
ISO/IEC JTC 1/SC 22/WG14

August 20, 2016

N 2067

v 1
The register overhaul
named constants for the C programming language

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

C11 lacks an important feature that would make everday’s C programming and debugging much easier:
named constants of any chosen data type. This proposal extends the existing register storage specification
to provide that feature. As a fallout, some opitimization opportunities for addressless objects and functions
also become available.

1. INTRODUCTION
The register storage class is perhaps the least understood, less esteemed and most un-
derestimated tools of the C language. It merits better, since it can be used to force a very
economic use of the & operator in code that is sensible to optimization. In particular, objects
that are declared register can’t alias, and, if they are const qualified in addition, they can
often be completely optimized out.

The goals of this proposal are multiple:

Goal 1. Use const qualified register objects as typed compile time constants.

Goal 2. Extend the optimization opportunities of register to file scope objects.

Goal 3. Create new optimization opportunities for functions that are local to a TU.

Goal 4. Improve the interplay between objects and functions that are local to a TU.

Goal 5. Impose bounds checking for constant array subscripts.

To see that the register concept can be extended to overcome the lack of general constants
in C, let us look at the two following definitions:

1 enum { fortytwo = 42, };
2 register int const fortytwo = 42;

From the point of view of the C standard, they specify very different things, an enumeration
constant and an object. But as long as they are placed inside a function, the two entities
are not much distinguishable by code that uses them.

— Both are of type int.
— Both have value 42.
— Both may not appear on the left hand side of an assignment.
— Both may not be subject of the address-of operator &.
— They have exactly the same spelling.

In C11, there are the following differences to these definitions:

— Definitions with register storage are not allowed in file scope.
— A register object with const qualification is not an integer constant expression, ICE,

even if the initializer is an ICE.

Other drawbacks for register declarations in C11 include:

— Because of implicit address-of operations when accessing them, register is not useful for
array declarations.

© 2016 Jens Gustedt. Distributed under a Creative Commons Attribution 4.0 International License

N2067:2 Jens Gustedt

— Because of implicit address-of operations when calling functions, register, even if allowed
in file scope, would not be useful for function declarations.

In view of that, I will try bring the concepts closer together, for which the separation
is quite unproductive and artificial: literals and const-qualified register objects. Both are
just constants in the sense of usual CS terminology.

A constant is an immutable and non-addressable entity in the program state that
is determined during compilation.

Because it is determined at compile time and immutable, no aspect of such a constant
can change during a specific execution of the program. Because it is non-addressable no
property of a constant can change between different executions of the same object file.
Thus constants will never influence the branching of the program.

Therefore, constants can be present in a object file in very different forms.

— They may be optimized completely and only be implicitly present in the structure of the
control flow graph.

— They can be present explicitly as one or several hardware registers, assembler immediates,
or special instructions.

— They may be realized in addressable read-only memory.

Which form they take, depends on many factors and a compiler is completely free to
chose. Examples:

— A 0 may be realized by an instruction that zeros out a register, e.g exclusive-or of the
register with itself.

— Depending of its usage, a small integer constant can often be realized as instruction
immediate, or fixed address offset.

— A double constant may be loaded directly from memory into a special floating point
hardware register.

Overview
We develop our proposal in several steps, that become more and more intrusive as we go
along. First in Section 2 we introduce the main feature, file scope register, which shows to
be simple and straightforward. Section 3 then proposes to subsume the main advantage into
a new concept, named constants, and Section 4 integrates these into C’s integer constant
expressions. Sections 5 and 6 then deal with two important features that are more difficult
to integrate into C11, register functions and register arrays.

2. INTRODUCE REGISTER STORAGE CLASS IN FILE SCOPE
Unfortunately, with the current definition the use of register is limited to block scope and
function prototype scope. There is no technical reason that it couldn’t be used in file scope:
file scope register declarations are already allowed from a viewpoint of syntax, they are
explicitly forbidden by a constraint.

2.1. Changes for object types
Any compiler should be able to implement file scope objects with register storage class
easily. At the minimum they can just be realized similar to file-scope-static with two
additional features:

— Produce a diagnostic if the address of such an object is taken.
— If such a file scope register object is const qualified but not volatile, allow its use

inside any inline or register function.

The register overhaul N2067:3

Textual changes for this feature that concern objects are minimal. The only problem
spots are const qualified register objects. Since these are detectable at compile time, we can
impose their explicit initialization. Thereby we avoid a clash with the concept of tentative
definitions, which should just be forbidden for such const qualified objects.

Existing practice:
In connection with its __asm__ hardware register extension, the GNU compiler already
allows register in file scope.

Sections of the C standard to be amended

— 6.7.1 p6
— Add a mention of aliasing to the optimization potential.
— Add: If such an object is of const qualified type, it shall be initialized explicitly.

— 6.7.1 p6 footnote. Transform this footnote into a note.
— Add after “auto declaration”: “(function scope) or static declaration (file

scope)”
— Add: A const qualified identifier with register storage class can not appear in

a tentative definition.
— 6.9 p2 remove the mention of register
— 6.9.1 p4 add register to the list
— 6.9.2 p2 add register to the cases

3. TYPED CONSTANTS WITH REGISTER STORAGE CLASS AND CONST QUALIFICATION
The idea of this proposal is that named constants for all types become available in file scope,
because they can then be declared in header files as const qualified register objects.

No additional changes to the ones in the previous section are required. It might be con-
venient, though, to add some text to stress the fact that also a hidden modification of such
objects is not standard conforming. This may be helpful to avoid that implementations
claim the right to map and modify such objects, hiding behind the fact that the standard
leaves behavior undefined when a const qualified object is modified.

Sections of the C standard to be amended

— 6.6 “constant expressions”, p7 general constant expressions, add an item to the end
of the list
— an lvalue of const but not volatile qualified type that has been declared with
register storage class.

N2067:4 Jens Gustedt

— Baptize the thing. Therefore add a new paragraph:
A register constant is an object that is of const but not volatile qualified type,
that is declared with the register storage class, for which the unique declaration is
the definition, that is explicitly initialized and for which the initializer only contains
constant expressions.(FOOTNOTE1) Such a register constant provides the same
value as specified by the initialization throughout all its lifetime.(FOOTNOTE2)
FOOTNOTE1: Register constants can not appear in tentative definitions.
FOOTNOTE2: But for their spelling, for their type qualification, [for their qual-
ification as an ICE,] and for their usability in preprocessor expressions, register
constants are indistinguishable from literals of the same type and value. Therefore,
register constants can be be used as named constants of their type.

— p8, arithmetic constant expressions: Add register constants of arithmetic type to the
list.

— 6.7.1 “storage class specifiers” p6: new footnote:
An implementation should only map a register declared object to a hardware reg-
ister or similar device which is subject to changes not effected by the program if the
type of the object is volatile qualified and therefore is not a register constant.

— 6.7.4 “function specifiers”, p3. Allow the use of register constants in all inline
functions. Therefore at the end add:
... shall not contain a reference to an identifier with internal linkage unless it is the
name of a register constant.

4. EXTEND ICE TO REGISTER CONSTANTS
Now that we have global constants for all types, we need to integrate this into the rest of
the language. We want register constants to behave the same as literals of the underlying
type. This is particularly important for constants of integer type, since they are needed to
declare array dimensions, alignments, width of bit-fields or values of enumeration constants,
and we want all of this to go smoothly.

To make this possible, we have to amend the computation of compile time integer con-
stant, or as the C standard calls them integer constant expressions, ICE. In most contexts,
attaching the ICE property to a C11 expression will not change the semantics if this new
register feature is applied.

There are only two such contexts in which register objects were previously allowed, and
where the meaning changes if the ICE property is added:

— An array declaration declares a VLA if the expression that is used for the size is not an
ICE. Thus some VLA that are declared in C11 code would turn into FLA. Such a change
would not change the semantics of the program in question.

— Integer expressions of value 0 are only null pointer constants if they are also ICE.

There is no problem by using pointer expressions directly.

The register overhaul N2067:5

register int const zero = 0;
double* p = zero; // constraint violation in C11

In C11, the initialization of p is a constraint violation because implicit conversions from
integer to pointer expressions are only allowed if the integer expression is an ICE of value
0. So this property for pointers alone would just have code valid that had been invalid C11
code, before.

Only a combination of some rarely used features may effectively result in a change of
semantics of a valid C11 program. It requires a very specific use of const qualified register
objects that are used in a very specific _Generic primary expression. These situations are
detectable at compile time and during the transition phase from C11 to C2x compilers can
implement diagnostics for this situation.

Sections of the C standard to be amended
The change itself is quite easy to perform, because we already have identifiers in C11,
namely enumeration constants, that are ICE.

— In all places that it occurs in C11, change the syntax term enumeration-constant to
named-constant. These are 6.4.4, p1, 6.4.4.3, 6.7.2.2 p1, A.1.5.

— 6.4.4.3, previously “enumeration constants”: Change the whole section to read

1 6.4.4.3 Named constants
2
3 Syntax
4 named -constant: identifier
5
6 Semantics
7
8 Named constants are identifiers that are declared as register
9 constant or as enumeration constant. An identifier declared

10 as an enumeration constant has type int.
11
12 Forward references: constant expressions (6.6), enumeration
13 specifiers (6.7.2.2).

— 6.6 “constant expressions”, p6 “ICE” and footnote: change enumeration constant to
named constant of integer type.

— p8 “arithmetic constant expression”: change enumeration constant to named con-
stants of arithmetic type.

5. FUNCTIONS
The possibility to declare functions with register storage class is an interesting fallout of
our approach.

— A function declaration of storage class register is equivalent to a declaration as static
inline with the additional property that its address can’t be taken.

N2067:6 Jens Gustedt

This doesn’t mean that implementors of that feature have to implement a completely
new function model. Just as currently for register variables, a register function may well
reside in memory and internally the compiler can use its address to make a call. But such
a mechanism would be to the discretion of the implementation and completely transparent
for the programmer.

5.1. Optimization opportunities
The advantages of register functions are:

— Such a function cannot be called from another TU than the one it is defined in and can
effectively be inlined without negative effects to other TU. Thus no “instantiation” of
the symbol of a register function is necessary.

— Since the caller of such a function is known to reside in the same TU, the function setup
can avoid the reload of certain registers and is not bound to the platform’s function call
ABI.

Similar as for register objects, these optimizations are currently possible for static
inline functions for which the compiler can prove that the address never escapes the current
TU. A register declaration instead of static inline guarantees that these optimization
opportunities are not lost accidentally.

Existing practice:
The GNU compiler already has

__attribute__ ((__visibility__("internal")))

that allows for similar optimizations, but which is intrinsicly unsafe since gcc does not check
if a pointer to such a function can escape the current TU.

5.2. Relaxed constraints for TU local objects
As already mentioned, inline declared functions have difficulties with other symbols that
have no or internal linkage. Such functions that are not static at the same time

— cannot access static file scope variables, or
— cannot declare their own block scope static variables,

even if these are const qualified and known at compile time.
Our proposal simplifies things with that respect.

— All functions that are static inline have access to register objects that are visible at
their point of definition.

— All functions declared inline have access to register constants that are visible at their
point of definition.

5.3. Changes for function types
As the function concept is currently formulated, such register function could never be
called: the standard function call feature takes the address of a function that is called. We
propose to change the standard to allow for that by letting the function call operator ()
directly operate on a function. This changes the semantics just in the context of a call.
Function to function-pointer would still be mandated in all other contexts and thus would
be illegal for functions that are declared with register.

The register overhaul N2067:7

Sections of the C standard to be amended

— 6.3.2.1 p4 “conversions of function designators”: Add “, or as the postfix expression
of a function call ” to the list of allowed operations.

— 6.5.2.2 “function calls”:
— p 1: Replace

... pointer to function returning void or returning a complete object
type other than an array type.

by
... function returning void or returning a complete object type other
than an array type, or shall have type pointer to such a function.

— p5: Replace
... type pointer to function returning an object type, ...

by
... type function returning an object type or pointer to such a func-
tion, ...

6. UNIFY DESIGNATORS
If we want to extend the use of register constants, we want to ensure that the types that
can be used for it are not artificially constrained.

With

enum sig_stat { unknown = 0, sync = 1, async = 2, };

consider the two following alternative declarations of sig_status in a header file:

extern enum sig_stat const sig_status []; // values are hidden

and

stat ic enum sig_stat const sig_status [] = { // not usable in inline
[SIGABRT] = async ,
[SIGFPE] = sync ,
[SIGILL] = sync ,
[SIGINT] = async ,
[SIGSEGV] = sync ,
[SIGTERM] = async ,

};

The first hides the contents from the user code, and the fact if sig_status[SIGIMPL] is
unknown or not1 can only be checked at runtime, through a memory reference. The second
declaration exposes all values to all users, but cannot be used from an inline function.

Using the second variant with register instead of static would solve the problem: all
values are visible for all users and all inline functions could use it. But unfortunately,
with the current version of the standard, arrays that are declared with a register storage
class can’t serve much purpose: we can’t even access individual fields without constraint
violation. This is because the [] designator is defined by taking addresses: refering to an
array element through A[23] is equivalent an address-of operation, pointer arithmetic and

1for some implementation defined signal SIGIMPL

N2067:8 Jens Gustedt

dereferencing, namely *(&A[0]+23). Thus if A is declared as register, this is a constraint
violation.

This part of the register overhaul tries to make register arrays useful whenever the
expression in the [] is an ICE. It does that by attempting a careful review of the three
different syntactical contexts, in which [] brackets are used.

Syntactically, C uses [] brackets in three different places, but in all that places they serve
to specify a length (or the lack of) an array dimension or position:

— array declaration,
— array initialization,
— array subscripting.

The expression that is enclosed inside [] can be

— a strictly positive integer constant expression (ICE), or empty [] to provide a constant
value that is determined at compile time

— any other form of integer expression, or empty [*] to provide a value that is determined
at run time.

All actual C compilers are able to distinguish these two cases. For designated initializers,
only the first form is allowed and using the second is a constraint violation. For an array
declaration, in the first case the array is FLA, in the second a VLA2.

For subscripting, the C standard currently doesn’t make the distinction. This is a bit
unfortunate because conceptually subscripting an array at fixed location is technically the
same as accessing an element of a structure. In this section we aim to amend the C standard
such that an subscript expression that is a positive ICE can be applied to a register array.

As a fallout, this reorganization ensures bounds checking for FLA and constant subscripts.
If an index into an FLA is constant it can be checked against 0 and the array length at
translation time. So if it is negative or too large this constitutes a constraint violation under
this proposal.

Existing practice:
The clang compiler silently implement this already, although this is not compliant to C11.

2Which may or many not be supported by the compiler.

The register overhaul N2067:9

Sections of the C standard to be amended

6.5.2 Postfix operators

Syntax

postfix-expression:

primary-expression

postfix-expression array-designator

postfix-expression [expression]

postfix-expression (argument-expression-listopt)

postfix-expression struct-union-designator

postfix-expression -> identifier

postfix-expression ++

postfix-expression --

(type-name) { initializer-list }

(type-name) { initializer-list , }

array-designator: [expression]

struct-union-designator: . identifier

Constraints

The expression of an array-designator shall be an integer

constant expression.

6.5.2.1 Array subscripting

Constraints

Array subscripting can occur in two different forms. For the first, the

first expressions has type array object of type T and constant length L,

for some type T non-negative integer constant L and is

not a variable length array. The integer constant expression of the

array-designator shall have a non-negative value that is strictly

less than L. The result has type T.

Otherwise, after promotion [the first ∣ one] expression shall have type

pointer to complete object type T, the other expression

shall have integer type, and the result has type T.

N2067:10 Jens Gustedt

Semantics

A postfix expression followed by an array-designator designates

the corresponding element of an array object.FOOTNOTE Successive

array-designators designate an element of a multidimensional array

object.

FOOTNOTE: Because the subscript expression is a integer constant such a

designation is similar to the designation of structure or union members.

Otherwise, --- insert the existing text about array subscript semantics ---

EXAMPLE Consider the array object defined by the declaration

int x[3][5];

Here x is a 3 × 5 array of ints; more precisely, x is an

array of three element objects, each of which is an array of

five ints. So the expression x[1] denotes an array object of

five int, namely the second such array element. When used in

the expression x[1][2], the designator [2] applies to that

array and thus refers to its third element, an int.

--- insert existing array subscript example here ---

Forward references: Structure and union members (6.5.2.3),

additive operators (6.5.6), address and indirection operators (6.5.3.2),

array declarators (6.7.6.2), designator (6.7.9).

In Section 6.7.9 and in Annex A, change the syntax definition for designator to the
following:

designator: array-designator struct-union-designator

Also change p6 and p7 of that section to directly refer to array-designator and struct-
union-designator, respectively.

	Introduction
	Introduce register storage class in file scope
	Changes for object types

	Typed constants with register storage class and const qualification
	Extend ICE to register constants
	Functions
	Optimization opportunities
	Relaxed constraints for TU local objects
	Changes for function types

	Unify designators

