
TS	18661	Part	5	
Supplementary	a3ributes	

WG	14	N1975	
2015-10-20	

IEC	60559	a3ributes	

•  N1974:	draE	TS	18661-5	–	Supplementary	
a3ributes	

•  Updates	N1919	presented	in	April	
•  Now	funcMonally	complete	
•  Format	and	boilerplate	text	for	ISO	

	
	
	

IEC	60559	a3ributes	-	review	
•  Constant	modes	for	floaMng-point	semanMcs	
•  Program	specifies	modes	to	apply	to	blocks	
•  IEC	60559	requires	a3ributes	for	
	Rounding	direcMon		

•  Recommends	a3ributes	for	
	EvaluaMon	formats	
	OpMmizaMon	control	
	Reproducible	code		
	Alternate	excepMon	handling	

	
	
	

C	support	for	a3ributes	-	review	

•  FloaMng-point	pragmas	in	<fenv.h>	
•  Rounding	direcMon	pragmas	in	parts	1	and	2	
•  Pragmas	for	recommended	a3ributes	in	part	5	
•  All	similar	in	form	and	scope	to	STDC	pragmas	
in	C	standard	

EvaluaMon	formats	-	review	

•  #pragma	STDC	FENV_FLT_EVAL_METHOD	width		
for	standard	and	binary	types	

•  width	 reflects	 a	 possible	 value	 of	 FLT_EVAL_METHOD	
macro	

•  Required	support	for	width	values	-1,	0,	and	DEFAULT	
•  Other	width	values	opMonal	
•  Similar	FENV_DEC_EVAL_METHOD	for	decimal	types	
•  Required	 support	 for	 decimal	width	 values	 -1,	 1,	 and	
DEFAULT	

	

EvaluaMon	formats	–	key	changes	

•  P	3,	4:	InteracMon	between	evaluaMon	method	
macros	and	pragmas	
– Macro	values	reflect	the	evaluaMon	method	in	use,	
which	be	might	set	by	a	pragma	

– Macro	shall	not	be	used	in	#if	and	#elif	expressions	
where	a	pragma	is	in	effect	

•  P	5:	_t	types	have	default	evaluaMon	formats,	but	
have	corresponding	type-like	macros	that	(unless	
undefined)	expand	to	types	with	the	evaluaMon	
formats	where	used	

	

EvaluaMon	formats	–	key	changes	(2)	

	P	5:	New	macro	user	can	define	before	
including	<tgmath.h>	to	make	tgmath	macros	
behave	like	built-in	operators	with	respect	to	
evaluaMon	formats:	
__STDC_TGMATH_OPERATOR_EVALUATION__		
•  <tgmath.h>	macros	do	not	narrow	arguments	
and	they	return	results	in	evaluaMon	formats	

•  Does	not	affect	semanMc	types	(just	like	
operators)	

	

OpMmizaMon	control	-	review	

•  Allow/disallow	 value-changing	 opMmizaMons	
(transformaMons)	

•  #pragma	STDC	FENV_ALLOW_...	on-off-switch		
•  VALUE_CHANGING_OPTIMIZATION	allows	all	 the	
following,	which	can	also	be	allowed	separately	

•  ASSOCIATIVE_LAW	
•  DISTRIBUTIVE_LAW	
•  MULTIPLY_BY_RECIPROCAL		

A	/	B	=	A	x	(1/B)	
	

OpMmizaMon	control	(2)	-	review	

•  ZERO_SUBNORMAL	
allow	replacing	subnormal	operands	and	results	with	0	

•  CONTRACT_FMA	
contract	(compute	with	just	one	rounding)	A	x	B	+	C	

•  CONTRACT_OPERATION_CONVERSION	
e.g.,	F	=	D1	*	D2		and		F	=	sqrt(D)	

•  CONTRACT	
all	contracMons	
equivalent	to	FP_CONTRACT	pragma	in	<math.h>	

	
	

OpMmizaMon	control	–	key	changes	
P	8:	ClarificaMon	about	idenMMes	allowed	for	opMmizaMon	
•  IdenMMes	that	are	valid	for	IEC	60559	arithmeMc,	e.g.,	

	x	+	y	=	y	+	x	
•  IdenMMes	 derived	 from	 allowed	 idenMMes,	 e.g.,	 allowed	

associaMve	law	also	allows	
	x	+	(y	−	z)	=	(x	+	y)	−	z	
	x	+	(z	+	y)	=	(x	+	y)	+	z		

•  Allowed	distribuMve	law	explicitly	includes:		
	x	×	(y	+	z)	=	(x	×	y)	+	(x	×	z)	
	x	×	(y	−	z)	=	(x	×	y)	−	(x	×	z)	
	(x	+	y)	/	z	=	(x	/	z)	+	(y	/	z)	
	(x	−	y)	/	z	=	(x	/	z)	−	(y	/	z)	

OpMmizaMon	control	–	key	changes	(2)	

P 	 9 , 	 1 0 : 	 Z E R O _ S U B N O R M A L 	 a n d	
CONTRACT_OPERATION_CONVERSION	apply	to	the	
same	 library	 funcMons	 as	 the	 FENV_ROUND	 and	
FENV_DEC_ROUND	pragmas		
•  listed	funcMons,	where	macro	replacement	is	not	
suppressed	(part	1)	

•  ZERO_SUBNORMAL	 allows	 zeroing	 argument	
and/or	result	of	sin(subnormal)	

•  CONTRACT_OPERATION_CONVERSION	 allows	
contracMng	flt_y	=	sqrt(dbl_x)	with	fsqrt()	

	
	
	
	

Reproducibility	-	review	

•  Support	 for	 code	 sequences	 whose	 result	
values	and	excepMon	flags	are	reproducible	on	
any	conforming	implementaMon	

•  #pragma	FENV_REPRODUCIBLE	on-off-default	
FENV_ACCES 	“on”	
FENV_ALLOW_VALUE_CHANGING_OPTIMIZATION

	“off”	
FENV_FLT_EVAL_METHOD 	 	0	
FENV_DEC_EVAL_METHOD 	 	1	

Reproducibility	(2)	-	review	

Rules	for	reproducible	code	
•  Translates	 into	 a	 sequence	 of	 IEC	 60559	
operaMons	

•  Under	FENV_REPRODUCIBLE	pragma	
•  Limits	use	of	FP	pragmas	to	reproducible	states	
•  Not	use	long	double,	extended	floaMng,	complex,	
or	imaginary	types	

•  Use	of	part	3	interchange	formats	is	reproducible	
only	among	supporMng	implementaMons	

Reproducibility	(3)	-	review	

Rules	for	reproducible	code	(cont.)	
•  Not	use	signaling	NaNs	
•  Not	 depend	 on	 payload	 or	 sign	 bit	 of	 quiet	
NaNs	

•  Not	 depend	on	 conversions	 between	floaMng	
types	 and	 character	 sequences	 where	
character	 sequences	 are	 too	 long	 for	 correct	
rounding	

•  Etc.	
	

Reproducibility	-	change	

P	 13:	 Clarify	 that	 reproducible	 code	 does	 not	
contain	 any	 use	 that	 may	 result	 in	 undefined	
behavior	and	does	not	depend	on	any	behavior	
that	 is	 unspecified,	 implementaMon-defined,	 or	
locale-specific		

	

Alternate	excepMon	handling	-	review	

•  IEC	60559	default	excepMon	handling	
set	excepMon	flag(s)		
return	prescribed	value	
conMnue	execuMon	

•  Way	 for	 a	 program	 to	 specify	 alternate	
excepMon	handling	
	

	

Alternate	excepMon	handling	(2)	-	
review	

•  #pragma	STDC	FENV_EXCEPT	ac4on	except-list	
•  except-list	a	comma-separated	list	of		

excepMon	macro	names:		
	FE_DIVBYZERO,	FE_INVALID,	FE_OVERFLOW,	…	

	 	FE_ALL_EXCEPT	
opMonal	sub-excepMon	designaMons:		

FE_INVALID_ADD 	 	inf	-	inf	
FE_INVALID_MUL 	 	inf	*	0	
FE_INVALID_SNAN	 	signaling	NaN	operand	
FE_DIVBYZERO_LOG 	log(0)	
etc.	

	

	

Alternate	excepMon	handling	(3)	-	
review	

ac4on	 	one	of	
•  DEFAULT 	 		

IEC		60559	default	handling	
•  NO_FLAG 	 		

like	default	but	no	flags	set	
•  OPTIONAL_FLAG	 		

like	default	but	flags	may	be	set	
•  ABRUPT_UNDERFLOW 	 	 		

only	 for	 “underflow”,	 IEC	 60559-defined	 abrupt	 underflow	
shall	 occur,	 unlike	 ALLOW_ZERO_SUBNORMAL	 where	
zeroing	may	occur	
	
	

	

Alternate	excepMon	handling	-	changes	

•  OpMonal	part	of	TS	18661-5	
•  P	2,	15:	Separate	feature	test	macro	
__STDC_IEC_60559_ATTRIB_ALTERNATE_EXCEPTION_HANDLING__		
•  Goto	acMons	replaced	with	try/catch	ones	
•  P	17:	ImplicaMons	of	ASAP	expanded	

	

Alternate	excepMon	handling	-	changes	

ac4on 	 	one	of	(cont.)	
•  BREAK	

terminate	compound	statement	associated	with	pragma,	ASAP*	
•  GOTO	label	

jump	to	labeled	statement,	ASAP*	
•  DELAYED_GOTO	label	

Complete	 compound	 statement	 associated	 with	 pragma,	 then	
jump	to	labeled	statement	
	
*ASAP	–	for	performance,	the	objects,	flags,	dynamic	modes,	and	
library	states	that	would	be	changed	at	any	point	if	the	compound	
statement	 ran	 to	 compleMon	 are	 indeterminate	 or	 unspecified	
(P	17)	
	

	

Alternate	excepMon	handling	-	new	

ac4on 	 	one	of	(cont.)	
P	18:	These	work	together	
•  TRY	

A	designated	excepMon	may	be	handled	(ASAP)	by	a	
compound	 statement	 associated	 with	 a	 CATCH	
acMon	

•  CATCH	
Code	to	handle	designated	excepMons		

	

Alternate	excepMon	handling	-	new	
double	d[n];	float	f[n];		
...		
{	

	#pragma	STDC	FENV_EXCEPT	TRY	FE_DIVBYZERO,		FE_OVERFLOW		
	for	(i=0;	i<n;	i++)	{		
	 	f[i]	=	1.0	/	d[i];		
}	

}	
{	

	#pragma	STDC	FENV_EXCEPT	CATCH	FE_DIVBYZERO		
	prin[(“divide-by-zero\n”);	}		

}		
{	

	#pragma	STDC	FENV_EXCEPT	CATCH	FE_OVERFLOW		
	prin[(“overflow\n”);		

}	

Alternate	excepMon	handling	-	new	

ac4on 	 	one	of	(cont.)	
P	18,	19:	These	work	together	
•  DELAYED_TRY	

AEer	associated	compound	statement	completes,	a	
designated	 excepMon	 may	 be	 handled	 by	 a	
compound	 statement	 assoc iated	 wi th	 a	
DELAYED_CATCH	acMon.	

•  DELAYED_CATCH	
Code	to	handle	designated	excepMons	

	

Alternate	excepMon	handling	-	new	

Common	to	ASAP	and	delayed	try/catch	…	
•  IEC	60559	prescribes	both	
•  Catch	blocks	follow	try	block	
•  A	 catch	 block	 is	 executed	 only	 to	 handle	 an	
excepMon	occurring	in	a	try	block	

•  AEer	 compleMon	 of	 a	 catch	 block	 execuMon	
conMnues	aEer	the	last	catch	block	

•  No	other	jumps	into	or	out	of	try	or	catch	blocks	

	

Alternate	excepMon	handling	-	new	
Common	to	ASAP	and	delayed	try/catch	(cont.)	…	
•  A	try	block	shall	not	be	the	body	of	a	selecMon	or	
iteraMon	statement	

•  …	though	try	and	catch	blocks	together	in	braces	
can	

•  For	 a	 catch	 to	 handle	 an	 excepMon,	 one	 of	 its	
excepMon	designaMon	must	match	one	in	the	try	
(catch	 invalid	 can	 handle	 try	 invalid,	 but	 not	 try	
all-excepts	or	try	invalid-add)	

•  An	excepMon	designaMon	 can	 appear	 in	 at	most	
one	catch	

	

Alternate	excepMon	handling	-	new	

Differences	in	ASAP	and	delayed	try/catch	…	
•  Delayed	 try/catch	 is	 determinisMc,	 equivalent	
to	 adding	 code	 to	manage	 excepMon	 flags	 (P	
21)	

•  ASAP	 try/catch	 is	 not	 determinisMc,	 for	
performance	–	objects,	flags,	 rounding	mode,	
and	library	state	that	would	be	changed	at	any	
point	 if	 the	 try	block	executed	 to	 compleMon	
are	indeterminate	or	unspecified	

Alternate	excepMon	handling	-	new	
Differences	in	ASAP	and	delayed	try/catch	(cont.)	…	
•  With	 delayed	 try/catch,	 the	 jump	 is	 to	 the	 first	
catch	 block	 with	 a	 designaMon	 for	 an	 occurring	
excepMon	

•  With	ASAP	 try/catch,	 the	 jump	 is	 to	 some	 catch	
block	 with	 a	 designaMon	 for	 an	 occurring	
excepMon	 (should	 be	 the	 first	 occurring	
excepMon)	

•  ASAP	try/catch	is	best	implemented	by	traps,	but	
for	most	cases	can	be	 implemented	 like	delayed	
try/catch	

	

	

Alternate	excepMon	handling	-	new	
ASAP	 delayed	

Input	d	 0.5,	0.0	
	

0.5,	0.0	
	

Results	

		f	=	1/d	 Indeterminate,	
indeterminate	

2,	+Infinity	

		output	 “divide-by-zero”	 “divide-by-zero”	
	

		“divide-by-zero”	flag	 Unspecified	(set	or	
restored)	

Restored	(unchanged)	

		“overflow”	flag	 Unchanged		
	

Restored	(unchanged)		
	

Alternate	excepMon	handling	-	new	
ASAP	 delayed	

Input	d	 0.5,	1e-100	
	

0.5,	1e-100	
	

Results	

		f	=	1/d	 Indeterminate,	
Indeterminate	

2,	+Infinity	

		output	 “overflow”	 “overflow”	
	

		“divide-by-zero”	flag	 Unchanged		 Restored	(unchanged)	

		“overflow”	flag	 Unspecified	(set	or	
restored)	
	
	

Restored		
	

Alternate	excepMon	handling	-	new	
ASAP	 delayed	

Input	d	 1e-100,	0.0	
	

1e-100,	0.0	
	

Results	

		f	=	1/d	 Indeterminate,	
Indeterminate	

+Infinity,	+Infinity	

		output	 “overflow”	(recommended
)	or	“divide-by-zero”		

“divide-by-zero”	
	

		“divide-by-zero”	flag	 Unspecified	(set	or	
restored)	

Restored	

		“overflow”	flag	 Unspecified	(set	or	
restored)	
	

Restored		
	

Alternate	excepMon	handling	-	issues	

Should	the	following	be	disallowed?	
•  Currently	allow	a	 try	without	a	catch	 (for	delayed	try,	
flags	for	designated	excepMons	are	restored;	for	ASAP	
try,	 it’s	 unspecified	 whether	 flags	 for	 designated	
excepMons	are	restored)	

•  Currently	allow	a	catch	without	a	try	(it’s	not	executed)	
•  Currently	 allow	 a	 catch	 to	 have	 an	 excepMon	
designaMon	that	does	not	appear	 in	the	try	except-list	
(has	no	effect)	

Are	ac4on	 names	DEFAULT,	NO_FLAG,	OPTIONAL_FLAG,	
and	BREAK	ok?	

	

	

