
WG 14, N1848

Integer Precision Bits

David Svoboda

svoboda@cert.org

Date: 2014-07-25

The Problem

Each integer type in C takes a fixed number of bits of memory. Unsigned integers partition these
bits into padding bits and value bits. Signed integers are similar, with one value bit reserved as
the sign bit, and the remaining value bits represent the precision, or magnitude, of the number.
The number of bits used in an integer can be obtained easily with the following expression,
where uint_t represents an unsigned integer type.

 size_t bits = sizeof(uint_t) * CHAR_BIT

Many programs use the number of bits in a manner that assumes that every bit is used for
precision (except the sign bit). For example:

uint_t half_max = ((uint_t) 1) << (bits – 1);
/* 0b1000... */

On platforms with no padding bits, this code works correctly. But if a platform has any padding
bits, then the number of value or precision bits cannot be determined from the size. On such a
platform, the code example above will most likely set half_max to 0.

Workarounds

There have been many workarounds for producing the correct number of precision bits for any
unsigned integer type. The simplest (but least portable) is to hardcode integer sizes per platform:

#ifdef IA32
#define UINT_PRECISION 32
#elif IA64
#define UINT_PRECISION 64
/* … */
#end

WG 14, N1848

One common option makes use of a popcount() function, which takes an integer and counts
the number of set bits. Some platforms provide an assembly-code instruction to accomplish this;
here is a sample C implementation of this function:

size_t popcount(uintmax_t num) {
 size_t precision = 0;
 while (num != 0) {
 if (num % 2 == 1) {
 precision++;
 }
 num >>= 1;
 }
 return precision;
}

Applying this function to the maximum unsigned integer yields the number of precision bits of
that integer type:

#define UINT_PRECISION popcount((unsigned int) -1)

This solution is portable. However the precision bits are not available at compile time.
Consequently, useful static assertions are impossible:

static_assert(UINT_PRECISION >= 64)

Solution

We propose amending the standard with macros that indicate the number of precision bits for the
standard unsigned integer types. Precision bits for the signed integer types can be derived by
subtracting 1 from the precision bits for the corresponding unsigned integer type.

Proposed Wording Changes
Insert a new section before 5.2.4.2.2 with the following text:

5.2.4.2.2 Unsigned Integer Precisions <limits.h>

The values given below shall be replaced by constant expressions suitable for use in #if
preprocessing directives. Moreover, the following shall be replaced by expressions of type size_t.
Their implementation-defined values shall be equal or greater in magnitude (absolute value) to those
shown.

 Number of precision bits for an object of type unsigned char
UCHAR_PRECISION // 8

WG 14, N1848

 Number of precision bits for an object of type unsigned short
USHRT_PRECISION // 16

 Number of precision bits for an object of type unsigned int
UINT_PRECISION // 16

 Number of precision bits for an object of type unsigned long
ULONG_PRECISION // 32

 Number of precision bits for an object of type unsigned long long
ULLONG_PRECISION // 64

Modify section 7.20.2 and 7.20.3 as follows: Text to be added is displayed in red.

7.20.2 Limits and Precisions of specified-width integer types
1 The following object-like macros specify the minimum and maximum limits and precisions of
the types
declared in <stdint.h>. Each macro name corresponds to a similar type name in
7.20.1.
2 Each instance of any defined macro shall be replaced by a constant expression suitable
for use in #if preprocessing directives, and this expression shall have the same type as
would an expression that is an object of the corresponding type converted according to
the integer promotions. Its implementation-defined value shall be equal to or greater in
magnitude (absolute value) than the corresponding value given below, with the same sign,
except where stated to be exactly the given value.

7.20.2.1 Limits and precision of exact-width integer types
— minimum values of exact-width signed integer types
INTN_MIN exactly (2N1)
— maximum values of exact-width signed integer types
INTN_MAX exactly 2N1 1
— maximum values of exact-width unsigned integer types
UINTN_MAX exactly 2N 1
--- number of precision bits of exact-width unsigned integer types
UINTN_PRECISION <= N

7.20.2.2 Limits and precision of minimum-width integer types
— minimum values of minimum-width signed integer types
INT_LEASTN_MIN (2N1 1)
— maximum values of minimum-width signed integer types
INT_LEASTN_MAX 2N1 1
— maximum values of minimum-width unsigned integer types
UINT_LEASTN_MAX 2N 1

WG 14, N1848

--- number of precision bits of minimum-width unsigned integer types
UINT_LEASTN_PRECISION N

7.20.2.3 Limits and precision of fastest minimum-width integer types
— minimum values of fastest minimum-width signed integer types
INT_FASTN_MIN (2N1 1)
— maximum values of fastest minimum-width signed integer types
INT_FASTN_MAX 2N1 1
— maximum values of fastest minimum-width unsigned integer types
UINT_FASTN_MAX 2N 1
--- number of precision bits of fastest minimum-width unsigned integer types
UINT_FASTN_PRECISION N

7.20.2.4 Limits and precision of integer types capable of holding object pointers
— minimum value of pointer-holding signed integer type
INTPTR_MIN (215 1)
— maximum value of pointer-holding signed integer type
INTPTR_MAX 215 1
— maximum value of pointer-holding unsigned integer type
UINTPTR_MAX 216 1
--- number of precision bits of pointer-holding unsigned integer type
UINTPTR_PRECISION 16

7.20.2.5 Limits and precision of greatest-width integer types
— minimum value of greatest-width signed integer type
INTMAX_MIN (263 1)
— maximum value of greatest-width signed integer type
INTMAX_MAX 263 1
— maximum value of greatest-width unsigned integer type
UINTMAX_MAX 264 1
--- number of precision bits of greatest-width signed integer type
INTMAX_PRECISION 63
--- number of precision bits of greatest-width unsigned integer type
UINTMAX_PRECISION 64

7.20.3 Limits and precision of other integer types
1 The following object-like macros specify the minimum and maximum limits and precision of
integer
types corresponding to types defined in other standard headers.
2 Each instance of these macros shall be replaced by a constant expression suitable for use
in #if preprocessing directives, and this expression shall have the same type as would an
expression that is an object of the corresponding type converted according to the integer

WG 14, N1848

promotions. Its implementation-defined value shall be equal to or greater in magnitude
(absolute value) than the corresponding value given below, with the same sign. An
implementation shall define only the macros corresponding to those typedef names it
actually provides.263)

— limits and precision of ptrdiff_t
PTRDIFF_MIN −65535
PTRDIFF_MAX +65535
PTRDIFF_PRECISION 16
— limits and precision of sig_atomic_t
SIG_ATOMIC_MIN see below
SIG_ATOMIC_MAX see below
SIG_ATOMIC_PRECISION see below
— limit and precision of size_t
SIZE_MAX 65535
SIZE_PRECISION 16
— limits and precision of wchar_t
WCHAR_MIN see below
WCHAR_MAX see below
WCHAR_PRECISION see below
— limits and precision of wint_t
WINT_MIN see below
WINT_MAX see below
WINT_PRECISION see below

3 If sig_atomic_t (see 7.14) is defined as a signed integer type, the value of
SIG_ATOMIC_MIN shall be no greater than −127, the value of SIG_ATOMIC_MAX
shall be no less than 127, and SIG_ATOMIC_PRECISION shall be no less than 7; otherwise,
sig_atomic_t is defined as an unsigned integer
type, the value of SIG_ATOMIC_MIN shall be 0, the value of
SIG_ATOMIC_MAX shall be no less than 255, and the value of SIG_ATOMIC_PRECISION
shall be no less than 8.
4 Ifwchar_t (see 7.19) is defined as a signed integer type, the value of WCHAR_MIN
shall be no greater than −127, the value of WCHAR_MAX shall be no less than 127, and the value
of WCHAR_PRECISION shall be no less than 7;
otherwise, wchar_t is defined as an unsigned integer type, the value of
WCHAR_MIN shall be 0, the value of WCHAR_MAX shall be no less than 255, and the value of
WCHAR_PRECISION shall be no less than 8.264)

5 If wint_t (see 7.29) is defined as a signed integer type, the value of WINT_MIN shall
be no greater than −32767, the value of WINT_MAX shall be no less than 32767, and the value
of WINT_PRECISION shall be no less than 15;
otherwise, wint_t is defined as an unsigned integer type, the value of WINT_MIN

WG 14, N1848

shall be 0, the value of WINT_MAX shall be no less than 65535, and the value of
WINT_PRECISION shall be no less than 16.

Acknowledgements
This proposal was inspired by CERT Secure Coding rule INT35-C [INT35-C]. This rule itself
was inspired by an email conversation between David Keaton (CERT) and Masaki Kubo
(JPCERT).

References
[C99] ISO/IEC 9899:2011, C Standard

[INT35-C] INT35-C. Use correct integer precisions, CERT C Coding Standard

https://www.securecoding.cert.org/confluence/x/4oBEBw

	The Problem
	Workarounds
	Solution
	Proposed Wording Changes
	Acknowledgements
	References

