
MetaFork: A Metalanguage for Concurrency

Platforms Targeting Multicores

Xiaohui Chen, Marc Moreno Maza & Sushek Shekar
University of Western Ontario

September 1, 2013

Document number: N1746
Date: 2013-09-01
Project: Programming Language C, WG14 CPLEX Study Group
Authors:
Xiaohui Chen, xchen422@csd.uwo.ca
Marc Moreno Maza, moreno@csd.uwo.ca
Sushek Shekar, sshekar@uwo.ca
Reply-to: Michael Wong, michaelw@ca.ibm.com
Revision: 1

1 Introduction

Today most computers are equipped with multicore processors leading to a
constantly increasing effort in the development of the concurrency platforms
which target those architectures, such as CilkPlus, OpenMP, Intel TBB.
While those programming languages are all based on the fork-join parallelism
model, they largely differ on their way of expressing parallel algorithms and
scheduling the corresponding tasks. Therefore, developing programs involving
libraries written with several of those languages is a challenge.

In this note, we propose MetaFork, a metalanguage for multithreaded
algorithms based on the fork-join parallelism model and targeting multicore
architectures. By its parallel programming constructs, this language is currently
a common denominator of CilkPlus and OpenMP. However, this language
does not compromise itself in any scheduling strategies (work stealing, work
sharing, etc.) Thus, it does not make any assumptions about the run-time
system.

The purpose of this metalanguage is to facilitate automatic translations of
programs between the above concurrency platforms. To date, our experimen-
tal framework includes translators between CilkPlus and MetaFork (both
ways) and, between OpenMP and MetaFork (both ways). Hence, through

1

MetaFork, we are able to perform program translations between CilkPlus
and OpenMP (both ways). Adding Intel TBB to this framework is a work
in progress. As a consequence, the MetaFork program examples given in
this note were obtained either from original CilkPlus programs or original
OpenMP programs. See Appendices A, B, C for an example.

This report focuses on the syntax and semantics of MetaFork. A presen-
tation of our experimental framework will appear elsewhere.

2 Basic Principles

We summarize in this section a few principles that guided the design of MetaFork.
First of all, MetaFork is an extension of C/C++ and a multithreaded lan-
guage based on the fork-join parallelism model. Thus, concurrent execution is
obtained by a parent thread creating and launching one or more child threads so
that the parent and its children execute a so-called parallel region. An important
examples of parallel regions are for-loop bodies.

Similarly to CilkPlus, the parallel constructs of MetaFork allow con-
current execution but do not command it. Hence, a MetaFork program can
execute on a single core machine. Moreover, the semantics of a MetaFork
program (assumed to be free of data-races) is defined by its serial elision. This
latter is obtained by erasing the keywords meta fork and meta join and by
replacing the keyword meta for by for.

As mentioned above, MetaFork does not make any assumptions about the
run-time system, in particular about task scheduling. Another design princi-
ple is to encourage a programming style limiting thread communication to a
minimum so as to

• prevent from data-races while preserving a satisfactory level of expressive-
ness and,

• minimize parallelism overheads.

To some sense, this principle is similar to that of CUDA which states the
execution of a given kernel should be independent of the other in which its
thread blocks are executed. Returning to our concurrency platforms targeting
multicore architectures, OpenMP offers several clauses which can be used to
exchange information between the threads (like threadprivate, copyin and
copyprivate) while no such mechanism exists in CilkPlus. Of course, this
difference follows from the fact that, in CilkPlus, one can only fork a function
call while OpenMP allows other code regions to be executed by several threads.
MetaFork has both parallel constructs. For the latter, being able to explic-
itly qualify variables shared or private is a clear need and MetaFork offers this
feature. However, this is the only mechanism for communication among threads
that MetaFork provides explicitly.

2

3 MetaFork Syntax

Essentially, MetaFork has three keywords, namely meta fork, meta for and
meta join, described below. We stress the fact that the first one allows for
spawning function calls (like in CilkPlus) as well as concurrent execution of a
region (like in OpenMP).

1. meta fork

Description: the meta fork keyword is used to express a function call or
a piece of code which could be run concurrently with the parent thread.

• meta fork function (. . .)

– we call this construct a function spawn,

Figure 1 below illustrates how meta fork can be used to define a
function spawn. The underlying algorithm is the cache oblivious
divide and conquer matrix multiplication.

• meta fork { . . . code . . . }
– we call this construct a parallel region,

– no equivalent in CilkPlus.

Figure 2 below, illustrates how meta fork can be used to define a par-
allel region. The underlying algorithm is one of the two-subroutines
in the work-efficient parallel prefix sum.

On the contrary of CilkPlus, no implicit barrier is assumed at the end of
a function spawn or a parallel region. Hence synchronization points have
to be added explicitly, using meta sync, as in the examples of Figures 2
and 6.

2. meta for (initialization expression, condition expression, stride,[

chunksize]) { loop body }
Description: the meta for keyword allows the for loop to run in parallel.

• the initialization expression initializes a variable, called the control
variable which can be of type integer, iterator or pointer.

• condition expression compares the control variable with a compatible
expression, using of the following operators:

<

<=

>

>=

! =

• the stride uses one the following operation to increase or decrease the
value of the control variable:

3

template<typename T> void DnC_matrix_multiply(int i0, int i1, int j0,

int j1, int k0, int k1, T* A, int lda, T* B, int ldb, T* C,int ldc)

{

int di = i1 - i0;

int dj = j1 - j0;

int dk = k1 - k0;

if (di >= dj && di >= dk && di >= RECURSION_THRESHOLD) {

int mi = i0 + di / 2;

meta_fork DnC_matrix_multiply(i0,mi,j0,j1,k0,k1,A,lda,B,ldb,C,ldc);

DnC_matrix_multiply(mi, i1, j0, j1, k0, k1, A, lda, B, ldb, C, ldc);

meta_sync;

} else if (dj >= dk && dj >= RECURSION_THRESHOLD) {

int mj = j0 + dj / 2;

meta_fork DnC_matrix_multiply(i0,i1,j0,mj,k0,k1,A,lda,B,ldb,C,ldc);

DnC_matrix_multiply(i0, i1, mj, j1, k0, k1, A, lda, B, ldb, C, ldc);

meta_sync;

} else if (dk >= RECURSION_THRESHOLD) {

int mk = k0 + dk / 2;

DnC_matrix_multiply(i0, i1, j0, j1, k0, mk, A, lda, B, ldb, C, ldc);

DnC_matrix_multiply(i0, i1, j0, j1, mk, k1, A, lda, B, ldb, C, ldc);

} else {

for (int i = i0; i < i1; ++i)

for (int k = k0; k < k1; ++k)

for (int j = j0; j < j1; ++j)

C[i * ldc + j] += A[i * lda + k] * B[k * ldb + j];

}

}

Figure 1: Example of a MetaFork program with function spawns.

4

long int parallel_pscanup (long int x [], long int t [], int i, int j)

{

if (i == j) {

return x[i];

}

else{

int k = (i + j)/2;

int right;

meta_fork {

t[k] = parallel_pscanup(x,t,i,k);

}

right = parallel_pscanup (x,t, k+1, j);

meta_sync;

return t[k] + right;}

}

Figure 2: Example of a MetaFork program with a parallel region.

template<typename T> void multiply_iter_par(int ii, int jj, int kk, T* A, T* B,

T* C)

{

meta_for(int i = 0; i < ii; ++i)

for (int k = 0; k < kk; ++k)

for(int j = 0; j < jj; ++j)

C[i * jj + j] += A[i * kk + k] + B[k * jj + j];

}

Figure 3: Example of meta for

++

−−
+ =

−+

var = var +/- incr

• the chunksize specifies the number of loop iterations executed per
thread; the default value is one.

Following the principles stated in Section 2, the iterations must be inde-
pendent. Note that there is an implicit barrier after the loop body, since
this is expected in most practical examples, and MetaFork should not
puzzle programmers on this. Figure 3 displays an example for meta fork,
where the underlying algorithm is the naive (and cache-inefficient) matrix
multiplication algorithm.

3. meta join

5

void test(int *array)

{

int basecase = 100;

meta_for(int j = 0; j < 10; j++)

{

int i = array[j];

if(i < basecase)

array[j]++;

}

}

Figure 4: Example of shared and private variables with meta for.

Description: this directive indicates a synchronization point. It only waits
for the completion of the children tasks but not for those of the subsequent
descendant tasks.

4 Variable Attribute

Following principles implemented in other multithreaded languages, in particu-
lar OpenMP, the variables of a MetaFork program, that are involved within
a parallel region or a parallel for loop, can be either private or shared among
threads. In a MetaFork parallel for-loop, variables that are defined for the
first time in the body of that loop (i.e not defined before reaching the loop body)
are considered private, hence each thread participating to the for-loop execution
has a private copy. Meanwhile, variables that are defined before reaching the
for-loop are considered shared. Consequently, in the example of Figure 4, the
variables array and basecase are shared by all threads while the variable i is
private.

For the meta fork directives, by default, the variables passed to a function
spawn or occurring in a parallel region are private. However, programmers can
qualify a given variable as shared by using the directive shared explicitly. In
the example of Figure 5, the variable n is private to fib parallel(n-1). In
Figure 6, we specify the variable x as shared and the variable n is still private.
Notice that the programs in Figures 5 and 6 are equivalent, in the sense that
they compute the same thing.

5 Extensions of MetaFork

The MetaFork language as defined in the previous sections serves well as a
metalanguage for multithreaded programs, or equivalently, as a pseudo-code
language for multithreaded algorithms.

6

long fib_parallel(long n)

{

long x, y;

if (n < 2)

return n;

else{

x = meta_fork fib_parallel(n-1);

y = fib_parallel(n-2);

meta_join;

return (x+y);}

}

Figure 5: Example of private variables in a function spawn.

long fib_parallel(long n)

{

long x, y;

if (n < 2)

return n;

else{

meta_fork shared(x)

{

x = fib_parallel(n-1);

}

y = fib_parallel(n-2);

meta_join;

return (x+y);}

}

Figure 6: Example of a shared variable attribute in a function spawn.

7

void reduction(int* a)

{

int max = 0;

meta_for (int i = 0; i < MAX; i++)

{

reduction:MAX max;

if(a[i] > max)

max = a[i];

}

}

Figure 7: Reduction example in MetaFork

Operator Initial value Description
+ 0 performs a sum
- 0 performs a subtraction
* 1 performs a multiplication
& 0 performs bitwise AND
| 0 performs bitwise OR
ˆ 0 performs bitwise XOR

&& 1 performs logical AND
|| 0 performs logical OR

MAX 0 largest number
MIN 0 least number

Table 1: Typical binary operations involved in reducers.

In order to serve also as an actual programming language, we propose two
extensions. The first one provides support for reducers, a very popular parallel
construct. The second one controls and queries workers (i.e. working cores) at
run-time.

5.1 Reduction

A reduction operation combines values into a single accumulation variable when
there is a true dependence between loop iterations that cannot be trivially re-
moved. Support for reduction operations is included in most parallel program-
ming languages. In Figure 7, the MetaFork program computes the maximum
element of an array.
Reduction variables (also called reducers) are defined as follows:

reduction : op var list
where op stands for an associative binary operation. Typical such operations
are listed in Table 1.

8

5.2 Run-time API

In order to conveniently run an actual MetaFork, we propose the following
run-time support functions:

1. void meta set nworks(int arg)

Description: sets the number of requested cores (also called workers in
this context).

2. int meta get nworks(void)

Description: gets the number of available cores.

3. int meta get worker self(void)

Description: obtains the ID of the calling thread.

6 Conclusion

In this proposal, we have presented the three fundamental constructs of the
MetaFork language, namely meta fork, meta for, meta join which can be
used to express multithreaded algorithms based on task level parallelism. In
the last section, we have also proposed additional constructs which are meant
to facilitate the translation of multithreaded programs from one concurrency
platform targeting multicore architectures to another.

We believe that programmers may benefit from MetaFork to develop ef-
ficient multithreaded code because the constructs are easy to understand while
being sufficient to express many desirable parallel algorithms. Moreover, the
infrastructure of MetaFork is compatible with popular concurrency platforms
targeting multicores: we could verify this fact experimentally thanks to our
translators to and from OpenMP and CilkPlus. In addition, we could use
this infrastructure to understand performance issues in a program originally
written with one of these languages by comparing it with its counterpart auto-
matically generated to the other language.

In a sum, to ease programmers’ activity who need to work with several concur-
rency platforms, we beleive that it is really necessary to have a well-designed
unified parallel language like MetaFork.

9

A Original OpenMP code

long int parallel_pscanup (long int x[], long int t[], int i, int j)

{

if ((j-i)<=base)

{

int re = serial_pscanup(x,t,i,j);

return re;

}

else if (i == j) {

return x[i];

}

else

{

int k = (i + j)/2;

int right;

#pragma omp task

{

t[k] = parallel_pscanup(x,t,i,k);

}

right = parallel_pscanup (x,t, k+1, j);

#pragma omp taskwait

return t[k] + right ;

}

}

int parallel_pscandown (long int u, long int x[], long int t[], long int y[], int i, int j)

{

if ((j-i)<=base)

{

serial_pscandown(u,x,t,y,i,j);

return 0;

}

else if (j != i) {

int k = (i + j)/2;

y[j] = t[k] + u;

y[k] = u;

#pragma omp task

{

parallel_pscandown (y[j], x, t, y, k+1, j);

}

parallel_pscandown (y[k], x, t, y, i, k);

}

return 0;

}

10

B Translated MetaFork code from OpenMP code

long int parallel_pscanup (long int x[], long int t[], int i, int j)

{

if ((j-i)<=base)

{

int re = serial_pscanup(x,t,i,j);

return re;

}

else if (i == j) {

return x[i];

}

else

{

int k = (i + j)/2;

int right;

{

t[k] =meta_fork parallel_pscanup(x,t,i,k);

}

right = parallel_pscanup (x,t, k+1, j);

meta_join;

return t[k] + right ;

}

}

int parallel_pscandown (long int u, long int x[], long int t[], long int y[], int i, int j)

{

if ((j-i)<=base)

{

serial_pscandown(u,x,t,y,i,j);

return 0;

}

else if (j != i) {

int k = (i + j)/2;

y[j] = t[k] + u;

y[k] = u;

{

meta_fork parallel_pscandown (y[j], x, t, y, k+1, j);

}

parallel_pscandown (y[k], x, t, y, i, k);

}

return 0;

}

11

C Translated CilkPlus code from MetaFork code

long int parallel_pscanup (long int x[], long int t[], int i, int j)

{

if ((j-i)<=base)

{

int re = serial_pscanup(x,t,i,j);

return re;

}

else if (i == j) {

return x[i];

}

else

{

int k = (i + j)/2;

int right;

{

t[k] =cilk_spawn parallel_pscanup(x,t,i,k);

}

right = parallel_pscanup (x,t, k+1, j);

cilk_sync ;

return t[k] + right ;

}

}

int parallel_pscandown (long int u, long int x[], long int t[], long int y[], int i, int j)

{

if ((j-i)<=base)

{

serial_pscandown(u,x,t,y,i,j);

return 0;

}

else if (j != i) {

int k = (i + j)/2;

y[j] = t[k] + u;

y[k] = u;

{

cilk_spawn parallel_pscandown (y[j], x, t, y, k+1, j);

}

parallel_pscandown (y[k], x, t, y, i, k);

}

return 0;

}

12

