
N2019
Revised Proposal for DR469

Blaine Garst
2016-03-10

While searching 7.26.4 Mutex functions for an appropriate place to place the
Suggested TC of DR469 revealed that the required matching behavior of a recursive
mx_unlock was simply missing. N1907 was proposed, but not deemed sufficient, and
so this is a revision based on feedback at WG14 meetings.

I. Recursive mtx_lock underspecification

Recursive mutexes have thread specific behaviors, namely ongoing success on locking
an already locked recursive mutex, as specified in 7.26.4.3p2. Each successive lock
operation must also be matched with a call to mtx_unlock, yet this is not stated.

Proposed Technical Corrigenda

Add as new paragraph to 7.26.4 Mutex functions

After initialization and before destruction a mutex shall be locked and
subsequently unlocked by one calling thread at a time. In the case of a recursive
mutex additional matched pairs of lock and unlock requests shall also succeed
by that calling thread, but with no observable effect.

In 7.26.4.3 The mtx_lock function p2

Replace

The mtx_lock function blocks until it locks the mutex pointed to by mtx. If the
mutex is non-recursive, it shall not be locked by the calling thread. Prior calls to
mtx_unlock on the same mutex shall synchronize with this operation.

with

If the mutex pointed by by mtx is non-recursive, the mutex shall not already be
locked by the calling thread, and the mtx_lock function shall block until it the
mutex is locked. If the mutex is recursive and is not already locked by the calling
thread mtx_lock shall block until the mutex is locked, and the recursion count
is set to one. Prior calls to mtx_unlock that unlock the same mutex shall

synchronize with this operation.

If the mutex is recursive and already locked by the calling thread, mtx_lock
shall succeed after incrementing the recursion count.

In 7.26.4.4 The mtx_timedlock function p2

replace

The mtx_timedlock function endeavors to block until it locks the mutex
pointed to by mtx or until after the TIME_UTC-based calendar time pointed to
by ts. The specified mutex shall support timeout. If the operation succeeds, prior
calls to mtx_unlock on the same mutex shall synchronize with this operation.

with

The mutex pointed to by mtx shall support timeout. If the mutex pointed to by
mtx is recursive and is already locked by the calling thread, the recursion count
is incremented and the call succeeds. Otherwise, The mtx_timedlock
function endeavors to block until it locks the mutex pointed to by mtx or until
after the TIME_UTC-based calendar time pointed to by ts. If the mutex was
locked by this operation and the mutex is recursive, the recursion count is set to
one.

In 7.26.4.5 The mtx_trylock function p2

replace

The mtx_trylock function endeavors to lock the mutex pointed to by mtx. If
the ∗ mutex already locked, the function returns without blocking. If the operation
succeeds, prior calls to mtx_unlock on the same mutex shall synchronize with
this operation.

with

If the mutex pointed to by mtx is recursive and already locked by the calling
thread, the recursion count is incremented and the call succeeds. Otherwise, the
mtx_trylock function endeavors to lock the mutex pointed to by mtx. If the
mutex is already locked by another thread, the function returns without blocking.
If the operation locks the mutex, prior calls to mtx_unlock on the same mutex
shall synchronize with this operation, and further if the mutex is recursive its

recursion count is set to one.

In 7.26.4.6 The mtx_unlock function p2

replace

The mtx_unlock function unlocks the mutex pointed to by mtx. The mutex
pointed to by mtx shall be locked by the calling thread.

with

The mutex pointed to by mtx shall be locked by the calling thread. If the mutex
is non-recursive, it is unlocked, If the mutex is recursive, the recursion count is
decremented, and if non-zero, the call succeeds, and if zero, the mutex shall be
unlocked and the call shall synchronize with subsequent locking calls.

2 Underspecification of thread termination

From DR469, we wish to state explicitly that an operation on a mutex that remains
locked after thread termination results in undefined behavior. The rationale is that the
implementation of the thread waiting may require a finite resource.

Proposed Technical Corrigendum

To 7.26.5.1 The thrd_create function add after paragraph 2

The thread terminates when either the function pointed by func returns and sets
the result code to the returned value, or a call is made by the thread to
thrd_exit.

The behavior of a program is undefined if a thread terminates without unlocking
every mutex that the thread has locked.

