwise, if
double and _Float32x are both widest corresponding real types (with
equivalent sets of values) of these arguments, the type determined is
double.

— Otherwise, if any argument for generic parameters is of integer type,
the type determined is double.

— Otherwise, if the corresponding real type of any argument for generic
parameters has type _Float32, the type determined is _Float32.

— Otherwise, the type determined is float.

In the second bullet 7.25#3c, attach a footnote to the wording:

the type determined is the widest

where the footnote is:

*) The term widest here refers to a type whose set of values is a superset
of (or equivalent to) the sets of values of the other types.

with:

In 7.25#3c, replace the first sentence and bullets:

[3c] Except for the macros for functions that round result to a narrower
type (7.12.13a), use of a type-generic macro invokes a function whose
generic parameters have the corresponding real type determined by the
corresponding real types of the arguments as follows:

— First, if any argument for generic parameters has type _Decimal128,
the type determined is _Decimal128.

— Otherwise, if any argument for generic parameters has type
_Decimal64, or if any argument for generic parameters is of integer

type and another argument for generic parameters has type
_Decimal32, the type determined is _Decimal64.

— Otherwise, if any argument for generic parameters has type
_Decimal32, the type determined is _Decimal32.

— Otherwise, if the corresponding real type of any argument for generic
parameters is long double, the type determined is long double.

— Otherwise, if the corresponding real type of any argument for generic
parameters is double or is of integer type, the type determined is
double.

— Otherwise, if any argument for generic parameters is of integer type,
the type determined is double.

— Otherwise, the type determined is float.

with:

[3c] Except for the macros for functions that round result to a narrower
type (7.12.13a), use of a type-generic macro invokes a function whose
generic parameters have the corresponding real type determined by the
types of the arguments for the generic parameters as follows:

— Arguments of integer type are regarded as having type _Decimal64 if

any argument has decimal floating type, and as having type double
otherwise.

— If the function has exactly one generic parameter, the type determined

is the corresponding real type of the argument for the generic
parameter.

— If the function has exactly two generic parameters, the type determined

is the corresponding real type determined by the usual arithmetic
conversions (6.3.1.8) applied to the arguments for the
generic parameters.

— If the function has more than two generic parameters, the type

determined is the corresponding real type determined by repeatedly
applying the usual arithmetic conversions, first to the first two
arguments for generic parameters, then to that result type and the next
argument for a generic parameter, and so forth until the usual arithmetic
conversions have been applied to the last argument for a generic
parameter.

DDR #8
==

Reference Document: Floating Point Extensions, Part 1�

Subject: wrong type for fesetmode parameter

Summary

This is about the issue raised by Joseph Myers in email SC22WG14.14358:

TS 18661-1 gives the declaration of fesetmode as:

int fesetmode(const fenv_t *modep);

The argument should be of type const femode_t *, not const fenv_t *.

--

This was an editorial cut-and-past error. The Description says the argument modep shall
point to an objet set by a call to fegetmode, which sets objects of type femode_t. It’s
unlikely the function would be implemented with the erroneous type.

Suggested Technical Corrigendum

In 15.3, in the new text for C 7.6.3.1a#1, change:

 int fesetmode(const fenv_t *modep);

to:

 int fesetmode(const femode_t *modep);

DDR #9
==

Reference Document: Floating Point Extensions, Part 2 �

Subject: a-style formatting not IEC 60559 conformant

Summary

The a-style formatting specified in subclause 12.5 of TS 18661-2 is not an IEC 60559
conversion for cases where the formatting precision is less than the length of the
coefficient of the input. The specification entails an intermediate rounding to the floating
type of the input, which might overflow resulting in a character sequence representation
of infinity. IEC 60559 conversions to character sequences do not overflow, unless the

language over-restricts the exponent range for character sequence output, which C does
not.

Another undesirable aspect of the current specification is that in certain cases it produces
results with more precision than given by a width modifier.

Here are some examples, showing the result of the intermediate conversion, with
different behaviors for the current spec (“old”) and the spec in the suggested Technical
Corrigendum below (“new”):

For _Decimal32 input x with representation (1, 9512345, 90) and specifier ...

%.3Ha
old: x -> (1, 9510000, 90) -> 9.510000e96
new: x -> (1, 951, 94) -> 9.51e96

%.2Ha
old: x -> (1, 9500000, 90) -> 9.500000e96
new: x -> (1, 95, 95) -> 9.5e96

%.1Ha
old: x -> Inf -> inf
new: x -> (1, 1, 97) -> 1e97

Here’s another example:

For _Decimal32 input x with representation (1, 9512345, 86) and specifier ...

%.2Ha
old: x -> (1, 950, 90) -> 9.50e92
new: x -> (1, 95, 91) -> 9.5e92

The examples use a to-nearest rounding.

As the examples illustrate, the problematic cases for the current “old” spec occur because
of the exponent range limitation of the format used for the intermediate conversion.

The suggested Technical Corrigendum below specifies formatting that is IEC 60559
conformant and which honors a width modifier. It does not change the numerical value of
the result, except in overflow cases.

Suggested Technical Corrigendum

In 12.5, in the addition to 7.21.6.1#8 and 7.29.2.1#8, under a,A conversion specifiers,
change:

If the precision is present (in the conversion specification) and is zero or at least
as large as the precision p (5.2.4.2.2) of the decimal floating type, the conversion
is as if the precision were missing. If the precision is present (and nonzero) and
less than the precision p of the decimal floating type, the conversion first obtains
an intermediate result by rounding the input in the type, according to the current
rounding direction for decimal floating-point operations, to the number of digits
specified by the precision, then converts the intermediate result as if the precision
were missing. The length of the coefficient of the intermediate result is the
smallest number, at least as large as the formatting precision, for which the
quantum exponent is within the quantum exponent range of the type (see
5.2.4.2.2a). The intermediate rounding may overflow.

to:

If the precision P is present (in the conversion specification) and is zero or at least
as large as the precision p (5.2.4.2.2) of the decimal floating type, the conversion
is as if the precision were missing. If the precision P is present (and nonzero) and
less than the precision p of the decimal floating type, the conversion first obtains
an intermediate result as follows, where n is the number of significant digits in the
coefficient:

If n <= P, set the intermediate result to the input.

If n > P, round the input value, according to the current rounding direction
for decimal floating-point operations, to P decimal digits, with unbounded
exponent range, representing the result with a P-digit integer coefficient
when in the form (s, c, q).

Convert the intermediate result in the manner described above for the case where
the precision is missing.

