
Revision: 2016-03-10 N2017
Reply to: Clark Nelson

Programming language C —
Extensions for parallel programming —
Part 1: Thread-based parallelism
The contents of this document match the Working Draft of the CPLEX study group
adopted on 2016-03-07. Only the document identification and title page have been
changed.

The consensus of the study group is that this document is ready to be transferred to
WG14 for further processing to produce a Technical Specification. However, the study
group does not believe its work is done.

This document describes only parallel execution that uses multi-processor/multi-core
technology. The study group believes that further work needs to be done to support
SIMD/vector technology. A goal is that a SIMD parallel loop could be expressed in terms
almost identical to a parallel loop in this document, just by varying a keyword or two.
Arithmetic on array sections, much as in Fortran, could also provide better support for
SIMD technology. Support for GPGPU technology is also desirable, but may be more of
a challenge.

The title of this document has been changed to better align the expectations of the reader
with those of the study group. However, it should be understood that full planning for an
ISO/IEC multipart Technical Specification — including determining the title and scope
of each part in advance — has not yet been done.

EPPTS:2018(E) 2016-03-10 N2017

ii

2016-03-10 N2017 EPPTS:2018(E)

Contents Page

1 Scope . 1

2 Normative references . 1

3 Terms and definitions . 2

4 Document conventions . 3

5 Predefined macro names . 3

6 Task execution . 4

7 Reduction and spawning function types . 5
7.1 Introduction . 5
7.2 Reduction specifiers . 5
7.3 Reduction conversions . 9
7.4 Spawning function types . 9
7.5 Integration with the C standard . 10
7.6 Integration with the C++ standard . 13

8 Captures . 14
8.1 Introduction . 14
8.2 Spawn captures . 14
8.3 Reduction captures . 15

9 Counted loops . 17
9.1 Introduction . 17
9.2 Constraints on all counted loops . 17
9.3 Constraints on a counted for statement . 17

9.3.1 Introduction . 17
9.3.2 Constraints on the form of the control clauses 17
9.3.3 Other statically checkable constraints . 18
9.3.4 Dynamic constraints . 19
9.3.5 Evaluation relaxations . 20

9.4 Constraints on a counted range-based for statement 20

10 Parallel loops . 21

11 Task statements . 22
11.1 Introduction . 22
11.2 The task block statement . 22
11.3 The task spawn statement . 23
11.4 The task sync statement . 23
11.5 The task spawning call statement . 23

12 Parallel loop hint parameters <cplex.h> . 25
12.1 Introduction . 25
12.2 The num_threads parameter . 26
12.3 The chunk_size parameter . 26
12.4 The schedule_kind parameter . 26
12.5 The workload_balance parameter . 27
12.6 The affinity parameter . 27

iii

EPPTS:2018(E) 2016-03-10 N2017

Bibliography . 28

Index . 29

Tables

Table 1 — Combination method for built-in combiners 7
Table 2 — Default initializers for built-in combiners . 7
Table 3 — Method of computing the iteration count . 19
Table 4 — Method of advancing an induction variable . 19

iv

2016-03-10 N2017 EPPTS:2018(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national
standards bodies (ISO member bodies). The work of preparing International Standards is nor-
mally carried out through ISO technical committees. Each member body interested in a subject
for which a technical committee has been established has the right to be represented on that
committee. International organizations, governmental and non-governmental, in liaison with
ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives,
Part 2.

The main task of technical committees is to prepare International Standards. Draft International
Standards adopted by the technical committees are circulated to the member bodies for voting.
Publication as an International Standard requires approval by at least 75% of the member bodies
casting a vote.

In other circumstances, particularly when there is an urgent market requirement for such doc-
uments, a technical committee may decide to publish other types of normative document:

— an ISO Publicly Available Specification (ISO/PAS) represents an agreement between tech-
nical experts in an ISO working group and is accepted for publication if it is approved by
more than 50% of the members of the parent committee casting a vote;

— an ISO Technical Specification (ISO/TS) represents an agreement between the members
of a technical committee and is accepted for publication if it is approved by 2/3 of the
members of the committee casting a vote.

An ISO/PAS or ISO/TS is reviewed every three years with a view to deciding whether it can
be transformed into an International Standard.

ISO/TS EPPTS was prepared by Technical Committee ISO/IEC JTC1/SC22/WG14. 1)

Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights. ISO shall not be held responsible for identifying any or all such patent
rights.

1)FYI: This is the only paragraph in the Foreword that has anything in it that’s not just boilerplate.

v

EPPTS:2018(E) 2016-03-10 N2017

Introduction

Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights other than those mentioned above. ISO [and/or] IEC shall not be held
responsible for identifying any or all such patent rights.

vi

TECHNICAL SPECIFICATION EPPTS:2018(E)

Programming languages —
C —
Extensions for parallel programming

1 Scope

The following are within the scope of this technical specification:

— Extensions to the C language to simplify writing a parallel program.

The following are outside the scope of this technical specification:

— Support for writing a concurrent program.

2 Normative references

The following normative documents contain provisions which, through reference in this text,
constitute provisions of this technical specification. For dated references, subsequent amend-
ments to, or revisions of, any of these publications do not apply. However, parties to agreements
based on this technical specification are encouraged to investigate the possibility of applying the
most recent editions of the normative documents indicated below. For undated references, the
latest edition of the normative document referred to applies. Members of ISO and IEC maintain
registers of currently valid International Standards.

ISO/IEC 9899:2011(E), Programming languages — C

ISO/IEC 14882:2014(E), Programming languages — C++

1

EPPTS:2018(E) 2016-03-10 N2017

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1
thread
either the main thread of the program, or a thread created by the program using thrd_create,
or a worker thread

3.2
worker thread
thread created by the implementation (as if by thrd_create) for the purpose of executing tasks
in parallel

3.3
task
subsection of the flow of control within a program that can be correctly executed asynchronously
with respect to other, independent tasks in the program

3.4
concurrent program
program that uses multiple concurrent interacting threads of execution, each with its own
progress requirements

EXAMPLE 1 A program that has separate server and client threads is a concurrent program.

3.5
parallel program
program whose computation involves independent tasks, which may be distributed across mul-
tiple computational units to be executed simultaneously

NOTE 1 If sufficient computational resources are available, a parallel program may execute significantly
faster than an otherwise equivalent serial program.

2

2016-03-10 N2017 EPPTS:2018(E)

4 Document conventions

1 This source and issue list for this document are hosted at <https://github.com/wg14-cplex/
epp>.

2 [C++: Text that is specific to C++ is enclosed in square brackets and presented in oblique sans-serif
type.]

3 Definitions of terms and grammar non-terminals defined in the C [C++: or C++] standard are
not duplicated in this document. Terms and grammar non-terminals defined in this document
are referenced in the index. The “cplex_” prefix of library identifiers is omitted from the index
entry.

4 According to the ISO editing directives, the use of footnotes “shall be kept to a minimum.”
Almost all of the footnotes in this document are not intended to survive to final publication.
Most footnotes are classified by an abbreviation:

FYI: A point of information.

DFEP: Departure from existing practice.

5 Predefined macro names

1 The following macro name is defined by the implementation:

__STDC_PARALLEL_EXT__: The integer constant 201603.

3

https://github.com/wg14-cplex/epp
https://github.com/wg14-cplex/epp

EPPTS:2018(E) 2016-03-10 N2017

6 Task execution

1 A task is permitted to execute either in the invoking thread or in a worker thread implicitly
created by the implementation. Independent tasks executing in the same thread are indetermi-
nately sequenced with respect to one another. Independent tasks executing in different threads
are unsequenced with respect to one another.

2 When execution of an independent task completes, execution joins with its parent task. The
completion of a task synchronizes with the completion of the associated task block, or with the
next execution of a sync statement within the associated task block.

3 It is unspecified whether a worker thread is reused for multiple tasks during the execution of a
program. The lifetimes (creation and termination points) of worker threads are unspecified. An
attempt by the program to terminate, detach or join with a worker thread results in undefined
behavior.

4

2016-03-10 N2017 EPPTS:2018(E)

7 Reduction and spawning function types

7.1 Introduction

1 A reduction type describes a member object with a particular type, called the proxied type,
and an associated combiner operation, along with other optional aspects, to support common
parallel computations.

2 Attempting to access an object with reduction type and either thread or allocated storage
duration results in undefined behavior.

3 The _Task _Call qualifier (also called the “spawning function qualifier”) is in a new syntactic
category for qualifiers of function types. It can be used to write functions that can spawn tasks
and return while some of those tasks are still running.

7.2 Reduction specifiers

Syntax

reduction-specifier:
_Reduction identifieropt { reduction-aspect-list }
_Reduction identifier

reduction-aspect-list:
reduction-aspect
reduction-aspect-list , reduction-aspect

reduction-aspect:
_Type : type-name
_Combiner : combiner-operation
_Initializer : initializer
_Finalizer : constant-expression
_Order : reduction-order-constraint

combiner-operation:
constant-expression
builtin-combiner-operation

builtin-combiner-operation: one of
*= +=
&= ^= |=
_And _Or
_Min _Max
_Last

reduction-order-constraint:
_Commutative
_Associative

5

EPPTS:2018(E) 2016-03-10 N2017

Constraints

1 The type and combiner aspects shall be present in every reduction specifier. Any given kind of
aspect shall not be present more than once in a reduction specifier.

2 The proxied type of a reduction shall be one of the following: an unqualified arithmetic type,
an unqualified pointer to object type, or an unqualified complete structure or union type.

3 If the combiner is a constant expression, then it shall be an address constant referring to a
function taking two arguments, both of pointer-to-proxied type. If it is a compound assignment
operator, then it shall be one for which the constraints of the corresponding combination method
are satisfied using lvalues having the proxied type.2) If it is _And or _Or, the proxied type shall
be an integer type. If it is _Min or _Max, the proxied type shall be a real arithmetic type.

4 If the combiner aspect of a reduction is any of the builtin combiner operations other than
_Last, then the initializer of the reduction, if specified, shall be a constant expression suitable
to initialize an object of the proxied type to the default initializer value corresponding to the
combiner operation, as specified in Table 2. Otherwise, the initializer of a reduction, if specified,
shall be suitable to initialize an object of the proxied type having static storage duration, or
shall be an address constant referring to a function. If it is an address constant, it shall refer to
a function taking one argument of pointer-to-proxied type.

5 The finalizer of a reduction, if specified, shall be an address constant referring to a function
taking one argument of pointer-to-proxied type.

Semantics

6 A reduction type is a type containing a proxied member of an associated proxied type. Each
concurrently-executing task that refers to an object of reduction type has its own distinct proxied
member object (called its view) of the object.

NOTE 1 Thus, when they are used as intended, reduction objects can be updated from different tasks
without causing data races.

7 At any point within a parallel computation, the value of a view reflects a sub-computation on
the reduction object. At some point after the completion of a set of tasks, partial results are
combined, two at a time, using the combiner operation of the reduction type to merge one view
into another. The resulting value reflects the union of the sub-computations on the two original
views.

8 A reduction object is serially consistent when no other task that could access it in parallel is
executing. A serially consistent reduction object has a single view, called the root view, reflecting
the entire set of computations on the reduction object since its creation.

9 If the combiner operation is a function pointer, the combination is performed by executing:

(* combiner)(& into_view, & from_view);

Otherwise the combination is performed according to Table 1. In all cases the object designated
into_view is expected to be modified to reflect the combined sub-computations. The object
designated from_view is unused after being combined with into_view except as the argument

2) For example, if the proxied type is a floating type, the operator shall not be |=.

6

2016-03-10 N2017 EPPTS:2018(E)

to the finalizer.

NOTE 2 There is no guarantee which thread will execute the combiner between two concurrent tasks.
As a result, use of thread-local state by a combiner is not fully reliable. The floating-point environment
(<fenv.h>) is an example of thread-local state. Therefore, to reliably use the floating-point environment
with combiner operations, a copy of the floating-point environment should be incorporated into the
proxied type of the reduction. At the beginning of the combiner function, the floating-point environment
should be saved in a local object, and loaded from the destination view. At the end of the combiner
function, the floating-point environment should be saved back to the destination view, and reloaded from
the local object.

Table 1 – Combination method for built-in combiners

Specified combiner Combination method
*= into_view *= from_view ;
+= into_view += from_view ;
&= into_view &= from_view ;
^= into_view ^= from_view ;
|= into_view |= from_view ;
_And into_view = into_view && from_view ;
_Or into_view = into_view || from_view ;
_Min if (from_view < into_view) into_view = from_view ;
_Max if (from_view > into_view) into_view = from_view ;
_Last into_view = from_view ;

10 At some unspecified point before a task refers to a reduction object for the first time, the view
used by the task is allocated and initialized. For purposes of initialization, the root view behaves
like a member of the reduction object. Every other view is initialized using the initializer of
the reduction’s type. If the initializer is a function pointer, the initialization is performed by
executing:

(* initializer)(& view);

Otherwise, the view is initialized as if it were an object with static storage duration, using the
specified initializer. If the initializer is not specified, and the specified combiner is in Table 2,
the view is initialized with the corresponding value from Table 2.

Table 2 – Default initializers for built-in combiners

Specified combiner Default initializer
*= the value 1, converted to the proxied type
+= the value 0, converted to the proxied type
&= the bitwise complement of converting 0 to the proxied type
^= the value 0, converted to the proxied type
|= the value 0, converted to the proxied type
_And the value 1, converted to the proxied type
_Or the value 0, converted to the proxied type
_Min the maximum value representable by the proxied type
_Max the minimum value representable by the proxied type

11 It is unspecified whether a view is created for a task that does not access a specific reduction
object. A task’s view of a reduction object can be shared with other tasks that do not execute
concurrently; it is not necessary that each task have a distinct view. Any initializer function is

7

EPPTS:2018(E) 2016-03-10 N2017

invoked only once for each distinct view, regardless how many tasks share that view.

12 If the type of a reduction object has a finalizer, after a view has been used as the from_view
argument to the combiner operation, the view is finalized by executing:

(* finalizer)(& view);

The finalizer is not applied to the root view.

NOTE 3 A single view is never passed to concurrent invocations of the initializer, combiner operation,
or finalizer of a reduction object.

13 Views are presented to the combiner operation in pairings that depend on the order aspect of
the reduction type. In the following, for any point P at which the reduction object is serially
consistent, let S represent the sequence of modifications that would be applied to the reduction
object in the serialization of the program:

_Commutative: View combinations can be paired arbitrarily. The value of the root view at
P reflects all of the operations in S, but applied in an unspecified order.

NOTE 4 Operations that are sensitive to operand order (e.g., string append) or to operation
grouping (e.g., addition in the presence of overflow) might yield nondeterministic results that differ
from the serialization.

_Associative: Views are presented to the combiner operation such that the values of
into_view and from_view reflect consecutive subsequences of S, respectively called SL
and SR. The value computed by the combiner operation (stored in into_view) reflects the
concatenation of SL and SR, which comprises a contiguous subsequence of S. The value of
the root view at P reflects all of the operations in S, but applied in unspecified groupings.

NOTE 5 Operations that are sensitive to operation grouping (e.g., addition in the presence of
overflow) might yield nondeterministic results that differ from the serialization.

14 If the combiner aspect of a reduction type is _Last, the default for the order aspect is _-
Associative. Otherwise, the default for the order aspect is _Commutative.3)

15 Two reduction types declared in separate translation units are compatible if all of the following
conditions are satisfied:

a) Neither is declared with a tag, or they are declared with the same tag.

b) Their proxied types are compatible.

c) Their combiner operations are the same (either the same builtin combiner operation or the
same function).

d) Neither specifies a finalizer, or their finalizers are specified with equal values.

e) Their order aspects are specified or defaulted to be the same.
3)DFEP: Neither OpenMP nor Cilk supports specifying the order constraint for reduction. OpenMP reductions

provide only the guarantees of _Commutative; Cilk reductions provide the guarantees of _Associative.

8

2016-03-10 N2017 EPPTS:2018(E)

f) If either is specified with an initializer that is the address of a function, then the other
is specified with an initializer that is the address of the same function; otherwise, corre-
sponding scalar components of the proxied type are initialized with equal values, and in
corresponding components with union type, members with compatible types are initialized.

7.3 Reduction conversions

1 An lvalue with reduction type is implicitly converted, through a run-time view lookup, to an
lvalue with its corresponding proxied type. This conversion is suppressed if the address of the
lvalue is taken in a context where the result is immediately converted, implicitly or explicitly,
to a pointer to the original reduction type.

EXAMPLE 1 Consider this code:

_Reduction int_add { _Type: int, _Combiner: += };
_Reduction int_add x, y;
x = y; // int assignment: both operands converted by view lookup
void f(_Reduction int_add *, int *);
f(&x, &y); // view lookup performed on y, but not on x
int *pi = &x;
f(pi, &x); // error

The last line of the example is an error because pi, as an expression, is not taking the address of a
reduction-converted lvalue. The expression that takes that address is in the previous line. The reduction
lvalue conversion can be suppressed during translation, but not necessarily reversed during execution. As
a further example:

f((_Reduction int_add *)pi, &x);

This is not an error, but the first argument passed to the function need not point to the reduction object,
so undefined behavior results if it used as if it did.

7.4 Spawning function types

Syntax

spawning-function-qualifier:
_Task _Call

Constraints

1 A call to a function with spawning function type shall appear only within a task spawning call
statement.

Semantics

2 A function whose declarator includes a spawning function qualifier has spawning function type.
Such a function may return to its caller while some of its spawned tasks are still executing.

EXAMPLE 1

int f(void) _Task _Call;
int (*g1(void) _Task _Call)(void);

9

EPPTS:2018(E) 2016-03-10 N2017

int (*g2(void))(void) _Task _Call;

f is declared to be a spawning function returning int. g1 is declared to be a spawning function returning
a pointer to a (non-spawning) function. g2 is declared to be a (non-spawning) function returning a
pointer to a spawning function.

7.5 Integration with the C standard

Change paragraph 7 of subclause 6.2.1 “Scopes of identifiers”:

Structure, union, reduction, and enumeration tags have scope that begins just after
the appearance of the tag in a type specifier that declares the tag. ...

Change the list item of paragraph 1 of subclause 6.2.3 “Name spaces of identifiers”:

— the tags of structures, unions, reductions, and enumerations (disambiguated by
following any of the keywords struct, union, _Reduction, or enum);

Add a new item to the list in paragraph 20 of subclause 6.2.5 “Types” (following the item for
union types):

— A reduction type describes a member object with a particular type, called the
proxied type, and an associated combiner operation, along with other optional
aspects, to support common parallel computations.

Change sub-bullet of paragraph 20 of subclause 6.2.5:

— A function type describes a function with specified return type. A function type is
characterized by its return type, and the number and types of its parameters and
its set of function qualifiers. A function type is said to be derived from its return
type, and if its return type is T , the function type is sometimes called “function
returning T”. The construction of a function type from a return type is called
“function type derivation”.

Change the grammar rule in subclause 6.4.1 “Keywords”, by adding new alternatives:

keyword: one of
...
_Reduction
_Task
_Block
_Spawn
_Sync
_Call
_Copy_in
_Options

Add a new item to the list in paragraph 1 of subclause 6.5.16.1 “Simple assignment”:

— the left operand has atomic, qualified, or unqualified pointer to some reduction
type, and the right operand expression is the taking of the address of some object
having a qualified or unqualified version of the same reduction type (whose type

10

2016-03-10 N2017 EPPTS:2018(E)

is therefore a pointer to the reduction’s proxied type), and the type pointed to by
the left has all the qualifiers of the type pointed to by the right;

Change the grammar rule in subclause 6.7.2 “Type specifiers”, by adding a new alternative:

type-specifier:
...
reduction-specifier

Change paragraphs 2 through 6 of subclause 6.7.2.3 “Tags”:

Where two declarations that use the same tag declare the same type, they shall both
use the same choice of struct, union, _Reduction, or enum.

A type specifier of the form

_Reduction identifier

without a reduction aspect list, or

enum identifier

without an enumerator list shall only appear after the type it specifies is complete.

All declarations of structure, union, reduction, or enumerated types that have the same
scope and use the same tag declare the same type.

Two declarations of structure, union, reduction, or enumerated types which are in
different scopes or use different tags declare distinct types. Each declaration of a
structure, union, reduction, or enumerated type which does not include a tag declares
a distinct type.

A type specifier of the form

struct-or-union identifieropt { struct-declaration-list }

or

_Reduction identifieropt { reduction-aspect-list }

or

enum identifieropt { enumerator-list }

or

enum identifieropt { enumerator-list , }

declares a structure, union, reduction, or enumerated type. The list defines the struc-
ture content, union content, reduction content, or enumeration content. ...

Change paragraph 9 of 6.7.2.3:

11

EPPTS:2018(E) 2016-03-10 N2017

If a type specifier of the form

struct-or-union identifier

or

_Reduction identifier

or

enum identifier

occurs other than as part of one of the above forms, and a declaration of the identifier
as a tag is visible, then it specifies the same type as that other declaration, and does
not redeclare the tag.

Change the grammar rule in subclause 6.7.6 “Declarators”:

direct-declarator:
...
direct-declarator (parameter-type-list) function-qualifiersopt
...

Add a new grammar rule to 6.7.6:

function-qualifiers:
spawning-function-qualifier

Change paragraph 1 of subclause 6.7.6.3 “Function declarations (including prototypes)”:

A function declarator shall not specify a return type that is a function type or an array
type or a reduction type.

Add a new paragraph following paragraph 8 of subclause 6.7.6.3:

A declaration of a parameter as a reduction type shall be adjusted to be a pointer to
the same reduction type.

Change paragraph 15 of subclause 6.7.6.3:

For two function types to be compatible, both shall specify compatible return types.,146)
and both shall specify equivalent sets of function qualifiers. Moreover, the parameter
type lists, if both are present, shall agree in the number of parameters and in use of
the ellipsis terminator; corresponding parameters shall have compatible types. ...

Change the grammar rule in subclause 6.7.7 “Type names”:

direct-abstract-declarator:
...
direct-abstract-declaratoropt (parameter-type-listopt) function-qualifiersopt

12

2016-03-10 N2017 EPPTS:2018(E)

Add a new paragraph following paragraph 8 of subclause 6.7.9 “Initializers”:

Any initializer for an object of reduction type initializes its root view.

[C++:

7.6 Integration with the C++ standard

Add new entries to table 3 in subclause 2.11 “Keywords”:

Change paragraph 3 of subclause 3.3.2 “Point of declaration”:

Changes to subclause 3.4.4 “Elaborated type specifiers”:

Add a new item to the list in paragraph 1 of subclause 3.9.2 “Compound types”:

Add a new paragraph following paragraph 3 of subclause 4.10 “Pointer conversions”:

Change the grammar rule in paragraph 1 of subclause 7.1.6 “Type specifiers”:

Change paragraphs 2 and 3 of subclause 7.1.6.3 “Elaborated type specifiers”:

Change paragraph 5 of subclause 8.3.5 “Functions”:

Change to subclause 8.5 “Initializers”:

]

13

EPPTS:2018(E) 2016-03-10 N2017

8 Captures

8.1 Introduction

1 A spawn capture allows a spawn statement to make a copy of a variable prior to the start of
asynchronous execution. A reduction capture allows a task block or parallel loop to temporar-
ily associate a reduction object with an existing object, to simplify parallel computation of a
reduction.

8.2 Spawn captures

Syntax

spawn-capture:
_Copy_in (spawn-capture-list)

spawn-capture-list:
spawn-capture-item
spawn-capture-list , spawn-capture-item

spawn-capture-item:
identifier
identifier = expression

Constraints

1 If no expression is present in a spawn capture item, the identifier shall be a name that is already
in scope at the beginning of the spawn capture item, and the effective expression is taken to
be the same as the identifier. Otherwise, the effective expression is the expression in the spawn
capture item.

2 The effective expression shall have complete object type.

Semantics

3 Each spawn capture item declares a new object named by the item’s identifier, having automatic
storage duration. The type of the declared object is that of the effective expression. The scope of
the name extends from the end of the spawn capture item until the end of the spawn statement
with which it is associated.

4 The declared object is initialized with the value of the effective expression. The initialization of
the declared object occurs before asynchronous execution of the spawned compound statement.

5 Change the first sentence of paragraph 3 of subclause 6.3.2.1:

Except when it is the effective expression in a spawn capture item, or is the operand
of the sizeof operator, the _Alignof operator, or the unary & operator, or is a string
literal used to initialize an array, an expression that has type “array of type” is converted
to an expression with type “pointer to type” that points to the initial element of the
array object and is not an lvalue. ...

14

2016-03-10 N2017 EPPTS:2018(E)

EXAMPLE 1 Consider the following code:

// Walk a list and call f() on the value of each element.
// Calls to f() can be done in parallel.
_Task _Block {

while (p) {
_Task _Spawn _Copy_in(p) { f(p->value); }
p = p->next;

}
}

Without the _Copy_in, there would be a race on the variable p, because the call to f is allowed to proceed
in parallel with the continuation, including the update.

8.3 Reduction captures

Syntax

reduction-capture:
_Reduction (reduction-capture-list)

reduction-capture-list:
reduction-capture-item
reduction-capture-list , reduction-capture-item

reduction-capture-item:
declaration-specifiers declarator
declaration-specifiers declarator : expression

Constraints

1 A reduction capture item shall have some reduction type, and shall not have static or thread
storage duration.

2 If no expression is present in a reduction capture item, the identifier in the declarator shall be a
name that is already in scope at the beginning of the reduction capture item, and the effective
expression is taken to be the same as the identifier. Otherwise, the effective expression is the
expression in the reduction capture item.

3 The effective expression shall be a modifiable lvalue, and shall have a type that is compatible
with the proxied type of the item’s reduction type.

Semantics

4 Each reduction capture item declares a new object with reduction type. The scope of the name
extends from the end of the reduction capture item until the end of the task block or loop with
which it is associated.

5 Before execution of the task block or loop, the new reduction object is initialized with the value
of the object designated by the effective expression. Upon completion of the task block or
loop, the value of the reduction object is assigned back to the object designated by the effective
expression.

15

EPPTS:2018(E) 2016-03-10 N2017

6 Change the first sentence of paragraph 2 of subclause 6.3.2.1:

Except when it is the expression in a reduction capture item, or is the operand of the
sizeof operator, the _Alignof operator, the unary & operator, the ++ operator, the
-- operator, or the left operand of the . operator or an assignment operator, an lvalue
that does not have array type is converted to the value stored in the designated object
(and is no longer an lvalue); this is called lvalue conversion. ...

16

2016-03-10 N2017 EPPTS:2018(E)

9 Counted loops

9.1 Introduction

1 A counted loop is a for statement [C++: or range-based for statement] that is required to satisfy
additional constraints. The purpose of these constraints is to ensure that the loop’s iteration
count can be computed before the loop body is executed.

9.2 Constraints on all counted loops

1 There shall be no return, break, goto or switch statement that might transfer control into or
out of a counted loop.

2 Attempting to terminate a counted loop with longjmp produces undefined behavior.

9.3 Constraints on a counted for statement

9.3.1 Introduction

1 The syntax of a for statement includes three control clauses between parentheses, separated by
semicolons. The first of these is called the initialization clause; the second is called the condition
clause or controlling expression; the third is called the loop-increment.

2 When a constraint limits the form of an expression, parentheses are allowed around the expres-
sion or any required subexpression.

9.3.2 Constraints on the form of the control clauses

1 [C++: The condition shall be an expression.

NOTE 1 A condition with declaration form is useful in a context where a value carries more information
than just whether it is zero or nonzero. This is not believed to be useful in a counted loop.

]

2 The controlling expression shall be a comparison expression with one of the following forms:4)

relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
equality-expression != relational-expression

3 Exactly one of the operands of the comparison operator shall be an identifier designating an
induction variable, as described below. This induction variable is known as the control variable.
The operand that is not the control variable is called the limit expression. [C++: Any implicit
conversion applied to that operand is not considered part of the limit expression.]

4 The loop-increment shall be an expression with the following form:5)

4)DFEP: OpenMP does not (yet) allow comparison with !=.
5)DFEP: OpenMP and “classic” Cilk allow only a single induction variable: the loop control variable. Allowing

multiple induction variables is implemented in Intel’s compiler.

17

EPPTS:2018(E) 2016-03-10 N2017

loop-increment:
single-increment
loop-increment , single-increment

single-increment:
identifier ++
identifier --
++ identifier
-- identifier
identifier += initializer-clause
identifier -= initializer-clause
identifier = identifier + multiplicative-expression
identifier = identifier - multiplicative-expression
identifier = additive-expression + identifier

5 [C++: Each comma in the grammar of loop-increment shall represent a use of the built-in comma
operator.] The identifier in each grammatical alternative for single-increment names an in-
duction variable. If identifier occurs twice in a grammatical alternative for single-increment,
the same variable shall be named by both occurrences. If a grammatical alternative for single-
increment contains a subexpression that is not an identifier for the induction variable, that is
called the stride expression for that induction variable.

6 An induction variable shall not be designated by more than one single-increment.

NOTE 2 The control variable is identified by considering the loop’s condition and loop-increment to-
gether. If exactly one operand of the condition comparison is a variable, it is the control variable, and
must be incremented. If both operands of the condition comparison are variables, only one is allowed
to be incremented; that one is the control variable. It is an error if neither operand of the condition
comparison is a variable.

NOTE 3 There is no additional constraint on the form of the initialization clause of a counted for
loop.6)

9.3.3 Other statically checkable constraints

1 Each induction variable shall have unqualified integer, [C++: enumeration, copy-constructible
class,] or pointer type, and shall have automatic storage duration.

2 Each stride expression shall have integer [C++: or enumeration] type.

3 The iteration count is computed according to Table 3. If the controlling expression uses a
relational operator, and is true when the value of the control variable is less than (respectively,
greater than) the value of the limit expression, then the operator in the single-increment for the
control variable shall not be -- (respectively, ++). The iteration count is computed after the
loop initialization is performed, and before the control variable is modified by the loop. [C++:
The iteration count expression shall be well-formed.]

4 The type of the difference between the limit expression and the control variable is the subtrac-
tion type, [C++: which shall be integral. When the condition operation is !=, (limit)-(var) and
(var)-(limit) shall have the same type.] Each stride expression shall be convertible to the sub-
traction type. [C++: The loop odr-uses whatever operator-functions are selected to compute these

6)DFEP: OpenMP and “classic” Cilk require that the control variable be initialized. This relaxation is imple-
mented in Intel’s compiler.

18

2016-03-10 N2017 EPPTS:2018(E)

Table 3 – Method of computing the iteration count

Form of
condition

Form of single-increment

id ++
++ id

id --
-- id

id += stride
id = id + stride
id = stride + id

id -= stride
id = id - stride

id < lim
lim > id

((lim)− (id)) ERROR ((lim)− (id)− 1)/
(stride) + 1

((lim)− (id)− 1)/
(stride) + 1

id > lim
lim < id

ERROR ((id)− (lim))
((id)− (lim)− 1)/
−(stride) + 1

((id)− (lim)− 1)/
−(stride) + 1

id <= lim
lim >= id

((lim)− (id))
+1

ERROR ((lim)− (id))/
(stride) + 1

((lim)− (id))/
(stride) + 1

id >= lim
lim <= id

ERROR ((id)− (lim))
+1

((id)− (lim))/
−(stride) + 1

((id)− (lim))/
−(stride) + 1

id != lim
lim != id

((lim)− (id) ((id)− (lim))

((stride) < 0) ?
((id)− (lim)− 1)/
−(stride) + 1 :
((lim)− (id)− 1)/
(stride) + 1

((stride) < 0) ?
((lim)− (id)− 1)/
−(stride) + 1 :
((id)− (lim)− 1)/
(stride) + 1

Legend:
Name In the form of an expression In the iteration count expression

id The name of the control variable. An expression with the type and value
of the control variable.

lim The limit expression. An expression with the type and value
of the limit expression.

stride The stride expression.
An expression with the type and value
of the stride expression for the control
variable.

differences.]

[C++:

Table 4 – Method of advancing an induction variable

Single-increment operator Expression
++ += + V += X

-- -= - V -= X

5 For each induction variable V , one of the expressions from Table 4 shall be well-formed, depending on
the operator used in its single-increment. In the table, X stands for some expression with the same
type as the subtraction type. The loop odr-uses whatever operator+= and operator-= functions
are selected by these expressions.]

9.3.4 Dynamic constraints

1 If an induction variable is modified within the loop other than as the side effect of its single-
increment operation, the behavior of the program is undefined.

19

EPPTS:2018(E) 2016-03-10 N2017

[C++: If evaluation of the iteration count, or a call to a required operator+= or operator-=
function, terminates with an exception, the behavior of the program is undefined.]

2 If X and Y are values of the control variable that occur in consecutive evaluations of the loop
condition in the serialization, then the behavior is undefined if ((limit) − X) − ((limit) − Y),
evaluated in infinite integer precision, does not equal the stride.

NOTE 1 In other words, the control variable must obey the rules of normal arithmetic. Unsigned
wraparound is not allowed.

3 If the condition expression is true on entry to the loop, then the behavior is undefined if the
computed iteration count is not greater than zero. If the computed iteration count is not
representable as a value of type uintmax_t, [C++: unsigned long long,] the behavior is
undefined.

9.3.5 Evaluation relaxations

1 The stride expressions shall not be evaluated if the iteration count is zero; otherwise, the stride
and limit expressions are evaluated exactly once.7)

2 Within each iteration of the loop body, the name of each induction variable refers to a local
object, as if the name were declared as an object within the body of the loop, with automatic
storage duration and with the type of the original object. [C++: If the loop body throws an
exception that is not caught within the same iteration of the loop, the behavior is undefined, unless
otherwise specified.]

[C++:

9.4 Constraints on a counted range-based for statement

1 In a counted range-based for statement ([stmt.ranged] 6.5.4), the type of the __begin vari-
able, as determined from the begin-expr, shall satisfy the requirements of a random access iterator.

NOTE 1 Intel has not yet implemented support for a parallel range-based for statement.

]

7)DFEP: Neither OpenMP nor Cilk specifies how many times these expressions must be evaluated.

20

2016-03-10 N2017 EPPTS:2018(E)

10 Parallel loops

1 A parallel loop is a for statement with loop qualifiers. The grammar of the iteration statement
(6.8.5, paragraph 1) is modified to read:

iteration-statement:
while (expression) statement
do statement while (expression) ;
loop-qualifiersopt for (expressionopt ; expressionopt ; expressionopt) statement
loop-qualifiersopt for (declaration expressionopt ; expressionopt) statement

[C++: The grammar of iteration-statement (6.5 [stmt.iter], paragraph 1) is modified to read:

iteration-statement:
while (expression) statement
do statement while (expression) ;
loop-qualifiersopt for (for-init-statement conditionopt ; expressionopt) statement
loop-qualifiersopt for (for-range-declaration : for-range-initializer) statement

]

2 The following rules are added to the grammar:

loop-qualifiers:
_Task qualifier-clausesopt

qualifier-clauses:
loop-parameters qualifier-clausesopt
reduction-capture qualifier-clausesopt

loop-parameters:
_Options (expression)

3 A parallel loop is a counted loop, and shall satisfy all the constraints of a counted loop.

4 In a parallel loop with the _Task loop qualifier, each iteration is executed as a task, independent
of all other iterations of that execution of the loop. At the end of the loop, execution joins with
all of these tasks.

5 If loop parameters are specified as part of the loop qualifiers, the contained expression shall have
type “pointer to cplex_loop_params_t”, as defined in header <cplex.h>.8)

6 The serialization of a parallel loop is obtained by deleting the loop qualifiers from the loop.

8)DFEP: This syntax for specifying tuning parameters for a loop is a CPLEX invention.

21

EPPTS:2018(E) 2016-03-10 N2017

11 Task statements

11.1 Introduction

1 The grammar of a statement (6.8, paragraph 1) [C++: (clause 6, paragraph 1)] is modified to
add task-statement as a new alternative.

Syntax

task-statement:
task-block-statement
task-spawn-statement
task-sync-statement
task-call-statement

11.2 The task block statement

Syntax

task-block-statement:
_Task _Block reduction-captureopt compound-statement

Constraints

1 There shall be no switch or jump statement that might transfer control into or out of a task
block statement.

Semantics

2 Defines a task block, within which tasks can be spawned. At the end of the contained com-
pound statement, execution joins with all child tasks spawned directly or indirectly within the
compound statement.

3 For a given statement, the associated task block is defined as follows. For a statement within
a task spawn statement, there is no associated task block, except within a nested task block
statement or parallel loop. For a statement within a task block statement or parallel loop, the
associated task block is the smallest enclosing task block statement or parallel loop. Otherwise,
for a statement within the body of a function with spawning function type, the associated task
block is the same as it was at the point of the task spawning call statement that invoked the
spawning function. For a statement in any other context, there is no associated task block.

NOTE 1 Task blocks can be nested lexically and/or dynamically. Determination of the associated
task block is a hybrid process: lexically within a function, and dynamically across calls to spawning
functions.9) Code designated for execution in another thread by means other than a task statement (e.g.
using thrd_create) is not part of any task block.

4 Attempting to terminate a task block with longjmp produces undefined behavior.
9)DFEP: In Cilk, this determination can be done entirely lexically. In OpenMP, this determination can be done

entirely dynamically.

22

2016-03-10 N2017 EPPTS:2018(E)

11.3 The task spawn statement

Syntax

task-spawn-statement:
_Task _Spawn spawn-captureopt compound-statement

Constraints

1 A task spawn statement shall have an associated task block.

2 There shall be no switch or jump statement that might transfer control into or out of a task
spawn statement.

3 Attempting to terminate a task spawn statement with longjmp produces undefined behavior.

Semantics

4 The contained compound statement is executed as a task, independent of the continued execution
of the associated task block.

11.4 The task sync statement

Syntax

task-sync-statement:
_Task _Sync ;

Constraints

1 A task sync statement shall have an associated task block.

Semantics

2 Execution joins with all child tasks of the associated task block of the task sync statement.

11.5 The task spawning call statement

Syntax

task-call-statement:
_Task _Call expression-statement

Constraints

1 A task spawning call statement shall have an associated task block.

Semantics

2 The contained expression statement is executed normally. Any called spawning function is
allowed to spawn tasks; any such tasks are associated with the associated task block of the task

23

EPPTS:2018(E) 2016-03-10 N2017

spawning call statement, and are independent of the statements of the task block following the
task spawning call statement.

NOTE 1 A call to a task spawning function need not be the “outermost” operation of the expression
statement. A task spawning call statement might invoke more than one spawning function, or might
invoke none.

24

2016-03-10 N2017 EPPTS:2018(E)

12 Parallel loop hint parameters <cplex.h>

12.1 Introduction

1 The header <cplex.h> defines several types and several macros.

2 The cplex_loop_params_t type is a structure type with an unspecified number of members for
specifying parameters for tuning hints for a parallel loop. A program whose output depends on
the value specified for any tuning hint parameter is not considered a correct program.

NOTE 1 There is no guarantee that setting any tuning hint parameter will improve the performance
of the program.

3 The cplex_sched_kind_t type is an enumerated type with at least the following enumeration
constants, each with nonzero value:

cplex_sched_static
cplex_sched_dynamic
cplex_sched_guided

4 The cplex_workload_t type is an enumerated type with at least the following enumeration
constants, each with nonzero value:

cplex_workload_balanced
cplex_workload_unbalanced

5 The cplex_affinity_t type is an enumerated type with at least the following enumeration
constants, each with nonzero value:

cplex_affinity_close
cplex_affinity_spread

6 When an object of type cplex_loop_params_t is used as the loop parameter of a parallel
loop, the loop is described as being associated with the object. If the associated object is
modified during the execution of the loop, the behavior is undefined. When executing a parallel
loop associated with an object of type cplex_loop_params_t, for any parameter for which the
corresponding member has the value zero, an unspecified default value is used.

7 Each parameter is represented by a pair of macros: one to set the value of the parameter in the
parameter block, and one to get the value of the parameter from the parameter block.

NOTE 2 Because these methods are specified as macros, not functions, taking the address of any of
them need not be supported. However, an implementation is also free to provide functions with these
names.

EXAMPLE 1 Hint parameters for a parallel loop can be specified as follows:

#include <cplex.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{

cplex_loop_params_t hints = { 0 };
if (argc > 1) {

cplex_set_num_threads(&hints, atoi(argv[1]));

25

EPPTS:2018(E) 2016-03-10 N2017

}
cplex_set_chunk_size(&hints, 1000);
_Task _Options(&hints) for (long i = 0; i < 1000000; i++) {

do_something_with(i);
}

}

12.2 The num_threads parameter

Synopsis

#include <cplex.h>
void cplex_set_num_threads(cplex_loop_params_t *hints, int num_threads);
int cplex_get_num_threads(cplex_loop_params_t *hints);

Description

1 The cplex_set_num_threads macro sets to num_threads the recommended number of iterations
to be executed concurrently in a parallel loop associated with the object pointed to by hints.

12.3 The chunk_size parameter

Synopsis

#include <cplex.h>
void cplex_set_chunk_size(cplex_loop_params_t *hints, int chunk_size);
int cplex_get_chunk_size(cplex_loop_params_t *hints);

Description

1 The cplex_set_chunk_size macro sets to chunk_size the recommended maximum number
of iterations of a parallel loop associated with the object pointed to by hints to be grouped
together to be executed sequentially as a single task.

12.4 The schedule_kind parameter

Synopsis

#include <cplex.h>
void cplex_set_schedule_kind(cplex_loop_params_t *hints,

cplex_sched_kind_t kind);
cplex_sched_kind_t cplex_get_schedule_kind(cplex_loop_params_t *hints);

Description

1 The cplex_set_schedule_kind macro sets to kind the recommended scheduling algorithm for
a parallel loop associated with the object pointed to by hints.

NOTE 1 Setting the schedule_kind parameter to a particular value may (but need not) select the
corresponding OpenMP loop-scheduling algorithm.

26

2016-03-10 N2017 EPPTS:2018(E)

12.5 The workload_balance parameter

Synopsis

#include <cplex.h>
void cplex_set_workload_balance(cplex_loop_params_t *hints,

cplex_workload_t kind);
cplex_workload_t cplex_get_workload_balance(cplex_loop_params_t *hints);

Description

1 The cplex_set_workload_balance macro sets to kind the workload-balancing characteristic
for a parallel loop associated with the object pointed to by hints.

2 For a loop with a balanced workload, each iteration should be assumed to execute in approxi-
mately the same amount of time. A loop with an unbalanced workload should be assumed to
have iterations taking widely varying amounts of time.

NOTE 1 This parameter is semantically a statement about the associated loop, whereas the schedule_-
kind parameter is semantically a request to the implementation. Setting this parameter to cplex_-
workload_balanced may have an effect similar to setting the schedule to cplex_schedule_static. Set-
ting this parameter to cplex_workload_unbalanced may have an effect similar to setting the schedule
to cplex_schedule_dynamic or cplex_schedule_guided.

12.6 The affinity parameter

Synopsis

#include <cplex.h>
void cplex_set_affinity(cplex_loop_params_t *hints, cplex_affinity_t kind);
cplex_affinity_t cplex_get_affinity(cplex_loop_params_t *hints);

Description

1 The cplex_set_affinity macro sets to kind the recommended affinity for a parallel loop
associated with the object pointed to by hints.

2 The affinity of a loop indicates whether the loop benefits from being executed by co-located
hardware threads, or whether performance is likely to improve if the software threads are spread
over multiple cores.

27

EPPTS:2018(E) 2016-03-10 N2017

Bibliography

[1] Intel© Cilk™ Plus Language Extension Specification, Intel Corporation: <https://www.
cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.
2.htm>

[2] OpenMP Application Program Interface, OpenMP Architecture Review Board: <http://
www.openmp.org/mp-documents/OpenMP4.0.0.pdf>

28

https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm
https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm
https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

2016-03-10 N2017 EPPTS:2018(E)

Index
affinity_close, 23
affinity_spread, 23
affinity_t, 23
associated task block, 20

builtin-combiner-operation, 5

combiner-operation, 5
concurrent program, 2
control clauses, 15
control variable, 15
counted loop, 15

execution agent, 2

function-specifier, 22

induction variable, 16
iteration count, 16
iteration-statement, 19

joins, 4

keyword, 9

limit expression, 15
loop-increment, 15
loop-increment, 16
loop-parameters, 19
loop-qualifiers, 19
loop_params_t, 23
lvalue conversion, 14

OS thread, 2

parallel loop, 19
parallel program, 2
proxied type, 5, 9

qualifier-clauses, 19

reduction type, 5, 9
reduction-aspect, 5
reduction-aspect-list, 5
reduction-capture, 14
reduction-capture-item, 14
reduction-capture-list, 14
reduction-order-constraint, 5
reduction-specifier, 5
root view, 6

sched_dynamic, 23
sched_guided, 23
sched_kind_t, 23
sched_static, 23

29

EPPTS:2018(E) 2016-03-10 N2017

serialization, 19
serially consistent, 6
set_affinity, 25
set_chunk_size, 24
set_num_threads, 24
set_schedule_kind, 24
set_workload_balance, 25
single-increment, 16
spawn-capture, 13
spawn-capture-item, 13
spawn-capture-list, 13
stride expression, 16
subtraction type, 16

task, 2
task-block-statement, 20
task-call-statement, 21
task-spawn-statement, 21
task-statement, 20
task-sync-statement, 21
thread, 2
thread of execution, 2
type-specifier, 10

view, 6

workload_balanced, 23
workload_t, 23
workload_unbalanced, 23

30

	Contents
	Foreword
	Introduction
	Scope
	Normative references
	Terms and definitions
	Document conventions
	Predefined macro names
	Task execution
	Reduction and spawning function types
	Introduction
	Reduction specifiers
	Reduction conversions
	Spawning function types
	Integration with the C standard
	Integration with the C++ standard

	Captures
	Introduction
	Spawn captures
	Reduction captures

	Counted loops
	Introduction
	Constraints on all counted loops
	Constraints on a counted for statement
	Introduction
	Constraints on the form of the control clauses
	Other statically checkable constraints
	Dynamic constraints
	Evaluation relaxations

	Constraints on a counted range-based for statement

	Parallel loops
	Task statements
	Introduction
	The task block statement
	The task spawn statement
	The task sync statement
	The task spawning call statement

	Parallel loop hint parameters <cplex.h>
	Introduction
	The num_threads parameter
	The chunk_size parameter
	The schedule_kind parameter
	The workload_balance parameter
	The affinity parameter

	Bibliography
	Index

