
WG14 N1841 - Alternate Exception Handling Syntax for C

Notes for TS 18661 Part 5 Supplementary attributes

What syntax should be used to express IEEE 754-2008 alternate exception handling in C?

The C Floating Point group working of TS 18661 has developed two principal approaches and
seeks advice from the C committee as to which of these two, or some other, would be more productive
to develop in detail. What follows is the background, necessary semantics, and discussion of try/catch
and #pragma approaches.

BACKGROUND - How fast you can drive a car depends on how fast you can stop

Alternate Exception Handling is specified in Chapter 8 of IEEE 754-2008. It’s a series of recom-
mendations to programming environments about what kinds of facilities to provide in languages for port-
able numeric programming. Some of these recommendations have to do with changes of control
flow, and the best syntax to propose for these is the subject of this note.

The overall idea is that the normal case should go as fast as possible, so testing for exceptional
conditions should not slow it down. Likewise the normal case should terminate as quickly as possible
when exceptional conditions arise, lest (particularly in a loop terminated by a floating-point conditional
test) it get into an expensive or infinite loop.

The previous IEEE 754-1985 recommended traps on exceptions. These are implemented in most
IEEE 754 hardware systems, but they are so low level that they are not used much except for debug-
ging, where they can be easily used to stop the program altogether. It is not possible to write portable
code to handle a hardware trap and continue in any useful way. But if free testing for exceptions is built
into the hardware without slowing down the normal case, how can we make it available to the applica-
tion programmer?

Thus 754-2008 recommends alternate exception handling at a level that is meaningful to the appli-
cation programmer, leaving the details of hardware trapping to the compiler, run time library, and
operating system. It is also possible to implement 754-2008 alternate exception handling without
hardware traps, but that might entail significant performance penalties for either the normal case or
exceptional case. Exceptions can be detected inline for each operation with tests on operands and
results and flags - slowing down the normal case - or at the end of the try clause with flags - slowing
the detection of the exceptional case (but testing flags alone does not detect exact underflow exceptions).
Instead of traps, some existing hardware such as PowerPC can branch conditionally on floating-point
exceptions.

syntax.ms 1.3 14/06/26

WG14 N1841 - Alternate Exception Handling Syntax for C 2

SEMANTICS

So from the higher point of view of an applications programmer, rather than the lower point of
view of a system implementer, the common programming exception-handling paradigm is naturally
expressed in many languages in this fashion:

try {
normal case code...

}
catch (floating-point-exceptions1) {
exceptional case 1 code...

}
catch (floating-point-exceptions2) {
exceptional case 2 code...

}
following code...

The normal case code is executed; if any of the exceptions specified in catch clauses arises, the
normal case code is interrupted as quickly as possible (and thus variables written and other state
modified as side effects may be indeterminate) and the corresponding exceptional case code is executed.
In either case, after the normal case terminates normally or the exceptional case terminates, the "follow-
ing code" is executed. Note that there might be more than one catch clause to catch more than one
group of exceptions to be handled, though typically there is only one catch clause; the examples that fol-
low show only one but there could be more. Note that exceptions can be lists: in some applications
FE_UNDERFLOW FE_OVERFLOW are handled together to invoke a scaling version of the normal
case code; in other applications FE_INVALID FE_DIVISIONBYZERO FE_OVERFLOW are handled
together as errors, perhaps by breaking to a higher level or perhaps by aborting altogether.

Sometimes the possibility of interrupting computation and creating an indeterminate state is worth
avoiding; one can imagine having an additional kind of catch keyword such as "catchafter" or "patchup"
to be used in those cases to insure that the try clause completed before exception testing.

IEEE 754 specifies default exception handling, but if the default were always satisfactory then it
wouldn’t be exceptional. By definition, an exception can’t be handled the same way in every situation
in which it might arise. So alternate exception handling must be specified from time to time, more
often in code that is intended to be as fast as possible in the normal case, but as robust as possible when
exceptions arise which are not normal, but are not so rare that they can be ignored. So some desirable
attributes of exception handling include

* The normal case should be as fast as possible.

* The exceptional case should be detected as quickly as possible.

* The application programmer can understand the exception and its handling in terms that do not
depend on the specific hardware and operating system, so the syntax and semantics are portable.

* The compiler/operating system/hardware figure out the most efficient way to implement the
intended semantics on a particular platform, rather than leaving that burden on the application pro-
grammer.

Like other floating-point environment, the exception environment is inherited from the parent
thread and then thread-local (C Standard 7.6).

syntax.ms 1.3 14/06/26

WG14 N1841 - Alternate Exception Handling Syntax for C 3

SYNTAX

There are many different ways to express the syntax. They all have in common a need to
specify

* the normal case code that the exception handling applies to

* the exceptions to be handled specially

* the exception case code to be executed when those exceptions arise

There are versions of try/catch in standard C++, java, C#, perl, php, python, visual basic, and
matlab. These are all very similar but each slightly different. There are also try/catch extensions in at
least two Fortran compilers targeting .NET applications.

NetRexx has a somewhat more different version; any do/end compound statement may have one
or more catch clauses; there is no explicit try keyword. Ruby has a similar structure but the catch key-
word is "rescue". Avoiding an explicit try clause reduces the number of gratuitous nesting levels.

Naturally, for C, the closest analog is C++. C++ catch clauses have as arguments a parameter and
its type. The parameter is set by the system for standard exceptions and by the programmer for
programmer-defined exceptions generated with the throw() function; the catch clause is matched to the
throw by the type of the thrown object. There is also a catch(...) syntax to catch all unspecified
exceptions.

Unlike most of the exceptions for which try/catch was designed, some floating-point exceptions
arise frequently - inexact especially and underflow in some programs - and the default treatment of con-
tinuing execution with a prescribed result and raising a flag should be in force if no alternate treatment
is specified in a catch clause.

Thus several aspects of C++ exception handling are not needed to support 754-2008 floating-point
alternate exception handling:

* no need to throw()

* no need to catch(...) unspecified exceptions

* catch clause is matched by exception rather than type -
in standard C, exceptions receive names in <fenv.h> like FE_INVALID

Furthermore there is another difference important for performance: whereas in C++ the code in
the try clause is compiled without reference to subsequent catch clauses, for floating-point purposes it is
usually desirable or necessary to know which exceptions are to be trapped when generating the code for
the try clause. If the implementation is to be by traps, a trap handler has to be set up before the try
clause and torn down on exit; if the implementation is to be by conditional branches on operands and
results, that code has to be generated inline in the try clause. As a consequence, a strictly one-pass C
compiler would have to exploit hardware traps in order to implement alternate exception handling fully
and efficiently. Otherwise by only testing exception flags at the end of the try clause, such a compiler
would not be able to promptly terminate an exceptional loop until it had perhaps run for a long time or
infinitely. Nor could it properly test for the underflow exception: a little-appreciated but important
requirement of 754-1985 and 754-2008 is that exact underflow conditions must be detected by trapping
(1985) or alternate exception handling (2008) if enabled, even though the underflow flag is not raised
(and thus can’t be used to detect exact underflow).

syntax.ms 1.3 14/06/26

WG14 N1841 - Alternate Exception Handling Syntax for C 4

Thus syntactically, a compiler might prefer that the catch clause for floating-point exceptions be
seen before the try clause rather than afterward, as it is in most languages. However the conventional
try/catch paradigm properly puts the normal case first syntactically, for the benefit of the programmer
who writes and the programmer who reads the code and must understand the normal case before delving
into the exceptional case. One can imagine having the catch before, in which case the keyword should
perhaps be different:

catch_fe(exception) {
exceptional case code...

}
try {
normal case code...

}

or having it within the try clause:

try {
catch_fe(exception) {
exceptional case code...

}
normal case code...

}

One result of preserving some form of try/catch syntax is that floating-point exception handling
could be added to C++ with less syntactic effort than other possible approaches, and most of C++ excep-
tion handling could be added to C with less syntactic effort than other possible approaches. If that com-
patibility were deemed to cost more than its benefit, then there are other alternatives.

Since the explicit try clause is not really needed, one could define catch_fe clauses for any com-
pound statement delimited by curly brackets, and instead of adding a catch_fe keyword, it could be a
variety of pragma:

{
normal case code...

{
#pragma STDC CATCH_FE exception
exceptional case code...

}
}

It’s exactly the same try/catch semantics that we started with, but in syntax not particularly close
to C++ or anybody else’s try/catch. However it does match other #pragma’s having scope in compound
statements or in files, that are already in C, and are already in previous floating-point extension reports
going through the approval process, and that are being considered to control other aspects of floating-
point code generation.

Other syntaxes that have been used in the past include:

PL/I:
ON exception BEGIN; ... END;

Basic:

syntax.ms 1.3 14/06/26

WG14 N1841 - Alternate Exception Handling Syntax for C 5

ON ERROR GOTO label
ON event GOSUB label

Rexx:
SIGNAL ON exception;

but these don’t seem to offer any advantage.

While the C Floating Point group working of TS 18661 could pursue any of these directions and
report the results to the C committee, we’d appreciate early feedback and direction from the C commit-
tee as to which seems the most acceptable, or whether there’s some better C-like way to express the
semantics. The semantic content is pretty much the same with all, but the syntax possibilities vary
widely.

Note: Can adequate floating-point exception handling be handled without any syntactic support in
C? Most of what is desired can be expressed with the existing floating-point flag functions or by ena-
bling SIGFPE handlers for hardware floating-point traps. However the flags functions are very verbose
and tend to obscure the underlying logic of the applications, and even a SIGFPE handler that does noth-
ing but abort or longjump has a lot of implementation-dependent handling of the trap details; one that
does anything more complicated might end up decoding op codes, once again obscuring the application
logic. Worse, the C standard 7.14.1.1 specifies that the signal function behavior is undefined in the pres-
ence of multiple threads. Worst, the application programmer must decide whether coding with flags or
traps is best, even though that system-dependent decision might better be left to the compiler and run-
time.

So even though existing standard C has support for detecting exception flags and handling
SIGFPE, that’s sort of like saying that Fortran-77 supports a heap. It is true that any competent
Fortran-77 programmer could program blank common to be used like a heap. It is also true that the
result is difficult to write correctly and even harder to read and debug. C provides malloc and free
instead. Fortran-90 eventually caught up to C in this respect.

syntax.ms 1.3 14/06/26

